
Report from Dagstuhl Seminar 16402

Programming Language Techniques for Incremental and
Reactive Computing
Edited by
Camil Demetrescu1, Sebastian Erdweg2, Matthew A. Hammer3,
and Shriram Krishnamurthi4

1 Sapienza University of Rome, IT, demetres@dis.uniroma1.it
2 TU Delft, NL, s.t.erdweg@tudelft.nl
3 University of Colorado – Boulder, US, matthew.hammer@colorado.edu
4 Brown University – Providence, US, sk@cs.brown.edu

Abstract
Incremental computations are those that process input changes faster than naive computation
that runs from scratch, and reactive computations consist of interactive behavior that varies over
time. Due to the importance and prevalence of incremental, reactive systems, ad hoc variants of
incremental and reactive computation are ubiquitous in modern software systems.

In response to this reality, the PL research community has worked for several decades to
advance new languages for systems that interface with a dynamically-changing environment.
In this space, researchers propose new general-purpose languages and algorithms to express and
implement efficient, dynamic behavior, in the form of incremental and reactive language systems.

While these research lines continue to develop successfully, this work lacks a shared community
that synthesizes a collective discussion about common motivations, alternative techniques, cur-
rent results and future challenges. To overcome this lack of community, this seminar will work
towards building one, by strengthening existing research connections and by forging new ones.
Developing a shared culture is critical to the future advancement of incremental and reactive
computing in modern PL research, and in turn, this PL research is critical to developing the
efficient, understandable interactive systems of the future.

Seminar October 3–7, 2016 – http://www.dagstuhl.de/16402
1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.3.3 Studies of

Program Constructs, F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Incremental computing, reactive programming, memoization, change

propagation, dynamic dependency graph, dataflow programming, live programming
Digital Object Identifier 10.4230/DagRep.6.10.1

1 Executive Summary

Matthew A. Hammer

License Creative Commons BY 3.0 Unported license
© Matthew A. Hammer

We sought to hold a Dagstuhl Seminar that would bring together programming language
(PL) researchers focusing on incremental and reactive computing behavior. The meta-level
purpose of this seminar was to take an initial step toward developing a community of experts
from the disparate threads of successful research. In that this seminar provoked discussion
about common and differing motivations, techniques, and future challenges, this event was
successful in starting to cultivate this culture.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Programming Language Techniques for Incremental and Reactive Computing, Dagstuhl Reports, Vol. 6, Issue 10,
pp. 1–12
Editors: Camil Demetrescu, Sebastian Erdweg, Matthew A. Hammer, and Shriram Krishnamurthi

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16402
http://dx.doi.org/10.4230/DagRep.6.10.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 16402 – Programming Language Techniques for Incremental and Reactive Computing

Short-term concrete outcomes: Thus far, there are been two concrete outcomes of this
seminar:

1. Wikipedia article outlines and edits (Section 3.3)
2. First Workshop on Incremental Computation (IC) at PLDI 2017 (Section 5)

Section 3 gives an overview of the event structure of the seminar, and details some of the
event’s outcomes, including outline brainstorming and Wikipedia editing, and the creation of
a new Workshop on Incremental Computing (IC). In later sections, this report gives further
background on research in reactive and incremental computing (Section 4), and further
details on the new IC Workshop (Section 5).

Acknowledgments. Co-organizing this seminar with Camil, Sebastian and Shriram was
a pleasure. I am especially thankful to Shriram for organizing the event’s structure, and
moderating group discussions and group decision making during its execution. We organizers
are all thankful to the participants, who all brought a unique insight to the seminar, which
in my humble opinion, succeeded in its aims.

C. Demetrescu, S. Erdweg, M.A. Hammer, and S. Krishnamurthi 3

2 Table of Contents

Executive Summary
Matthew A. Hammer . 1

Event Summary
Poster Sessions . 4

Group discussions . 4

Topic outlines and Wikipedia edits . 5

New workshop on incremental computation . 7

Background
Incremental computing . 7

Reactive programming . 8

Event Outcome: Workshop on Incremental Computation (IC)
Sebastian Erdweg and Matthew A. Hammer . 9

Participants . 12

16402

4 16402 – Programming Language Techniques for Incremental and Reactive Computing

3 Event Summary

The following table summarizes how we organized the three and a half day event. (Monday
of that week is a German holiday). Rather than organize the event into talk sessions, we
chose more interactive sessions: Posters and introductions (on day 1) and group discussions
on the remaining days.

