
2 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY  0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0  ©  2 0 1 4  I E E E

FOCUS: PROGRAMMING LANGUAGES

Evolution of 
Software Systems 
with Extensible 
Languages  
and DSLs
Sebastian Erdweg, Technische Universität Darmstadt, Germany

Stefan Fehrenbach and Klaus Ostermann, University of Marburg, 
Germany

// The extensible programming language SugarJ 
offers a process for gradually integrating domain-
specific languages into existing software systems, 
thereby improving system maintenance. //

SOFTWARE SYSTEMS CONTINU-
OUSLY change and grow in com-
plexity.1 It comes as little surprise, 
then, that most development time 
and money isn’t spent on the initial 
design and implementation of new 
software systems but on maintaining 
existing ones.2,3

Domain-specific languages (DSLs) 
offer a way to reduce maintenance 
costs. A DSL is a programming 

language specifically designed to 
support an application by provid-
ing domain concepts as language 
constructs. This enables program-
mers to map knowledge into source 
code and vice versa, which simpli-
fies the creation, comprehension, 
and maintenance of domain-specific 
programs.4–7

The vast majority of existing 
software systems don’t use DSLs. 

Instead, the long-standing suc-
cess of C, C++, and Java has led to 
large procedural and object-ori-
ented systems that don’t benefit 
from the maintenance advantages 
that DSLs provide. We propose a 
new direction for programming lan-
guage research—namely, to develop 
mechanisms and tools that support 
integrating the powerful DSL tech-
nologies we’re already developing 
into existing software systems whose 
maintenance is so important.

In this article, we describe how 
the extensible programming lan-
guage SugarJ supports the gradual 
evolution of existing software sys-
tems to apply DSLs and their main-
tenance advantages, we report on 
our experience of evolving and im-
proving two existing software sys-
tems written in Java (Java Pet Store 
and Eclipse) by applying three DSLs, 
and we outline a research roadmap 
for developing tools that support 
maintainers in introducing DSLs 
into existing software systems.

Maintenance  
Advantages of DSLs
Just like regular programming lan-
guages, DSLs can feature their own 
syntax, semantics, static analyses, 
and editor support. Each of these 
language features has practical 
benefits when it comes to software 
maintenance.

As a running example, consider 
the following JPQL query that finds 
all items of category catID in a certain 
address range: 

     SELECT i
     FROM Item i, Product p
     WHERE i.productID = p.productID
      AND p.categoryID = :catID
      AND i.address.latitude 
        BETWEEN : fromLat AND :toLat
      AND i.address.longitude 



 SEPTEMBER/OCTOBER 2014  |  IEEE SOFTWARE  3

        BETWEEN : fromLong AND :toLong
      AND i.disabled = 0
     ORDER BY i.name

JPQL is part of the Java Persistence 
API and extends SQL with field se-
lection via dot notation and named 
parameters prefixed by a colon. 
We’ve extracted the shown query 
from Java Pet Store, the reference 
application for building Ajax Web 
applications with Java. The query 
joins tables Item and Product based on 
the productID and selects all items that 
match the category parameter ca-
tID and required address range. The 
query returns the items ordered by 
their name.

The query is fairly readable and 
declaratively specifies the desired 
items and their ordering. This is due 
to the DSL syntax, which yields a 
smaller representational gap8 and 
lets developers directly translate 
their domain understanding into 
code. In contrast, an encoding of the 
query as method calls or as a large 
concatenation of string fragments 
is less readable and requires pro-
grammers to translate between the 
domain concept and its encoding. 
In addition, the parser of the DSL 
guarantees that queries are syntac-
tically well-formed at compile time, 
whereas method calls and concat-
enated strings mask DSL syntax er-
rors until the program is run.

