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1. Abstract

We consider the generalized Petersson-Weil metric on the moduli
space of compact submanifolds of a Kähler manifold or a projective
variety. It is extended as a positive current to the space of points
corresponding to reduced fibers, and estimates are shown. For moduli
of projective varieties the Petersson-Weil form is the curvature of a
certain determinant line bundle equipped with a Quillen metric. We
investigate its extension to the compactified moduli space.

2. Introduction

The complex structure of a moduli space reflects the variation of
complex structures on the fibers of a holomorphic family. On the level
of deformations, the Kodaira-Spencer map usually identifies the tan-
gent space of the base of a universal family with a certain cohomology
group defined intrinsically on the fibers. Once these groups can be
equipped with an inner product in a functorial way, the induced Her-
mitian structure is expected to induce a Kähler metric on the moduli
space, which will be called a generalized Petersson-Weil metric. Well-
known cases are moduli of Kähler-Einstein manifolds (cf. [F-S1]), and
stable holomorphic vector bundles (cf. [F-S2, S-T]).

In the classical situation of moduli of compact Riemann surfaces
Wolpert showed in [WO] that the Petersson-Weil metric extends to the
Deligne-Mumford compactification as a strictly positive closed current.
This current is in fact the Chern form of a certain determinant bun-
dle, which was studied before by Mumford in [M], giving rise to an
embedding into a projective space. Here the techniques of Richberg
[RI] could be used for a purely analytic proof of the ampleness. These
results were extended by Zograf and Takhtadzhyan in [Z-T].

In this paper we will study the generalized Petersson-Weil metric on
the Douady space of submanifolds of a fixed Kähler manifold Z.

The Kähler property for both the Douady, and Barlet spaces of com-
pact cycles had been previously established by Fujiki [F1, F2] and
Varouchas [VA1, VA2], where a certain fiber integral was used. In
[B-S2] this fiber integral is tied to the geometric situation, and recov-
ered as a generalized Petersson-Weil metric ωPW .

1
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If Z is projective, the generalized Grothendieck-Hirzebruch-Riemann-
Roch theorem by Bismut, Gillet and Soulé [BGS] can be used to define
a hermitian line bundle λ on the Douady space of smooth submanifolds
such that the curvature form of λ equals ωPW .

We use the Grothendieck-Hirzebruch-Riemann-Roch theorem for not
necessarily smooth mappings of complex manifolds by O’Brian-Toledo-
Tong [O-T-T1, O-T-T2] to show that the determinant line bundle ex-
tends to the whole Douady space, i.e. to the Hilbert scheme, as deter-
minant bundle up to a divisor arising from the non-smooth locus. From
these two ingredients, we construct a hermitian line bundle, whose cur-
vature is the generalized Petersson-Weil form (cf. Theorem 7.2). This
line bundle is somewhat different from the invertible sheaf used in Al-
gebraic Geometry (cf. [V]).

The refined Riemann-Roch theorem by Bismut [BI2] extends the
Quillen metric to determinant bundles for singular fibrations, where
nodal singularities are allowed.

If generic singularities for the given component of the Douady space
are nodal, which is the case for plane curves or a large class of space
curves, we can say more: The above determinant bundle extends to the
whole component of the Douady space as a singular hermitian bundle,
which possesses a continuous ∂∂-potential, and on the set of smooth
points the approximation techniques of Demailly for singular hermitian
metrics with vanishing Lelong numbers [D] are applicable.

Acknowledgement. The second named author would like to thank
the University of Reykjav́ık for its hospitality and support.

3. Kähler Geometry of Douady Spaces

Let Z be a complex manifold, and

(1) X
Â Ä i //

f ##GG
GG

GG
GG

GG
Z × S

pr2

²²
S

a flat holomorphic family of complex submanifolds of Z, parameterized
by a complex space S of dimension n. Let s0 be a distinguished point of
S with fiber X = Xs0 . The above holomorphic maps define morphisms
of tangent and normal bundles. Since NX|X is trivial, we get

(2) 0 // TX
// TX |X νX //

q∗
²²

Ts0S ⊗C OX
//

ρ

²²

0

0 // TX
// TZ |X νZ // NX|Z // 0

where q = pr1 ◦ i.
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The morphism ρ applied to global sections defines the Kodaira-Spen-
cer map:

ρs0 : Ts0S → H0(X, NX|Z).