Day 1 Tuesday First session Second session
AM Poster session A Poster session B
PM Poster session C 1-min introductions (1 slide each).

Day 2 Wednesday First session Second session
AM Demos Group discussion: IC vs RP
PM Group discussion: Domain-specific Break: Outside walks

Day 3 Thursday First session Second session
AM Group discussion: Run-time design Group discussion: Meshing with non-IC/RP
PM Smaller group discussions: Algorithms, Semantics & Types & Verification

Day 4 Friday First session Second session
AM Topic outlines, Wikipedia editing: Incremental_computing and Reactive_programming

3.1 Poster Sessions
The following seminar participants presented posters about their research (the organizers
evenly distributed themselves among these sessions, indicated in bold):

Session 1 Demetrescu, Haller, Khoo, Ley-Wild, Minsky, Salvaneschi, Szábo,
Tangwonsan

Session 2 Burckhardt, Cicek and Garg, Erdweg, Hammer, Krishnaswami, Labich,
McSherry, Newton, Shah

Session 3 Bhatotia, Courtney, Harkes, Krishnamurthi, Mezini, Pouzet, Shapiro

3.2 Group discussions
Before and during the seminar, we took surveys of the participants to find topics that for
interesting discussions. In the end, the following topics were scheduled into the event.

Incremental Computing (IC) vs. Reactive Programming (RP).
Our first discussion centered on the differences between the domains of incremental and
reactive systems, and I have paraphrased some conclusions from that discussion.

In common to both IC and RP, we broadly consider ad hoc approaches “harmful”, in
the sense that they lack systematic abstractions, and consequently, may suffer from
undefined or inconsistent behavior (“glitches”). The alternative to ad hoc approaches
are programming language abstractions and carefully-designed libraries that offer
reusable abstractions, with well-defined semantics.
In common to both IC and RP, there are common abstractions and implementations
based on, e.g., dataflow graphs.
Reactive programming, unlike IC, encompasses programs whose behavior interacts
with other systems in time, and generally does not terminate.

C. Demetrescu, S. Erdweg, M.A. Hammer, and S. Krishnamurthi 5

These computations consist of signal processing, aviotics and control systems, OS
kernels, and financial analytics. All of these domains require time-dependent behavior
that senses time-dependent inputs. In many cases, there may be real-time constraints.
To a first approximation, they lack costly, redundant subcomputations that terminate
and repeat over time.
Incremental computation, unlike RP, is concerned with computational cost. It attempts
to improve the algorithmic efficiency of computations that terminate, but repeat over
time in a changing environment.
The general aim of IC is to improve the asymptotic efficiency of repeated computations,
and/or, to cache and reuse large portions of past computations. IC encompasses
techniques that make the following tasks more efficient:
∗ data syncrhonization or versioning, where the redundant subcomputation to avoid

is communication of data that has not changed since the last pass;
∗ program analysis, HTML rendering and spreadsheet evaluation, where the redundant

subcomputation to avoid is the analysis, rendering or calculations that have not
been affected by changes since the last pass.

Other discussion topics:
Domain-specific techniques
Run-time system design
Meshing with non-IC/RP
Semantics & Types: Small, break-out group
Algorithms: Small, break-out group
Verification: Small, break-out group

3.3 Topic outlines and Wikipedia edits
During the final morning of the seminar, the seminar participants brainstormed outlines for
new Wikipedia articles on the topics of Incremental computing and Reactive programming.
This exercise forced us to catalog the most important concepts in these fields, and how to
best structure their exposition. To record these outlines, we edited Wikipedia collaboratively.
The seminar participants broke into two groups, to focus on the incremental and reactive
articles in a divide-and-conquer approach.

