Übungen zur Analysis I, WS 2000/01

Abgabe am 15.12.2000 vor der Vorlesung

Aufgabe 34. (Grenzwerte)

Für welche Werte des Parameters $a \in \mathbb{R}$ existiert der Grenzwert

$$\lim_{x \to 2} \left(\frac{1}{2-x} - \frac{a}{4-x^2} \right) ?$$

Aufgabe 35. (Stetigkeit der Wurzelfunktion)

Die Funktion $\sqrt{\ }$ sei wie folgt definiert:

$$\sqrt{}: \mathbb{R}_0^+ \to \mathbb{R} \\
x \mapsto \sqrt{x}$$

Zeigen Sie, dass $\sqrt{\text{ auf } \mathbb{R}_0^+}$ stetig ist.

Aufgabe 36. (Unstetige Grenzfunktion)

Für jedes $n \in \mathbb{N}$ werde eine Funktion $g_n : \mathbb{R} \to \mathbb{R}$ definiert durch

$$g_n(x) := \frac{nx}{1 + |nx|} .$$

- a) Begründen Sie, warum jede der Funktionen g_n auf ganz \mathbb{R} stetig ist. (Hinweis: Beweisen Sie zuerst die Stetigkeit der Betragsfunktion.)
- b) Beweisen Sie, dass für jedes $x \in \mathbb{R}$ der Grenzwert $\lim_{n \to \infty} g_n(x)$ existiert.
- c) In welchen Punkten ist die durch $g(x) := \lim_{n \to \infty} g_n(x)$ definierte Grenzfunktion $g : \mathbb{R} \to \mathbb{R}$ stetig?

Aufgabe 37. (mündlich) (Stetige Funktionen)

- a) Es seien f und g stetige Funktionen $\mathbb{R} \to \mathbb{R}$ mit der Eigenschaft, dass f(x) = g(x) für alle $x \in \mathbb{Q}$ gilt. Zeigen Sie, dass dann f(x) = g(x) für alle $x \in \mathbb{R}$ gilt.
- b) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion mit

$$f(x+y) = f(x) + f(y)$$
 für alle $x, y \in \mathbb{R}$.

Zeigen Sie, dass dann f(x) = ax für alle $x \in \mathbb{R}$ gilt, wobei a := f(1).

(Hinweis: Zeigen Sie die Behauptung zunächst für alle $x \in \mathbb{Q}$.)