For closed subspaces rather than submanifolds the Kodaira-Spencer
map can according to [DO] also be defined, but then NX|Z has to be
generalized to the sheaf of sections of the normal linear space of X in
Z.

From now on, (Z, ωZ) denotes a Kähler manifold. Denote by ωX the
induced Kähler form on X. The Kähler form ωZ induces a hermitian
inner product 〈·, ·〉ωZ

on the normal bundle NX|Z , and by integration a
natural inner product on the space of its global holomorphic sections.

Definition 3.1. The Petersson-Weil inner product for v, w ∈ Ts0S
equals

〈v, w〉PW =

∫

X

〈ρ(v), ρ(w)〉ωZ
ωn

X .

It follows from the definition that the Petersson-Weil norm is strictly
positive in effective directions of the family, in particular it provides
the base space with a (positive definite) hermitian structure.

We now give a geometric description of the Petersson-Weil inner
product.

Let pr1 : Z × S → Z denote the projection onto the first factor.
The d-closed, real (1, 1)-form ω̃ = pr∗1(ωZ) is positive semi-definite, in
particular when restricted to X , and positive definite when restricted
to fibers of f , in particular to X. Observe that this property is sufficient
to define what it means that a tangent vector of X at a point of X is
orthogonal to X.

The positive semidefinite form ω̃|X = ωX induces a hermitian struc-
ture 〈·, ·〉ωX

on TX |X, and we realize TX |X as a C∞ orthogonal sum
of TX and Ts0S ⊗C OX induced by a section σX of νX of class C∞.
In a similar way TZ |X decomposes as an orthogonal sum of TX and
NX|Z with C∞ section σZ of νZ .

Lemma 3.2. Let v, w ∈ Ts0S. Then

〈v, w〉PW =

∫

X

〈σX (v), σX (w)〉ωX
ωn

X .

Proof. Observe that q∗ ◦ σX = σZ ◦ ρ and that q∗ωZ = ωX . ¤
Now we describe the Petersson-Weil metric in terms of local coor-

dinates. Let k be the embedding dimension of S at s0. Denote by
S ⊂ U = {(s1, . . . , sk)} ⊂ Ck a local embedding of S into s smooth
ambient space near s0. Then (∂/∂s1)|s0 , . . . , (∂/∂sk)|s0 define a basis
of the tangent space.

We need to describe the infinitesimal deformation in adapted local
coordinates, namely Z × S = {(z, w, s)} where the components of z
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are zα; α = 1, . . . , n, the components of w are wi; i = 1, . . . , m, and
the components of s are s1, . . . , sk; that the coordinates are adapted
means that X = {(z, 0, s)}, and f(z, w, s) = s.

Here it is sufficient to replace S by the first infinitesimal neighbor-
hood of s0 = 0 in S, in order to treat singularities of S.

With respect to the above local coordinates we write the coefficients
of ωX as gαβ; giβ, gα etc. We pay special attention to ωX = ω̃|X =√−1

∑
gαβdzα ∧ dzβ, and use raising and lowering of indices with re-

spect to this tensor.
We consider a tangent vector vi = ∂

∂si

∣∣
s0
∈ T0S. We restrict the given

family to the corresponding subspace Si of S, having the embedding
dimension one. Let µi = σX (vi) be the induced differentiable section
of TX |X.

Explicitly, the orthogonal, differentiable vector field on X reads

(3) µi =
∂

∂si
− giβgβα ∂

∂zα
.

Its pointwise norm equals

‖µi(z)‖2
PW = gii − giβgαig

βα ≥ 0,

and the Petersson-Weil inner product 〈·, ·〉PW on tangent vectors of the
base is defined by

(4) 〈 ∂

∂si
|s0 ,

∂

∂sj
|s0〉 = 〈µi, µj〉 =

∫

X

(gi − giβgαg
βα) g dV ≥ 0.

Thus, a positive semi-definite (1, 1)-form ωPW
S on S is constructed, in

the sense of a collection of positive definite, hermitian forms on all
tangent spaces TsS:

ωPW
S :=

√−1
∑
i,j

〈µi, µj〉PW dsi ∧ dsj.