The outcome of this editing session are new article outlines, with some discussion, and
some links to relevant literature. For both articles, much more work is warranted. However,
we feel that the consensuses reached during the seminar will make future collaborative editing
easier at a distance. (e.g., by using the Dagstuhl Seminar email list, or Wikipedia itself, to
coordinate).

A recording of the new proposed outlines is included below, for posterity. (Of course, we
give permission to Wikipedia to use this outline; in fact, we encourage them to continue to
do so!). Below the outlines, we give links to the exact Wikipedia edits.

3.3.1 Article outline: Incremental Computing

Static Versus Dynamic
Specialized versus General-Purpose Approaches

16402

6 16402 – Programming Language Techniques for Incremental and Reactive Computing

Figure 1 Incremental computing of P using ∆P is sound when it is commutative, as above.
This diagram shows the relationships between a program P , successive inputs I1 and I2, successive
outputs O1 and O2, their relative changes ∆I and ∆O, and the change propagation mechanism that
performs ∆O somehow from ∆I .

Static Methods
Program Derivatives
View Maintenance

Dynamic Methods
Existing systems

Compiler and Language Support
Frameworks and libraries

Applications
Databases (view maintenance)
Build systems
Spreadsheets
Development Environments
Financial Computations
Attribute Grammar Evaluation
Graph Computations and Queries
GUIs (e.g., React and DOM diffing)
Scientific applications

See also
Reactive programming
Memoization

We also contributed Figure 1, which we used throughout the seminar to orient our group
discussions.

3.3.2 Article outline: Reactive programming

Definition of Reactive Programming
Approaches to Creating Reactive Programming Languages

Dedicated languages that are specific to some domain constraints (such as real-time or
embedded computing or hardware description)
General-purpose languages that support reactivity
Libraries or embedded domain specific languages that enable reactivity alongside or
on top of an existing general-purpose programming language

Programming Models and Semantics
Synchrony: is the underlying model of time synchronous versus asynchronous?
Determinism: Deterministic versus non-deterministic in both evaluation process and
results (the former does not necessarily imply the latter)
Update process: callbacks versus dataflow versus actors

C. Demetrescu, S. Erdweg, M.A. Hammer, and S. Krishnamurthi 7

Implementation Challenges
Glitches
Cyclic Dependencies
Interaction with Mutable State
Dynamic Updating of the Graph of Dependencies

3.3.3 Wikipedia edits

Our collective edits, relative to the article before our collaborative editing session, are visible
at the following Wikipedia URLs:

Incremental computing edits:
https://en.wikipedia.org/w/index.php?title=Incremental_computing&type=revision&diff=
743022258&oldid=735698349
Reactive programming edits:
https://en.wikipedia.org/w/index.php?title=Reactive_programming&type=revision&diff=
743074812&oldid=740655985

3.4 New workshop on incremental computation
Following the success of this Dagstuhl Seminar, organizers Sebastian Erdweg and Matthew
Hammer proposed a new Workshop on Incremental Computing (IC) to PLDI 2017, in
Barcelona, Spain. The content of this workshop proposal is included below, in Section 5.
PLDI 2017 has since accepted this proposal.

4 Background

4.1 Incremental computing
Incremental computations are those that process input changes faster than a naive re-
computation from scratch. Due to the importance and prevalence of incremental, reactive
systems, ad hoc variants of incremental computation are ubiquitous in modern software
systems. As an everyday example, spreadsheets such as Excel re-calculate selectively based
on user interaction and the dynamic dependencies of formula. Incremental computation is
needed in this domain, and many others, for efficiency and responsiveness. As other examples,
build systems and integrated development environments re-compile selectively, based on the
code dependencies. Hence, build systems strive to use a domain-specific form of incremental
computation that is aware of compiler dependencies [14, 27]. Doing so is necessary to support
interactive development, testing and debugging, which should be responsive to code changes.
Meanwhile, the interactive behavior of the visual elements in the development tools, and
their interaction with external tools, can be modeled with reactive computation. Finally,
modern web browsers (such as Chrome, Firefox, Safari, etc.) house incremental computations
that respond to mobile code, whose execution leads to re-computing layout and styling
information (viz., dynamic variation of CSS attributes incrementally affect the placement
and appearance of modern web pages). These scripts, as well as the browser platform in
which they run, are incremental, reactive computations [6].

