Übungen zur Analysis III, WS 2001/02

Abgabe am Donnerstag, den 15.11.2001 vor der Vorlesung

Aufgabe 13. (Cantorsches Diskontiuum)

Es sei $I_0 := [0, 1], I_1 := [0, \frac{1}{3}] \cup [\frac{2}{3}, 1], I_2 := \left([0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}]\right) \cup \left([\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]\right), \dots$, das heißt, I_{n+1} entsteht aus I_n indem man aus jedem ("maximalen") Teilintervall von I_n das offene mittlere Drittel entfernt. Die Menge $C := \bigcap_{n \geq 0} I_n$ nennt man Cantorsches Diskontinuum. Zeigen Sie:

- a) C ist kompakt.
- b) C ist eine Nullmenge.
- c) C ist überabzählbar.

(Hinweis: Für Aufgabenteil c) dürfen Sie ohne Beweis benutzen, dass jede reelle Zahl $x \in [0,1]$ eine ("eindeutige")triadische Entwicklung $x = \sum_{i=1}^{\infty} x_i \cdot 3^{-i}, x_i \in \{0,1,2\}$ besitzt und dass C genau die Zahlen $x \in [0,1]$ enthält, in deren triadischer Entwicklung die 1 nicht vorkommt $(x_i \neq 1 \text{ für alle } i \in \mathbb{N}).)$

Aufgabe 14.

Es seien $f, g \in L(\mathbb{R}^n)$ und g beschränkt. Zeigen Sie, dass $f \cdot g$ wieder in $L(\mathbb{R}^n)$ liegt. Gehen Sie dabei folgendermaßen vor:

- a) Zeigen Sie, dass gilt $\chi_Q \cdot g \in L(\mathbb{R}^n)$, falls $Q \subset \mathbb{R}^n$ ein Quader ist und $g \in L^+(\mathbb{R}^n)$.
- b) Folgern Sie, dass gilt $\varphi \cdot q \in L(\mathbb{R}^n)$, falls $\varphi \in T(\mathbb{R}^n)$ und $q \in L(\mathbb{R}^n)$.
- c) Zeigen Sie, dass gilt $f \cdot g \in L(\mathbb{R}^n)$, falls $f \in L^+(\mathbb{R}^n)$ und $g \in L(\mathbb{R}^n)$, indem Sie den Satz von der majorisierenden Konvergenz auf eine geeignente Folge aus $L(\mathbb{R}^n)$ anwenden.
- d) Folgern Sie die Aussage.

Aufgabe 15.

Sei α eine reelle Zahl und

$$f: \mathbb{R}^+ \to \mathbb{R}$$
$$x \mapsto \frac{1}{x^{\alpha}} .$$

- a) Sei zunächst $\alpha < 1$. Beweisen Sie, dass gilt $f \cdot \chi_{(0,1]} \in L(\mathbb{R}^+)$, und berechnen Sie $\int f \cdot \chi_{(0,1]}$.
- b) Sei nun $\alpha > 1$. Beweisen Sie, dass gilt $f \cdot \chi_{[1,+\infty)} \in L(\mathbb{R}^+)$, und berechnen Sie $\int f \cdot \chi_{[1,+\infty)}$.

(Hinweis: Konstruieren Sie geeignete Ausschöpfungen von (0,1], bzw. $[1,+\infty)$ und benutzen Sie dort die Regelintegrierbarkeit von f.)