In the sequel, we use the convention that m-th powers of differential
forms always carry a factor 1/m!.

A direct calculation similar to the case of deformations of canonically
polarized varieties (cf. [S]) yields (in any dimension of S) a fiber integral
formula.

Lemma 3.3. For any smooth family X ↪→ Z × S → S over S, S
not necessarily reduced, the Petersson-Weil form on S equals the fiber
integral

(5) ωPW
S =

∫

X /S

ω̃n+1|X ,

where n = dim X.
The construction is compatible with base changes of families of mani-

folds embedded in a fixed ambient manifold Z.
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From now on, we restrict ourselves to families over reduced com-
plex spaces. By definition, a Kähler form is given locally in terms
of a strictly plurisubharmonic ∂∂-potential of class C∞ on a smooth
ambient space. According to [VA2] the existence of a (1, 1)-current
possessing locally strongly plurisubharmonic ∂∂-potentials already im-
plies the Kähler property. (For the more refined notion of a Kähler
metric on a singular space, see [ibid].)

At this point, we denote by S an irreducible component of the
Douady space such that the generic fiber is smooth, and by X ↪→
Z × S → S the restriction of the universal family (of not necessarily
smooth subvarieties). By general theory the fiber integral (5) defines
a closed, positive, real (1, 1)-current ωPW

S on all of S, and the inte-
gral stands for the push-forward of a current. Exterior derivatives are
taken in the sense of currents. As above positivity of currents stands
for semi-positivity. We use (5) to prove the following:

Theorem 3.4. (1) The Petersson-Weil form can be extended as a real,
positive (1, 1)-current possessing locally a continuous ∂∂-potential to
those irreducible components of the (reduced) Douady space that contain
points corresponding to non-singular fibers. In particular the Lelong
numbers of the extended Petersson-Weil form vanish.

(2) The extended Petersson-Weil form is a strictly positive, real
(1, 1)-current on the space of points with reduced fibers. In particu-
lar it possesses a Kähler form.

We denote the extended Petersson-Weil form again by ωPW .

Proof. (1) The proof uses methods of Varouchas. In order to apply
these, we need a Kähler form on X . Since the statement of the Lemma
is local with respect to the base, we can replace the base space S by an
open subset U having a Kähler form ωU (with ∂∂-potentials) such that
ω̃|f−1U +f ∗ωU is a Kähler form on f−1U . We consider the push-forward∫

f−1(U)/U

(ω̃|f−1U + f ∗ωU)n+1.

For holomorphic mappings of complex manifolds (with equidimensional
fibers) it was shown in [VA1, Théorème 2] that such (1, 1)-current pos-
sesses a continuous ∂∂-potential χU . For reduced complex spaces this
fact is contained in [VA2, Theorem 2, 3, see also Section II.3.6].

Since
∫

Xs
ω̃n|Xs does not depend on s ∈ S, including those param-

eters with singular fibers, we have∫

X /S

ω̃n|f−1U ∧ f ∗ωU = vol(Xs) ωU .

Now (∫

X /S

ω̃n+1|X
)∣∣∣∣

U

=
√−1∂∂χU − vol(Xs) ωU .
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Since ωU has a differentiable
√−1∂∂-potential, the form given by the

fiber integral possesses a continuous
√−1∂∂-potential.

In order to show plurisubharmonicity of the potential we can, by
definition, assume that the base S is smooth and of dimension one.
Let ρ ∈ C∞

0 (S,R) be a nowhere negative function. Then
∫

S

ρ · ωPW =

∫

X

(ρ ◦ f) · ω̃n+1|X ≥ 0.

(2) Let S be a component of the Douady space satisfying the con-
dition of the Lemma, and X ↪→ Z × S → S be the restriction of the
universal family of (not necessarily smooth) subvarieties.

We have to show that locally ωPW |U − ε · ωU is positive in the sense
of currents for some ε > 0 and some Kähler form ωU on U . We need
to show that

(6)

∫

X /S

(ω̃|f−1U − ε̃f ∗ωU)n+1 ≥ 0

holds in the sense of currents for some ε̃ > 0, or equivalently that the
difference of the corresponding ∂∂-potentials is plurisubharmonic. At
this point, we do not restrict the family to an analytic curve but restrict
it to an arbitrary double point D ⊂ (S, s0) corresponding to a direction
v ∈ Ts0S in order to realize all tangent directions. Let XD = X ×S D.