The DSL semantics gives mean-
ing to the syntax and abstracts over 
the recurring patterns found in a do-
main concept’s encoding, such as the 
application of string concatenation 
or calling conventions for methods. 
This has three major benefits. First, 
the DSL semantics eliminates boiler-
plate and promotes the “don’t repeat 
yourself” mantra. Second, it enforces 
properties that otherwise would rely 
on user discipline. For example, the 

JPQL semantics ensures the proper 
escaping of Java values that are in-
jected into the query, such as :catID 
or fromLat. Third, a DSL specifies the 
semantics of domain concepts once 
and for all. Changes to the behav-
ior of a domain concept are local 
to the DSL definition and separate 
from DSL programs, a separation of 
concerns that improves source code 
modularity and maintainability.

A DSL can augment syntactic 
checks with static DSL analyses that 
detect violations of domain invari-
ants at compile time. For example, in 
the JPQL query, we can statically en-
sure that references to the tuple vari-
ables i and p are resolvable and that, 
according to the database schema, 
the accessed columns exist. In con-
trast, applications that use JPQL 
through string encoding or method 
APIs run the risk of schema viola-
tions at run time.

To communicate domain knowl-
edge to users, the DSL implementa-
tion can be augmented with DSL ed-
itor support. This support can range 
from syntax highlighting to specific 

outline views and code completion. 
For example, for JPQL, we can high-
light keywords, named parameters, 
and column selections in different 
colors; we can provide code comple-
tion for the actual columns of a re-
lation; or we can propose code tem-
plates such as a whole-join clause. 
Such editor support can vastly im-
prove the editing experience for 
developers. 

DSLs as Language 
Extensions
The most flexible way to realize a 
DSL is as a stand-alone language 
with its own parser, type checker, 
compiler, and integrated develop-
ment environment (IDE). Such exter-
nal DSLs offer maintenance advan-
tages, but it’s difficult to integrate 
programs written in external DSLs 
with parts of the software system 
written in other languages. This is 
important because DSLs typically 
focus on relatively small, specific do-
mains—for example, JPQL by itself 
is insufficient for realizing a com-
plete desktop application.

An alternative option is internal 
DSLs, which are realized by encod-
ing domain concepts with standard 
language constructs in a general-
purpose language. For example, 
the JDOM Java library is an inter-
nal DSL for describing XML docu-
ments where the domain concepts 
“element” and “attribute” appear 
as Java classes. This allows internal 
DSLs to readily integrate with ex-
isting code in the general-purpose 

language, such as standard libraries 
or other application code. On the 
downside, internal DSLs miss out on 
most DSL maintenance advantages 
because the general-purpose lan-
guage limits the DSL syntax, static 
analyses, and editor support.

In previous work, we designed 
and implemented a Java-based ex-
tensible programming language and 
IDE called SugarJ.9–11 Using SugarJ, 

Domain-specific syntax lets developers 
directly translate their domain 

understanding into code.



4 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

it’s possible to combine the flexibil-
ity of external DSLs and the inte-
gration support of internal DSLs. 
 SugarJ programmers can extend 
Java’s syntax, static analysis, and 
editor support without changing the 
compiler or IDE. Instead, a SugarJ 
programmer can define an extension 
in a Java-like library that translates 
extended syntax to base syntax via 
desugaring, which translates ex-
tended syntax to base syntax. Figure 
1 shows an excerpt of the SugarJ ex-
tension for JPQL. 

The syntax declaration specifies 
that we extend Java’s expressions by 
nonterminal QCreate, which expects a 
JPQL entity manager (as a Java ex-
pression) followed by a dot terminal 
”.” and a query statement. The desug-
arings declaration instructs SugarJ 
to automatically apply the tree trans-
formation compileQuery. The transfor-
mation matches QCreate AST nodes 
and produces a plain Java expres-
sion that calls createQuery on the entity 

manager and sets the Java param-
eters occurring in the query. Further 
examples and documentation appear 
elsewhere.9,12

To activate an extension in a Java 
source file, we simply import the li-
brary defining the extension; there’s 
no need to configure the IDE or 
change the build process. The SugarJ 
compiler detects import statements 
that refer to extensions and activates 
them in the rest of the file by adapt-
ing the parser, desugaring, analyzer, 
and editor. Figure 2 illustrates the 
usage of a Java extension for XML 
in SugarJ.