Due to their prevalence in practical systems used every day, notions of incremental
computing abound in computer science broadly, and within research on programming

16402

https://en.wikipedia.org/w/index.php?title=Incremental_computing&type=revision&diff=743022258&oldid=735698349
https://en.wikipedia.org/w/index.php?title=Incremental_computing&type=revision&diff=743022258&oldid=735698349
https://en.wikipedia.org/w/index.php?title=Reactive_programming&type=revision&diff=743074812&oldid=740655985
https://en.wikipedia.org/w/index.php?title=Reactive_programming&type=revision&diff=743074812&oldid=740655985

8 16402 – Programming Language Techniques for Incremental and Reactive Computing

languages (PL). In the area of PL, researchers are particularly interested in language-
based approaches to incremental computation. In contrast to the algorithms community
that often studies each incremental problem in isolation (e.g., incremental convex hull), PL
researchers study large classes of incremental programs that are defined by a general language.
Their typical goal is to provide a language and associated technique that is general enough
to express the behavior of many incremental or reactive programs. For instance, many
general-purpose techniques can derive the incremental behavior of two-dimensional convex
hull from the expression of a textbook algorithm for the non-incremental algorithm (e.g.,
quickhull) [1, 16, 5, 19]. More generally, researchers have shown that for certain algorithms,
inputs, and classes of input changes, IC delivers large, even asymptotic speed-ups over full
reevaluation [4, 2]. IC has been developed in many different language settings [26, 17, 18, 9],
and has even been used to address open problems, e.g., in computational geometry [3].

4.2 Reactive programming
Reactive programming languages offer abstractions for processing events generated by
dynamic environments. Reactive abstractions encompass both event-driven and data-driven
scenarios, relying on graphs to model dependencies in a program. In the former, events
are explicitly modeled as a stream generated over time; computations respond to generated
events and may trigger further computations along the dependency graph. In the latter,
events are modeled as input data changes as in IC frameworks. A data-flow graph describes
relationships between objects and changes are automatically propagated throughout the
graph.

Similarly to IC environments, a critical aspect in reactive systems is to minimize the
amount of recomputations triggered by external discrete events or input data changes. Early
examples of event-based reactive environments for real-time systems in embedded software
include Signal [15] and Lustre [8].

Functional Reactive Programming (FRP) is a declarative programming model for con-
structing interactive applications [13, 24, 28]. The chief aim of FRP is to provide a declarative
means of specifying programs whose values are time-dependent (stored in signals), whereas
the chief aim of IC is to provide time savings for small input changes (stored in special
references). The different scope and programming model of FRP makes it hard to imagine
using it to write an efficient incremental sorting algorithm, though it may be possible. On
the other hand, IC would seem to be an appropriate mechanism for implementing an FRP
engine, though the exact nature of this connection remains unclear.

FrTime [10] extends a purely functional subset of PLT Scheme with an instantiation
of the FRP paradigm, supporting eager evaluation and benign impurities (e.g., imperative
commands for drawing and for creating and varying mutable references). The problem of
integrating FrTime and object-oriented graphics toolkits has been investigated by [20].

More recently [23] have introduced Flapjax, a reactive extension to JavaScript for Web
applications, whose approach is mainly informed by FrTime. Frappé [11] integrates the FRP
model with the Java Beans technology, allowing reactive programming in Java. FrTime has
also served as a basis for MzTake [22], a scriptable debugger implementing a dataflow language
in the tradition of Dalek [25], an earlier programmable debugger that also modeled events
using a data-flow graph. SugarCubes [7] and ReactiveML [21] allow reactive programming in
Java and OCaml, respectively.

C. Demetrescu, S. Erdweg, M.A. Hammer, and S. Krishnamurthi 9

A different data-driven line of research investigates how to mix the reactive paradigm with
imperative and object-oriented languages, allowing programmers to declaratively express
dataflow constraints between C/C++ objects allocated in a special “reactive memory”
heap [12].