The fiber integral
∫

X /S

(p∗1ωZ)|X )n+1 =

∫

X /S

ω̃n+1|X

restricted to D is given by the pointwise non-negative (semi-)norm∫
Xs0

‖µ(z, s)‖2
PW g dV of the horizontal lift µ of the tangent vector v

on the regular part of the fibers.
Since we already have plurisubharmonicity, it is sufficient to have

a positive contribution from the regular locus of a given fiber, which
depends continuously upon the direction v.

Suppose that ‖µ(z, s0)‖PW vanishes identically on the regular part
X ′ of X = Xs0 . Let v = ∂/∂si|s0 for some coordinates sk on a smooth
ambient space of S.

Then the horizontal lift of ∂/∂si|s0 equals ∂/∂si|s with respect to the
coordinates {(z, w, s)} used in (3) at the regular locus, in particular,
the horizontal lift is holomorphic.

We restrict the given family to the double point D ⊂ S, where
OD = C⊕ εC, with ε2 = 0. We have

XD
Â Ä i //

f $$IIIIIIIII Z ×D

pr2

²²
D

.
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Now for a Zariski open subset X ′
D of XD, where X ′

D ∩ X = X ′, we
know that

(7) X ′
X = X ′ ×D ⊂ Z ×D

as space over D. Here we have equality of subspaces, rather than an
isomorphism. As a last step we show that the given family has to be
trivial; this, however, was excluded.

In fact, from (7) we obtain the following commutative diagram:

0

²²

0

²²

0

²²
0 // I

i
²²

// J //

j

²²

I //

i
²²

0

0 // OZ
//

ν

²²

OZ ⊕ εOZ
//

µ

²²

OZ
//

ν

²²

τpp
0

0 // OX
α //

²²

OX ρ
//

²²

OX
//

²²

σ
ss

0

0 0 0

The morphism τ defines the canonical splitting of the second line. Over
X ′ it descends to a morphism σ. The morphism µ ◦ τ ◦ i has values in
α(OX), i.e. µ ◦ τ ◦ i = α ◦ λ, where λ : I → OX is OZ-linear. Now λ
amounts to an OX-linear morphism λ : I /I 2 → OX , which describes
the given infinitesimal deformation of the embedded subspace X ⊂ Z.

Over X ′ we have µ ◦ τ ◦ i = 0, i.e. λ|X′ = 0. Since the support of
OX/λ(I ) is closed in X and contains X ′, the map λ must be zero. ¤

Remark 3.5. The existence of local, continuous ∂∂-potentials, in par-
ticular the absence of residues, means that the null extension of the
restriction of the Petersson-Weil current to the complement of an an-
alytically thin subset equals the Petersson-Weil current itself. Also all
Lelong numbers vanish for the current ωPW . Its restriction to any
subspace exists as a current with vanishing Lelong numbers, provided
some fiber is smooth. On one dimensional subspaces of this kind, ωPW

is absolutely continuous.

4. Asymptotics for One Dimensional Families

In this section, we include an estimate for the generalized Peters-
son-Weil metric for families of embedded manifolds, which is similar
to estimates for degenerating Hodge metrics. The estimate will not be
used in the following sections.

Let ∆ = {s ∈ C; |s| < 1}, and Y → ∆ be a proper, holomorphic
map of complex manifolds such that the general fiber Ys is smooth and
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of dimension n and such that the central fiber Y0 is a normal crossings
divisor. Let k + 1 be the maximum number of local components of Y0

which intersect in one point. Let η ≥ 0 be a smooth, real (1, 1)-form
on Y , and

ω∆ =

∫

Y /∆

ηn+1.

Lemma 4.1. There exists a constant C > 0 such that the estimate

(8) ω∆ ≤ C · logk(1/|s|)
√−1

2
ds ∧ ds

holds near 0 in ∆.