SugarJ extensions ultimately de-
sugar all extension code to plain Java 
code. This enables code that uses one 
or multiple extensions to interact 
with code that uses other extensions 
or no extensions at all. For exam-
ple, the JPQL query in the previous 
section desugars into a method call 
that submits the query to the entity 
manager of the Java persistency API, 

but programmers can submit queries 
manually without using the JPQL 
extension. The integration support 
of DSLs that are implemented as 
language extensions is an important 
premise for the evolution of existing 
software systems to DSLs.

Evolution to DSLs
The evolution of a large software 
system is an inherently incremental 
process where code is gradually im-
proved and adapted to new require-
ments. To promote the introduc-
tion of DSLs and their maintenance 
benefits during software evolution, 
we propose a simple incremental 
process:

 1. Identify the problematic domain 
in existing code.

 2. Design new language fea-
tures to circumvent the problem-
atic code.

 3. Implement language features as a 
language extension.

 4. Gradually adapt the existing 
code to use language extensions 
when useful.

It’s important to note that our 
process never requires a full rewrite 
of the software system; the system 
remains executable at all times. Spe-
cifically, it’s possible to update small 
portions of code when the moment is 
opportune. For example, there might 
be a bug report describing an incor-
rect result of a database query. To 
address this bug, a maintainer can 
first adapt the query to use JPQL to 
gain a more readable query without 
boilerplate. Potentially, a validation 
of the query against the database 
schema already reveals the bug stati-
cally. Otherwise, JPQL editor fea-
tures assist the maintainer in writing 
a corrected version of the query.

SugarJ provides three features 

public extension JPQL {
  bnf syntax
    JavaExp ::= QCreate
    QCreate ::= JavaExp “.” Query
    Query ::= SelectStmt | UpdateStmt | DeleteStmt
    SelectStmt ::= SelectCl FromCl [WhereCl] [GroupbyCl] [HavingCl] [OrderbyCl]
    SelectCl ::= “SELECT” [“DISTINCT”] {SelectExp “,”}+
    ...
desugarings compileQuery
rules
  compileQuery  : QCreate(em, q) -> result
  where query   :=  |[ ~em.createQuery(~<query-to-string> q) ]|;
        vars    :=  <collect-all(?NamedInputParameter(<id>))> q;
        result  :=  <foldr(!query, set-param)> vars
  set-param : (p,e) -> |[ ~e.setParameter(~<as-string> p, ~<as-varref> p) ]|
  query-to-string : ... -> ...
}

FIGURE 1. An excerpt of the SugarJ extension for JPQL.



 SEPTEMBER/OCTOBER 2014  |  IEEE SOFTWARE  5

that enable such incremental evolu-
tion to DSLs. First, we implement 
DSLs as language extensions that de-
scribe semantically transparent syn-
tactic sugar. This means that code 
behaves exactly the same before and 
after adaption to a DSL and, in par-
ticular, interaction with non-adapted 
code isn’t affected. The end result 
is that adapted code becomes more 
maintainable.

Second, we organize language 
extensions as libraries and activate 
them locally and explicitly through 
import statements. This means that 
a maintainer can selectively acti-
vate DSLs per source file. Maintain-
ers obtain the important invariant 
that unchanged files aren’t affected 
by language extensions and thus 
don’t require attention. This is espe-
cially important for large software 
systems.

