Übungen zur Analysis III, WS 2001/02

Abgabe am Donnerstag, den 01.11.2001 vor der Vorlesung

Aufgabe 7. Es sei

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{, falls } x \in (0, \frac{2}{\pi}] \text{ und } \sin(\frac{1}{x}) \ge 0 \text{,} \\ 0 & \text{, sonst .} \end{cases}$$

Zeigen Sie:

- a) $f \in L^+(\mathbb{R}^n)$,
- b) f ist keine Regelfunktion.

Aufgabe 8. (Stetige Funktionen)

Sei $Q \subset \mathbb{R}^n$ ein abgeschlossener Quader und $f: Q \to \mathbb{R}$ eine stetige Funktion. Beweisen Sie, dass es eine Folge $(\varphi_k)_{k \in \mathbb{N}}$ in $T(\mathbb{R}^n)$ gibt mit

- (i) $(\varphi_k)_{k\in\mathbb{N}}$ ist monoton steigend,
- (ii) $\lim_{k \to \infty} \varphi_k(x) = f(x)$ für alle $x \in Q$,
- (iii) $\left(\int \varphi_k\right)_{k\in\mathbb{N}}$ konvergiert.

Dies zeigt, dass die durch 0 fortgesetzte Funktion \widetilde{f} in $L^+(\mathbb{R}^n)$ liegt.

(Hinweis: Konstruieren Sie die Folge $(\varphi_k)_{k\in\mathbb{N}}$ durch Unterteilung von Q in genügend kleine Teilquader. Dann ist (i) und (iii) leicht zu sehen. Für (ii) nützt ihnen, dass f sogar gleichmäßig stetig ist.)

Aufgabe 9. (Translationsinvarianz)

Zeigen Sie, dass das Lebesgue-Integral translationsinvariant ist, d.h.: Sei $f \in L(\mathbb{R}^n)$, $a \in \mathbb{R}^n$ und $\widetilde{f} : x \mapsto f(x-a)$ die um a "verschobene" Funktion. Dann ist auch $\widetilde{f} \in L(\mathbb{R}^n)$ und es gilt $\int \widetilde{f} = \int f$.

(Hinweis: Beweisen Sie die Aussage zunächst für $f \in T(\mathbb{R}^n)$ und $f \in L^+(\mathbb{R}^n)$.)