Proof. Since the statement is local, we can assume that Y is the unit
polycylinder ∆n+1 = {(z1, . . . , zn+1)} ⊂ Cn+1 with respect to suitable
local coordinates, and f(z1, . . . , zn+1) = s = z1 · . . . ·zk+1. Furthermore,
there exists a constant C1 > 0 such that ηn+1 ≤ C1 · (

√−1/2)n+1dz1 ∧
dz1∧ . . .∧dzz+1∧dzn+1. The fiber integral of the right hand side equals

C1(2π)n

(∫ 1

|s|

∫ 1

|s|/r2

. . .

∫ 1

|s|/r2·...·rk

dr1dr2 . . . drk

r1 · r2 · . . . · rk

) √−1

2
ds ∧ ds

≤ C logk(1/|s|)
√−1

2
ds ∧ ds.

¤
Proposition 4.2. For any one dimensional, generically smooth, family
of embedded varieties, after a finite base change the Petersson-Weil
form satisfies an estimate of the type (8).

In a sense the above Proposition is more precise that Theorem 3.4.
However, by the Theorem, Lelong numbers vanish, without assuming
any base change.

Observe that we already have the stronger statement of the existence
of a continuous (plurisubharmonic) potential, which implies the van-
ishing of Lelong numbers for the Petersson-Weil form, before applying
a finite base change.

Proof of the proposition. After s sequence of blow-ups of the total space,
we are in a position to apply Lemma 4.1, where η ≥ 0 stands for the
pull-back of the Kähler form on the ambient space. ¤

5. Chern Classes of Determinant Bundles
and Extended Petersson-Weil Class

In this section, we state consequences of the generalized Grothendieck-
Hirzebruch-Riemann-Roch theorem. For any holomorphic proper holo-
morphic map f : X → S of complex spaces f! = Rf∗ : Khol

0 (X ) →
Khol

0 (S) denotes the direct image functor in the derived category (ex-
tended to the Grothendieck group).
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Our basic situation is the following.

Assumption 5.1. Let
(9) X

Â Ä i //

f
$$HH

HH
HH

HH
HH

Z × S

pr2

²²
S

be a proper, flat family, where S is a locally irreducible, reduced complex
space, and the restriction to the complement S0 of an analytically thin
subset in S is smooth.

Let L be an invertible sheaf on X . We denote by F the virtual
vector bundle (L −L −1)n+1 (of rank zero), where n is the dimension
of the fibers of f , and by λ = det f!F the determinant line bundle on
S.

Let ν : S̃ → S be a desingularization of the base space, and µ : Y →
X̃ = X ×S S̃ a desingularization of the pull-back of the given family.
(Both desingularizations are achieved by a finite sequence of blow-ups
of smooth local ambient spaces with smooth centers). Then we have a
commutative diagram

(10) Y
µ //

ϕ
##GGGGGGGGGGG

µ̃
,,

X ×S S̃

f̃
²²

ν̃ // X

f

²²
S̃

ν // S

where ν̃ and f̃ are the canonical projections, ϕ = f̃ ◦ µ and µ̃ = ν̃ ◦ µ.

Set L̃ = ν̃∗L and F̃ = ν̃∗F . Let L ′ stand for any power L k,
k ∈ Z. Then Rϕ∗(µ̃∗L ′) does not depend upon the choice of the
desingularization Y : This follows from the fact that any two desin-
gularizations are dominated by a third one, and since for any blow-up
σ : M → N of manifolds with smooth center and any invertible sheaf
L ′′ on N the equality Rσ∗(σ∗L ′′) = L ′′ holds (cf. [EL]). (Observe
that Rϕ∗(µ̃∗F ) can also be described in terms of L and the dualizing
complex on X ).

We consider the line bundles

λ̃d = det Rϕ∗(µ̃∗(F )),

λ̃ = det Rf̃∗F̃ = ν∗λ

on S̃. Let A be the locus of all points in S where f is not smooth.

Proposition 5.2. There exists an effective divisor D̃ on S̃, whose
support is contained in ν−1A, such that

(11) ν∗λ = λ̃d(−D̃).
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Proof. The canonical morphism F̃ → Rµ∗(µ∗F̃ ) defines a morphism

λ̃ → λ̃d, which is an isomorphism of invertible sheaves at all points of

S̃ \ ν−1A. ¤
Assumption 5.3. Assume that Z ⊂ PN is a projective variety, equipped
with the Fubini-Study form ωZ, and that L = OX (1) is the pull-back
of the hyperplane section bundle on the projective space PN , equipped
with the natural Fubini-Study hermitian metric hFS. In particular,
ωX = c1(L , hFS).