Third, SugarJ extensions are com-
posable: Programmers can use the 
syntax, static analyses, and editor 
support of different extensions si-
multaneously, even in an interleaved 
fashion.13 For example, JPQL que-
ries and XML documents contain 
Java expressions, which other ex-
tensions such as anonymous func-
tions or tuples can further extend. 
The SugarJ compiler composes inde-
pendent extensions automatically in 
most practical scenarios.13

The SugarJ compiler and IDE are 
available as open source (http://sug-
arj.org). To support extensibility for 
languages other than Java, we also 
built a compiler framework for syn-
tactically extensible languages14 and 
defined extensible variants of JavaS-
cript, Prolog, Haskell, and Scala. 
We plan to build similar variants 
of languages for C and C++, which 
are widely used in legacy software 
systems.

Case Studies
We applied our incremental process 
for evolution to DSLs to two existing 
software systems, the Java Pet Store 
and the Eclipse IDE. Here, we report 
on our experience of evolving these 
systems. 

Java Pet Store
The Java Pet Store is the reference 
application for building Ajax Web 
applications with Java. The Pet Store 
consists of 40 Java source files con-
taining 3,807 SLOC (source lines of 
code without comments and blank 
lines). Through manual inspection 
of the Pet Store, we identified three 
problematic domains in its source 
code. For these domains, we de-
signed and implemented language 

features as extensions and used them 
to evolve the Pet Store’s code base.

The first problematic domain we 
identified was a string-based encod-
ing of JPQL queries. This string en-
coding requires escaping of special 
symbols, relies on lexical concatena-
tion of string fragments, potentially 
leads to syntax and type errors at 
run time, and prevents editor sup-
port such as name resolution. We de-
signed and implemented a language 
extension that integrates JPQL que-
ries as a language feature into Java as 
shown in the JPQL example we pre-
viously referenced. We provide name 
resolution for tuple variables bound 
in a query’s FROM clause, and we offer 
code coloring and code completion 
for common JPQL patterns.

import xml.Sugar;
import xml.schema.FileUploadResponseSchema;

public void postProcessingMethod(FileUploadStatus status, ...) {
     ...
  response.setContentType(“text/xml;charset=UTF-8”);
  response.setDateHeader(“Expires”, 1);
  String xml =
     @Validate{FileUploadResponseSchema}
     <response>
       <message>${responseMessage}</message>
       <status>${status.getStatus()}</status>
       <duration>${status.getUploadTime()}</duration>
       <duration_string>${status.getUploadTimeString()}</duration_string>
       <start_date>${status.getStartUploadDate()}</start_date>
       <end_date>${status.getEndUploadDate()}</end_date>
       <upload_size>${status.getTotalUploadSize()}</upload_size>
       <thumbnail>${thumbPath}</thumbnail>
       <itemId>${itemId}</itemId>
       <productId>${prodId}</productId>
     </response>;
  writer.write(xml);
  writer.flush();
}

FIGURE 2. The XML language extension enables validated XML literals where $ 
escapes to Java.



6 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

The second problematic domain 
we found was a string-based en-
coding of XML documents gener-
ated at run time for Ajax data ex-
change. Like the JPQL encoding, 
the XML string encoding requires 
escaping and lexical concatenation, 
and lacks any static checking. In 
particular, generated XML docu-
ments aren’t validated against their 
XML schema. In previous work,9 
we designed and implemented a lan-
guage extension for XML and XML 
Schema that supports compile-time 
syntax checking and validation of 
XML literals against a user-supplied 
XML schema. For the Pet Store, we 
adapted the desugaring transforma-
tion to generate code that’s semanti-
cally equivalent to the existing string-
based encoding. Figure 2 shows an 
excerpt of the revised code, where 
we use the XML and XML Schema 
extensions to represent and validate 
an Ajax message. Besides validation, 
we also derive code completion rules 
from an XML schema to guide devel-
opers in writing valid XML.