5 Event Outcome: Workshop on Incremental Computation (IC)

Sebastian Erdweg (TU Delft, NL) and Matthew A. Hammer (University of Colorado –
Boulder, US)

License Creative Commons BY 3.0 Unported license
© Sebastian Erdweg and Matthew A. Hammer

The content below is from a successful workshop proposal to PLDI 2017. Elsewhere, this
proposal referenced the success of this Dagstuhl Seminar as evidence of research community
interest.

Due to its cross-cutting nature, research results on and experience with incremental computing
is scattered throughout the PL community. The Workshop on Incremental Computing (IC)
will provide a platform for researchers and users of incremental computing.

4 sessions featuring invited talks from academia and industry as well as contributed talks
from the community.
Type of submission: Contributed talks need to submit talk abstracts, which forms the
basis for selection.
Review process: We will invite a small program committee that selects contributed talks
based on the submitted talk abstracts.
Result dissemination: We will collect talk abstracts from all invited and selected contrib-
uted talks and publish them as an openly accessable technical report.

Since incremental computations are cross-cutting PL, we expect significant interest within
the PLDI community. Traditionally, static analysis has seen numerous successful applications
of incremental computing, and the workshop may spark especial interest in that part of the
community. Since this is the first workshop on incremental computing, it is very difficult to
estimate the number of attendees; anything between 20 and 80 people seems realistic.

References
1 Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan.

A library for self-adjusting computation. ENTCS, 148(2), 2006.
2 Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Robust kinetic

convex hulls in 3D. In Proceedings of the 16th Annual European Symposium on Algorithms,
September 2008.

3 Umut A. Acar, Andrew Cotter, Benoît Hudson, and Duru Türkoğlu. Dynamic well-spaced
point sets. In Symposium on Computational Geometry, 2010.

4 Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Bayesian
inference. In Neural Information Processing Systems (NIPS), 2007.

5 Umut A. Acar and Ruy Ley-Wild. Self-adjusting computation with Delta ML. In Advanced
Functional Programming. Springer Berlin Heidelberg, 2009.

6 Brian Anderson, Lars Bergstrom, David Herman, Josh Matthews, Keegan McAllister,
Manish Goregaokar, Jack Moffitt, and Simon Sapin. Experience report: Developing

16402

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 16402 – Programming Language Techniques for Incremental and Reactive Computing

the servo web browser engine using rust. CoRR, abs/1505.07383, 2015. URL: http:
//arxiv.org/abs/1505.07383.

7 Frédéric Boussinot and Jean-Ferdy Susini. The SugarCubes Tool Box: a Reactive Java
Framework. Software: Practice and Experience, 28(14):1531–1550, 1998.

8 P. Caspi, P. Pilaud, N. Halbwachs, and J. Plaice. Lustre, a Declarative Language for
Programming Synchronous Systems. In POPL, pages 178–188, 1987.

9 Yan Chen, Joshua Dunfield, Matthew A. Hammer, and Umut A. Acar. Implicit self-
adjusting computation for purely functional programs. J. Functional Programming,
24(1):56–112, 2014.

10 Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in a call-
by-value language. In ESOP, 2006.

11 Antony Courtney. Frappé: Functional Reactive Programming in Java. In PADL, pages
29–44, 2001.

12 Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Reactive imperative program-
ming with dataflow constraints. ACM Trans. Program. Lang. Syst., 37(1):3:1–3:53, 2014.

13 Conal Elliott and Paul Hudak. Functional Reactive Animation. In ICFP, pages 263–273,
1997.

14 Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal incremental
build system with dynamic dependencies. In OOPSLA’15, pages 89–106. ACM, 2015.

15 P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. SIGNAL – A Data Flow-
Oriented Language for Signal Processing. IEEE Transactions on Acoustics, Speech and
Signal Processing, 34(2):362–374, 1986.