Now we are in a position to apply the Hirzebruch-Grothendieck-
Riemann-Roch-Theorem for proper holomorphic maps of complex mani-
folds by O’Brian, Toledo, and Tong [O-T-T1, O-T-T2] to (9) (cf. [L]).

Theorem 5.4. The first (real) Chern class of λ̃d equals

(12) c1(λ̃d) = 2n+1f̃∗c1(L̃ )n+1 = 2n+1[ν∗ωPW
S ] ∈ H1(S̃, Ω1

S̃
),

where ωPW
S denotes the extended Petersson-Weil form.

Proof. According to the main theorem of [O-T-T1, O-T-T2], we have

ch(Rϕ∗(µ∗F̃ )) = ϕ∗
(
ch(µ∗F̃ )td(Y /S)

)
,

where td and ch denote the Todd and Chern characters respectively.
Let k = dim S, and thus k + n = dim Y . We regard the push

forward morphism of Hodge cohomology groups ϕ∗ : Hn+`(Y , Ωn+`
Y ) →

H`(S̃, Ω`
S̃
), for ` ∈ Z, which will be interpreted as follows: Let jϕ : Y →

Y × S̃ be the embedding onto the graph of ϕ, and π : Y × S̃ → S̃ be
the projection. Then ϕ∗ = π∗ ◦ (jϕ)∗. Here, for any `,

(jϕ)∗ : Hn+`(Y , Ωn+`
Y ) → Hn+`+k(Y × S̃, Ωn+`+k

Y ×S̃
)

is the Gysin morphism, which we interpret analytically as given by the
push-forward of currents, and

π∗ : Hn+`+k(Y × S̃, Ωn+`+k

Y ×S̃
) → H`(S̃, Ω`

S̃
)

is given by fiber integration, which in terms of currents is again the
push-forward.

As the degree of the virtual bundle µ∗(L̃ −L̃ −1)n+1 equals zero, the

lowest order term of its Chern character is 2n+1c1(µ
∗L̃ )n+1. Since no

higher terms contribute to the term in degree two,

(13) c1,R(λ̃d) = c1,R(Rϕ∗(µ∗(L̃ − L̃ −1)n+1)) = 2n+1ϕ∗c1(µ
∗L̃ )n+1.

We observe that f̃∗(c1(L̃ )n+1) (due to functoriality) is represented by
the extended Petersson-Weil current ν∗ωPW

S = ωPW
S̃

according to The-
orem 3.4.
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Let η = c1(L̃ , hFS). Since X̃ is allowed to be singular, we need

to interpret (13) in the sense of currents: Let χ ∈ A k−1,k−1
0 (S̃,R)

be a differential form with compact support. Then, by definition,∫
S̃

ϕ∗(µ∗ηn+1) ∧ χ equals
∫

Y
µ∗ηn+1 ∧ ϕ∗χ, which again by definition

equals
∫

X̃
ηn+1∧f̃ ∗χ =

∫
S̃

f̃∗ηn+1∧χ, i.e. ϕ∗c1(µ̃
∗L n+1) = [ν∗ωPW

S ]. ¤

The existence of a continuous, plurisubharmonic local ∂∂-potential
according to Theorem 3.4, i.e. the absence of residues, means that the
null extension of the restriction of the Petersson-Weil current to the
complement of an analytically thin subset equals the Petersson-Weil
current.

6. Determinant Bundles and Positivity

We first recall some results on the Quillen metric on determinant
bundles: According to Bismut, Gillet, and Soulé [BGS], the Grothen-
dieck-Riemann-Roch theorem holds, in the case of a proper, smooth
family f : X → S over a smooth base space S, for distinguished dif-
ferential forms in degree 2, rather than cohomology classes. Namely for
those that are induced by the given Kähler metric on X , a Hermitian
metric h on a locally free sheaf F on one hand, and by the Quillen
metric hQ on the other hand:

(14) c1(λ, hQ) =

[∫

X /S

td(X /S, ωX ) · ch(F , h)

](2)

.