The third problematic domain 
we identified was the overwhelming 

number of accessor methods: getters 
and setters. While these methods are 
trivial in nature, their mass masks a 
program’s core aspects. Most signifi-
cantly, some classes of the Pet Store 
contain annotations according to the 
used object-relational mapping. For 
example, class com.sun.javaee.blueprints.
petstore.model.Product has all standard 
getters and setters except for a single 
method, which is annotated @Id. The 
annotation marks that this method 
provides the primary key for the da-
tabase binding. This important in-
formation is lost among the other 
nine accessor methods. 

We designed and implemented a 
language extension that allows pro-
grammers to declare if there should 
be a getter or setter method for each 
field and if the field should be part 
of the initializing constructor. Fig-
ure 3 shows the revised Product class. 
Here, the accessor desugaring gen-
erates four getters, five setters, and 
one initializing constructor. While 
IDEs typically also support the ini-
tial generation of getter and setter 
methods, the generated methods 
persist in the source code and must 

be maintained. Using our extension, 
getter and setter methods never oc-
cur in the source code.

Table 1 summarizes our evolution 
of the Pet Store. For each DSL, we 
list the number of affected DSL ob-
jects, the number of affected source 
files, how the code was affected, and 
the size of the DSL implementation. 
For the latter, we distinguish the 
implementation code that we had 
to write anew from the code that 
we were able to reuse from previous 
DSL implementations.

While evolving the Pet Store, 
we didn’t integrate the DSLs in all 
places possible. For example, there 
are still accessor methods and string-
encoded XML documents left in the 
code. In fact, we didn’t even look at 
all files of the Pet Store. Instead, we 
locally and incrementally adapted 
the code to use the DSLs where it 
seemed most beneficial. Such an in-
cremental process might not be nec-
essary for the comparatively small 
Pet Store, but local and incremental 
evolution greatly simplified the evo-
lution task because we could focus 
on a single DSL object at a time and 
guarantee that the code in other files 
didn’t accidentally break because of 
our refactoring. 

Eclipse IDE
Eclipse is a large-scale, open source 
software project that comprises 
about 10 million lines of source code 
and is organized into just under 500 
subprojects.15 For this case study, we 
selected only two subprojects: org.
eclipse.core.variables and org.eclipse.jdt.core.
tests.model. They contain 16 and 216 
Java source files, adding up to 286 
and 586 SLOC, respectively. Be-
cause the code in these files inter-
acts with code in many other Eclipse 
subprojects, it’s important to retain 
interoperability throughout DSL 

import sugar.Accessors;      

 @Entity
 @Table(name=”PRODUCT”) 
public class Product implements Serializable {
  private String productID {set; con};
  private String categoryID, name, description, imageURL {get; set; con};
  
  public Product() { }
  
  @Id
  public String getProductID() {
    return this.productID;
  }
}

FIGURE 3. A language extension that avoids boilerplate accessor methods.



 SEPTEMBER/OCTOBER 2014  |  IEEE SOFTWARE  7

integration. We achieve this because 
our DSLs are semantically transpar-
ent syntactic sugar.

We refactored the two subprojects 
by integrating the DSLs for XML and 
accessor methods described in the 
case studies. Table 2 summarizes the 
conducted changes. We eliminated 
a few accessor methods and found 
XML documents for generating the 
Eclipse-specific configuration files 
.project and .classpath, which we refac-
tored and validated using our DSLs.

Note that we deliberately only 
changed a tiny portion—namely, six—
of the Eclipse source files. That is, we 
made local improvements to some of 
the source files in Eclipse without af-
fecting Eclipse’s overall functionality. 
The syntactic sugar requires only local 
changes where it’s used.

Also note that we reused almost 
all the DSL implementation from the 
Java Pet Store in Eclipse; only minor 
adaptions were needed, thereby con-
firming that DSL implementations 
can be reused across software sys-
tems, which further reduces the in-
vestment for applying DSLs.