16 Matthew Hammer and Umut A. Acar. Memory management for self-adjusting computation.
In ISMM, 2008.

17 Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and Anwar Ghuloum. A proposal
for parallel self-adjusting computation. In DAMP’07: Declarative Aspects of Multicore
Programming, 2007.

18 Matthew A. Hammer, Umut A. Acar, and Yan Chen. CEAL: a C-based language for self-
adjusting computation. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2009.

19 Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster,
Michael Hicks, and David Van Horn. Incremental computation with names (extended
version). arXiv:1503.07792 [cs.PL], 2015.

20 Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi. Crossing State Lines:
Adapting Object-Oriented Frameworks to Functional Reactive Languages. In FLOPS, pages
259–276, 2006.

21 Louis Mandel and Marc Pouzet. ReactiveML, a Reactive Extension to ML. In PPDP,
pages 82–93, 2005.

22 Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram Krishnamurthi, and
Steven P. Reiss. The design and implementation of a dataflow language for scriptable
debugging. Automated Software Engg., 14(1):59–86, 2007.

23 Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a Programming Language for Ajax
Applications. In OOPSLA, pages 1–20, 2009.

24 Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop (Haskell’02),
pages 51–64, Pittsburgh, Pennsylvania, USA, October 2002. ACM Press.

25 Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. A dataflow approach to
event-based debugging. Softw. Pract. Exper., 21(2):209–229, 1991.

http://arxiv.org/abs/1505.07383
http://arxiv.org/abs/1505.07383
http://arxiv.org/abs/1503.07792

C. Demetrescu, S. Erdweg, M.A. Hammer, and S. Krishnamurthi 11

26 Ajeet Shankar and Rastislav Bodik. DITTO: Automatic incrementalization of data struc-
ture invariant checks (in Java). In Programming Language Design and Implementation,
2007.

27 Tamás Szabó, Sebastian Erdweg, and Markus Völter. IncA: A DSL for the definition of
incremental program analyses. In Proceedings of International Conference on Automated
Software Engineering (ASE). ACM, 2016.

28 Zhanyong Wan and Paul Hudak. Functional Reactive Programming from First Principles.
In PLDI, pages 242–252, 2000.

16402

12 16402 – Programming Language Techniques for Incremental and Reactive Computing

Participants

Pramod Bhatotia
TU Dresden, DE

Sebastian Burckhardt
Microsoft Research –
Redmond, US

Ezgi Cicek
MPI-SWS – Saarbrücken, DE

Antony Courtney
San Francisco, US

Camil Demetrescu
Sapienza University of Rome, IT

Sebastian Erdweg
TU Delft, NL

Deepak Garg
MPI-SWS – Saarbrücken, DE

Philipp Haller
KTH Royal Institute of
Technology – Stockholm, SE

Matthew A. Hammer
University of Colorado –
Boulder, US

Daco Harkes
TU Delft, NL

Kyle Headley
University of Colorado –
Boulder, US

Yit Phang Khoo
The MathWorks Inc. –
Natick, US

Shriram Krishnamurthi
Brown University –
Providence, US

Neel Krishnaswami
University of Cambridge, GB

Nicholas Labich
University of Maryland –
College Park, US

Ruy Ley-Wild
LogicBlox – Atlanta, US

Frank McSherry
Richmond, US

Mira Mezini
TU Darmstadt, DE

Yaron Minsky
Jane Street – New York, US

Ryan R. Newton
Indiana University –
Bloomington, US

Marc Pouzet
ENS – Paris, FR

Guido Salvaneschi
TU Darmstadt, DE

Rohin Shah
University of California –
Berkeley, US

R. Benjamin Shapiro
University of Colorado –
Boulder, US

Tamás Szabó
TU Delft, NL

Kanat Tangwongsan
Mahidol University, TH

	Executive Summary Matthew A. Hammer
	Table of Contents
	Event Summary
	Poster Sessions
	Group discussions
	Topic outlines and Wikipedia edits
	New workshop on incremental computation

	Background
	Incremental computing
	Reactive programming

	Event Outcome: Workshop on Incremental Computation (IC) Sebastian Erdweg and Matthew A. Hammer
	Participants