For the generalization to reduced complex spaces (and smooth proper
mappings) cf. [F-S1, Appendix].

In [BI2] Bismut extended the above theorem (14) to the class of nodal
singular mappings f : X → S of complex manifolds: With respect to
suitable local coordinates,

(15) f(z1, . . . , zk+1+n) = (z1 · z2, z3, . . . , zk+1) = (s1, . . . , sk).

The set of singularities of f is denoted by Σ = {s1 = s2 = 0} ⊂ X
with ∆ = {s1 = 0} ⊂ S. Then by [BI2], the Quillen metric extends
from S \∆ into ∆ as a singular hermitian metric with an extra term
of the form

(16) − 1

2

[ ∫

Σ

td(Σ)E(ν)ch(F )
](0)

δ∆

on the right-hand side of (14). Here, δ∆ denotes a delta distribution
(i.e. the (1, 1)-current associated to ∆), the characteristic class E is
associated to the function E(x) = (x − sinh x)[2x(1 − cosh x)]−1, and
ν is the normal bundle of Σ.
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Now let

(17) X
Â Ä i //

f
$$IIIIIIIIII PM × S

pr2

²²
S

; M ≥ 2

denote a family of embedded subvarieties with the above general as-
sumption (9).

In our case, again F will stand for a virtual hermitian bundle of the
form ((L −L −1)n+1, hFS), where the hermitian metric hFS is induced
by the Fubini-Study hermitian metric on a very ample line bundle L .
We apply our previous argument for virtual bundles of rank 0. The
contribution of the Chern character in (14) equals 2n+1c1(L )n+1, while
the term (16) vanishes.

For families with at most nodal singularities of the type (15) we
obtain

(18) c1(λ, hQ) = 2n+1 · ωPW
S .

The case of normal crossings divisors with more than two components
through one point seems to be still open. We call the subset B of
S of points whose fibers have this property the non-nodal locus. We
consider desingularizations like in (10). The non-nodal locus of the

family f̃ : X̃ → S̃ is B̃ = ν−1B.
The construction of both the determinant line bundle and the Quillen

metric is functorial, i.e. compatible with base change. In particular hQ

is defined for any point of S where f is non-nodal, and continuity of
hQ on S \ B follows from the base change property and its continuity

on S̃.
The generalized Petersson-Weil form is defined for the whole base of

any embedded family through the fiber integral (5), and as such it is
compatible with base change.

Theorem 6.1. Let S be a connected component of the Douady space,
containing at least one point corresponding to a smooth fiber, with uni-
versal family

X
Â Ä i //

f
$$IIIIIIIIII PM × S

pr2

²²
S

.

Set L = OX (1).

Assume that the codimension of the non-nodal locus B̃ ⊂ S̃ is at
least two. Then the Quillen metric hQ on the determinant line bundle
λ = det f!((L −L −1)n+1) extends as a continuous metric from S \B
to S, and its Chern form c1(λ, hQ) is equal to a constant multiple of
the extended Petersson-Weil form ωPW on S.
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The extended Petersson-Weil form is strongly positive on the com-
plement of the non-reduced locus by Theorem 3.4.

Remark 6.2. The condition on the codimension of the non-nodal locus
is always satisfied for universal families of plane curves.

Proof of Theorem 6.1. Let ν : S̃ → S be a desingularization and f̃ :

X̃ → S̃ be the pull-back. Let U be an open subset of S such that

ωPW
S |U =

√−1∂∂u for some continuous function u. Set Ũ = ν−1U .

Now λ̃|(Ũ \B̃) carries the singular hermitian metric e−u◦ν ·(hQ|(Ũ \B̃)),

whose curvature form vanishes. As λ̃|Ũ is trivial, we can say that

log hQ − u ◦ ν is harmonic on Ũ \ B̃, and hence extendable to a har-

monic function on Ũ . So the Quillen metric hQ possesses a continuous

extension to S̃ which is the pull-back of a continuous metric on λ over
S, which we denote again by hQ. By definition, we have a singular,
positive metric on the reduced complex space, and by continuity of hQ

it also follows that its curvature form is a constant multiple of the ex-
tended Petersson-Weil form, which was defined as a fiber integral. ¤