Tool Support for DSL 
Integration: A Roadmap
As our case studies confirm, exten-
sible languages can help gradually 
integrate DSLs into existing software 
systems, independent of the size of 
the system at hand. Thus, extensi-
ble languages support software evo-
lution as a way to integrate DSLs. 
However, according to the incremen-
tal process we described earlier, the 
integration of a DSL into a software 
system is a manual process, requiring 
developers to refactor code by hand 
to use the DSL instead of the origi-
nal code. For a large software system 
such as Eclipse, the overall main-
tenance benefit of manually refac-
tored code fragments is probably too 
small to be noted. To really exploit 
the maintenance benefits of DSLs 
in large-scale software systems, we 
need tool support that partially auto-
mates the integration of DSLs.

To this end, we offer a roadmap 
for the development of three tools 
that assist software maintainers in 
integrating DSLs into large-scale 
software systems. We expect that 

DSLs for problematic domains have 
already been implemented as lan-
guage extensions, and we don’t tar-
get fully automatic DSL integration. 
Instead, we propose tools that ana-
lyze a DSL definition as well as the 
code base, to guide maintainers and 
help them apply a DSL, thus maxi-
mizing the DSL’s coverage and main-
tenance benefits.

Identifying DSL Application Sites
Large code bases address many dif-
ferent concerns. Because a DSL is spe-
cific to a single domain or concern, 
we expect that it isn’t applicable for 
most code. In fact, we can expect that 
the DSL is only applicable to a rela-
tively small part of a small number 
of files, compared to the overall soft-
ware system. After all, DSLs draw 
their power from their specificity.

So how is a maintainer supposed 
to identify the parts of a software 
system where a DSL will be most 
beneficial? The first tool we de-
scribe will help answer this ques-
tion: It analyzes a DSL’s desugaring 
transformation, which translates the 

TA
B

L
E

 1 Summary of the evolution of the Java Pet Store.

DSL DSL objects Files affected Code affected DSL implementation DSL reuse

JPQL 14 queries 2 files refactor 29 SLOC 101 SLOC 140 SLOC

XML 7 documents 3 files refactor 59 SLOC 35 SLOC 160 SLOC

XML Schema 5 schemas 3 files validate 59 SLOC 20 SLOC 713 SLOC

Accessors 112 methods 13 files eliminate 336 SLOC 65 SLOC 0 SLOC

TA
B

L
E

 2 Summary of the evolution of the Eclipse IDE.

DSL DSL objects Files affected Code affected DSL implementation DSL reuse

XML 56 documents 3 files refactor 449 SLOC 2 SLOC 193 SLOC

XML Schema 2 schemas 3 files validate 397 SLOC 0 SLOC 733 SLOC

Accessors 9 methods 3 files eliminate 86 SLOC 3 SLOC 62 SLOC



8 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

extended syntax into the base lan-
guage’s constructs. From this trans-
formation, the tool derives a pattern 
representing those base programs 
that the transformation can gener-
ate. Thus, code that matches the de-
rived pattern is likely replaceable by 
the DSL code. As a simple example, 

this tool would analyze the transfor-
mation definition of the JPQL DSL 
and determine that desugared code 
contains method calls to createQuery 
and setParameter.

As a second step, our tool matches 
the derived pattern against the whole 
code base to identify the concrete 
source-file locations at which the an-
alyzed DSL is likely to be applicable. 
Depending on the derived pattern and 
the code base, this matching could 
yield a very long list of potential ap-
plication sites. To assist a maintainer 
in selecting relevant application sites, 
our tool will sort the list so that sites 
rank higher if a DSL application has 
higher impact—that is, if more code 
can be replaced to use the DSL.

Because hand-written redun-
dant code is likely to be less consis-
tent and schematic than generated 
code, the matching process should 
be fuzzy and detect parts of the code 
that are only similar (but not identi-
cal) to code that could be generated 
by a desugaring.

Refactoring to DSL Code
After identifying relevant application 
sites for a DSL, the next step for a 
maintainer is to replace the existing 

code with the DSL code. Not only is 
it tedious to manually refactor exist-
ing code to use a DSL, but such refac-
toring needs to preserve the original 
code’s behavior, which can be diffi-
cult to achieve without tool support.

