Übungen zur Analysis III, WS 2001/02

Präsenzübung für das erste Tutorium

Aufgabe 1. (mündlich) (Quader und Treppenfunktionen) Sei

$$Q_1 := [0, 2] \times [0, 2]$$
 und $Q_2 := [1, 3] \times (1, 3]$

sowie $\varphi := \chi_{Q_1} + 3\chi_{Q_2}$. Geben Sie endlich viele disjunkte Quader $\widetilde{Q_1}, \dots, \widetilde{Q_k} \subset \mathbb{R}^2$ und Zahlen $a_1, \dots a_k$ an, so dass gilt $\varphi = \sum_{i=1}^k a_i \chi_{\widetilde{Q_i}}$.

Aufgabe 2. (mündlich) (Treppenfunktionen)

Zeigen Sie, dass das Produkt zweier Treppenfunktionen $\varphi, \psi \in T(\mathbb{R}^n)$ wieder eine Treppenfunktion ist.

(Dies zeigt, dass der Raum der Treppenfunktionen $T(\mathbb{R}^n)$ nicht nur ein \mathbb{R} -Vektorraum, sondern sogar eine \mathbb{R} -Algebra ist.)

Aufgabe 3. (mündlich) (Integral für Treppenfunktionen)

Seien $\varphi, \psi \in T(\mathbb{R}^n)$. Beweisen Sie die folgenden Aussagen über das Integral für Treppenfunktionen:

- a) Linearität: Für alle reellen Zahlen λ, μ gilt $\int (\lambda \varphi + \mu \psi) = \lambda \int \varphi + \mu \int \psi$.
- b) Monotonie: Falls $\varphi \leq \psi$ gilt, so folgt $\int \varphi \leq \int \psi$.
- c) Beschränktheit: Es sei $\varphi = \sum_{i=1}^k a_i \chi_{Q_i}$. Dann gilt

$$\left| \int \varphi \right| \le \max\{ |a_1|, \dots, |a_k| \} \cdot \sum_{i=1}^k \operatorname{Vol}(Q_i) .$$

(Hinweis: Überlegen Sie sich, dass es für je zwei Treppenfunktionen eine Menge von disjunkten Quadern gibt, mit deren Hilfe beide Funktionen dargestellt werden können.)