Proof of Remark 6.2. The statement about nodal singularities for fam-
ilies of plane curves is a simple count of dimensions: In the affine
situation, we are given a curve C = V (F (w0, w1)) with F (w0, w1) =∑

aj,kw
j
0w

k
1 . If the line L = V (w0) is a double tangent to C in (0, 0), we

must have a0,0 = a1,0 = a0,1 = a0,2 = a1,1 = 0 so that the codimension
of the space of curves passing through a given point with (at least) a
double tangent in a given direction is five. Now the isotropy subgroup
of the group of affine transformations that fixes a point together with
a line through the point is of codimension three, so that the space of
curves with some double tangent at some point is of codimension two.
The cases of a simple triple point etc. are handled in a similar way. ¤

In the situation of Theorem 6.1 the base space S is quasi-projective.
By Hironaka’s flattening theorem there exists an extension

X
i //

f $$HHHHHHHHHH PM × S

pr2

²²

S

.

of the universal family for some compactification S of S, where f is flat,
but i need not be an embedding. Denote by λ the extended determinant
line bundle. The fiber integral formula (5) yields an extension ωPW

S
of the Petersson-Weil form, which is in general only positive semi-
definite. After a suitable choice of S and λ the following holds under
the assumptions of Theorem 6.1.
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Theorem 6.3. There exists a power of λ, whose global sections de-
fine a rational map from S to some projective space, which yields an
embedding, when restricted to S.

We indicate an analytic proof. Basically, the Quillen metric is ex-
tended as a continuous, singular hermitian metric on an extension of
λ; its curvature form is in general only semi-positive at the boundary.
The construction follows from the extension of the Chern class, and
may involve further blow ups of the boundary. Finally we are in a
position to apply [S-TS, Theorem 6]. Note that this theorem is not
affected by the error in the first part of [S-TS] (vanishing of Lelong
numbers). The sections of λ can be considered as sections of λ over S
that are square integrable with respect to the Quillen metric. ¤

7. General Case

With no assumption on the generic singularities of the embedded
families, we need to deal with the contribution of the divisor that was
introduced in Proposition 5.2. Our aim is to combine the above state-
ment with the statement of (12).

We will need the following well-known fact.

Let S̃ be a complex manifold, and ∪jDj ⊂ S̃ a normal crossings

divisor. Set S ′ = S̃ \ ∪jDj. Let h′ be a hermitian metric of class C∞

on the trivial line bundle over S ′.

Lemma 7.1. There exist numbers aj ∈ R, and a flat line bundle

γ ∈ H1(S̃, U(1)), whose restriction to S ′ is trivial, such that after
applying an automorphism of the trivial bundle over S ′, the metric h′

extends to S̃ as a singular hermitian metric on the generalized line
bundle associated to the R-divisor

∑
ajDj, tensorized with γ. The

curvature current of h′ equals the current induced by D.

Proof. Since the local monodromy is abelian, we may assume that D

consists of one smooth component. Let S̃ = ∪αUα be a suitable open

covering such that − log h′|U ′
α = 2 Re(a · log(z

(α)
1 )+fα(z)), where U ′

α =

Uα ∩ S ′, a ∈ R, z
(α)
1 is a coordinate function with V (z

(α)
1 ) = D ∩ Uα

(or equal to 1), and fα ∈ OS̃(U ′
α). If a = 0, the functions exp(fα − fβ)

extend to S as an U(1)-cocycle. Let a 6= 0. Then, again we find a U(1)-

valued 1-cocycle γ such that z
(α)
1 /z

(β)
1 = exp((fα − fβ)/a) · γαβ. ¤

We put ourselves in our general situation of (9) and use the desin-

gularization procedure (10). In particular ν : S̃ → S denotes a desin-
gularization of the base space.

Theorem 7.2. Let λ̃ = 2n+1ν∗(det f!((L − L −1)n+1)). Then there

exists a divisor D on S̃, whose support is contained in the union of

the singular locus Ã of the family f̃ , and the exceptional divisor of the
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desingularization, and a flat line bundle γ ∈ H1(S̃, U(1)) together with

a singular hermitian metric h̃ on λ̃(D) ⊗ γ, whose Chern form equals
the generalized Petersson-Weil form. The generalized Petersson-Weil
form on S is strictly positive on the reduced locus of the family.
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