Our second tool will assist main-
tainers in applying a DSL by using 

an interactive refactoring dialog. 
The user selects a DSL and a poten-
tial application site for this DSL. The 
refactoring dialog will then propose 
ways to instantiate the DSL so that 
the original code’s behavior is pre-
served. User interaction is required 
here for two reasons. First, alterna-
tive ways to instantiate a DSL could 
achieve the same behavior. Thus, the 
maintainer must select one of several 
alternatives, similar to how code rec-
ommendation systems work. Second, 
our tool might not be able to infer all 
the details of the DSL instantiation. 
In this case, the user must use the 
refactoring dialog to fill in details 
of a partially inferred DSL program 
and our tool will check that the pro-
gram preserves the original behav-
ior. To check behavior preservation, 
our tool will compare the original 
code with the desugared DSL code.

We envision that existing research 
on bidirectional programming16 will 
be useful to automate the process of 
instantiating a DSL that desugars 
into a given program.

DSL Integration Completeness 
After refactoring code to use a DSL, 
maintainers might change the DSL 

program to repair deficiencies or 
activate new features. However, it’s 
often desirable to change the DSL’s 
back end of a DSL; for example, to 
retarget JPQL to an in-memory da-
tabase or to use another serializa-
tion format such as JSON instead 
of XML. Typically, DSLs support 
changes to the back end particu-
larly well because the DSL imple-
mentation abstracts the details of 
the back end from the user. Unfor-
tunately, in our evolutionary set-
ting, the DSL’s abstraction barrier is 
only partially maintained: existing 
code that hasn’t yet been refactored 
to use the DSL shares implemen-
tation details with the DSL’s back 
end. For example, if we changed 
JPQL to call methods of an in-
memory database instead of send-
ing a query to a dedicated database 
engine, string-encoded JPQL que-
ries left over in the code base would 
conflict and yield errors at compile 
or run time, thus preventing main-
tainers from benefiting from the 
DSL abstraction.

To address this problem, our 
third tool will analyze the code base 
to validate that the DSL integra-
tion is complete—that is, that no 
DSL application sites are left over. 
There are two ways to achieve this: 
by using the refactoring tool and 
letting the programmer confirm 
that all remaining candidates for 
using the DSL are false positives, 
which would require the candidate 
list to be complete; or by character-
izing completeness via an architec-
tural constraint, such as the con-
straint that a specific API is never 
used directly (but only indirectly via 
the DSL). Such architectural con-
straints are easy to check, and cor-
responding architecture constraint 
languages could be defined and en-
forced within SugarJ.

So how is a maintainer supposed  
to identify the parts of a software system 

where a DSL will be most beneficial?



 SEPTEMBER/OCTOBER 2014  |  IEEE SOFTWARE  9

I f our tool can guarantee com-
plete integration for a DSL, this 
means that the domain seman-

tics are modularized in the DSL’s 
definition. Thus, DSL behavior can 
be modularly changed by adapting 
the back end. This can be a crucial 
asset in the long-term maintenance 
of a software system, where adop-
tion of new technologies is an impor-
tant issue.

References
 1. M.M. Lehman, “Programs, Life Cycles, 

and Laws of Software Evolution,” Proc. 
IEEE, vol. 68, no. 9, 1980, pp. 1060–
1076.

 2. B.P. Lientz and E.B. Swanson, Software 
Maintenance Management, Addison-
Wesley, 1980. 

 3. S.W.L. Yip and T. Lam, “A Software 
Maintenance Survey,” Asia-Pacific 
Software Eng. Conf. (APSEC), 1994, pp. 
70–79. 

 4. F. Hermans, M. Pinzger, and A. van 
Deursen, “Domain-Specific Languages 
in Practice: A User Study on the Success 
Factors,” Proc. Conf. Model Driven 
Engineering Languages and Systems 
(MODELS), LNCS 5795, Springer, 2009, 
pp. 423–437. 

 5. T. Kosar, M. Mernik, and J.C. Carver, 
“Program Comprehension of Domain-
Specific and General-Purpose Languages: 
Comparison Using a Family of 
Experiments,” Empirical Software Eng., 
vol. 17, no. 3, 2012, pp. 276–304. 

 6. T. Kosar et al., “Comparing General-
Purpose and Domain-Specific Languages: 
An Empirical Study,” Computer Science 
and Information Systems, vol. 7, no. 2, 
2010, pp. 247–264. 

 7. A. van Deursen and P. Klint, “Little 
Languages: Little Maintenance?,” 
Software Maintenance, vol. 10, no. 2, 
1998, pp. 75–92. 

 8. C. Larman, Applying UML and Patterns: 
An Introduction to Object-Oriented 
Analysis and Design and the Unified 
Process, 2nd ed., Prentice Hall, 2002. 

 9. S. Erdweg et al., “SugarJ: Library-Based 
Syntactic Language Extensibility,” Proc. 
Conf. Object-Oriented Programming, 
Systems, Languages, and Applications 
(OOPSLA), 2011, pp. 391–406.  

 10. S. Erdweg et al., “Growing a Language 
Environment with Editor Libraries,” 
Proc. Conf. Generative Programming 

and Component Eng. (GPCE), 2011, pp. 
167–176. 

 11. S. Erdweg, “Extensible Languages 
for Flexible and Principled Domain 
Abstraction,” PhD thesis, Dept. 
Mathematics and Computer Science, 
Philipps-Universität Marburg, 2013.

 12. S. Fehrenbach, S. Erdweg, and K. 
Ostermann, “Software Evolution to 
Domain-Specific Languages,” Proc. Conf. 
Software Language Engineering (SLE), 
LNCS 8225, Springer, 2013, pp. 96–116. 

 13. S. Erdweg, P.G. Giarrusso, and T. Rendel, 
“Language Composition Untangled,” 
Proc. Workshop Language Descriptions, 
Tools, and Applications (LDTA), 2012, 
pp. 7:1–7:8. 

 14. S. Erdweg and F. Rieger, “A Framework 
for Extensible Languages,” Proc. Conf. 
Generative Programming and Component 
Eng. (GPCE), 2013, pp. 3–12. 

 15. D.M. Germán and J. Davies, “Apples 
vs. Oranges?: An Exploration of the 
Challenges of Comparing the Source Code 
of Two Software Systems,” IEEE Mining 
Software Repositories (MSR), 2011, pp. 
246–249. 

 16. J.N. Foster et al., “Combinators for 
Bidirectional Tree Transformations: A 
Linguistic Approach to the View-Update 

Problem,” Transactions on Programming 
Languages and Systems (TOPLAS), vol. 
29, no. 3, 2007, pp. 17:1–17:93.

SEBASTIAN ERDWEG is postdoctoral researcher at Tech-
nische Universität Darmstadt, Germany, where he investigates 
metaprogramming, language design, and language semantics. 
Sebastian is the lead developer of the extensible programming 
language SugarJ. He received a PhD in computer science from 
Philipps-Universität Marburg.

STEFAN FEHRENBACH is a graduate student at the Univer-
sity of Marburg, Germany. His primary interest is in the practical 
application of programming language research, concentrating 
on extensible languages and domain-specific languages in 
legacy applications. Stefan received a BSc in computer science 
from Philipps-Universität Marburg.

KLAUS OSTERMANN is a faculty member in the depart-
ment of mathematics and computer science at the University of 
Marburg, Germany. His research concentrates on programming 
languages and methodology. Klaus received a PhD in computer 
science from Technische Universität Darmstadt.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

NEXT ISSUE:

November/December 2014 
Virtual Teams


