
Efficient Development of Consistent
Projectional Editors using Grammar Cells

Markus Voelter
independent/itemis AG, Germany

voelter@acm.org

Tamás Szabó
itemis AG & TU Delft, Germany

szabo@itemis.de

Sascha Lisson Bernd Kolb
itemis AG, Germany

{lisson|kolb}@itemis.de

Sebastian Erdweg
Delft University of Technology, The Netherlands

s.t.erdweg@tudelft.nl

Thorsten Berger
Chalmers | University of Gothenburg, Sweden

thorsten.berger@chalmers.se

Abstract
The definition of a projectional editor does not just specify
the notation of a language, but also how users interact with
the notation. Because of that it is easy to end up with different
interaction styles within one and between multiple languages.
The resulting inconsistencies have proven to be a major
usability problem. To address this problem, we introduce
grammar cells, an approach for declaratively specifying
textual notations and their interactions for projectional editors.
In the paper we motivate the problem, give a formal definition
of grammar cells, and define their mapping to low-level
editor behaviors. Our evaluation based on project experience
shows that grammar cells improve editing experience by
providing a consistent and intuitive “text editor-like” user
experience for textual notations. At the same time they do
not limit language composability and the use of non-textual
notations, the primary benefits of projectional editors. We
have implemented grammar cells for Jetbrains MPS, but they
can also be used with other projectional editors.

Categories and Subject Descriptors D.2.6 [Programming
Environments]; D.2.3 [Program Editors]

Keywords Language Engineering, Language Workbenches,
Projectional Editing, Jetbrains MPS, Usability

1. Introduction
In projectional editors, a user’s editing gestures directly
change the abstract syntax tree (AST) of a program. Once

changed, the projectional editor projects the AST to a suitable
notation (or concrete syntax). This is in contrast to parser-
based editors where users change the (textual) notation, and
a parser builds the AST by recognizing structures in the
sequence of characters.

Projectional editing has two major advantages: notational
diversity and language composability. Notational diversity
means that a wide range of notations can be used, includ-
ing textual, tabular, diagrammatic, and mathematical nota-
tions [28]. All notations are built on top of the same editor
architecture, so they can be freely mixed (math symbols in
tables or text in diagrams) while retaining editor support for
all of them. Several alternative (user-switchable) notations
for the same program are also possible. Notational diver-
sity is crucial for DSLs targeting non-programmers, such as
insurance experts, systems engineers or biologists [32].

Language composition refers to using multiple languages
in a single program without invasively modifying the def-
initions of the participating languages. Several forms of
language composition exist [11], and projectional editors
can support these composition techniques, as demonstrated
in [27] for Jetbrains MPS (http://jetbrains.com/mps), the cur-
rently most widely used projectional editor. Composition is
simplified because the syntax of multiple languages used in a
single program can never lead to parsing ambiguities. As a
consequence, the abstract syntax, concrete notations, and IDE
support of different languages always compose without prob-
lems (semantics can still be a challenge). An example of a set
of language extensions based on a common base language is
mbeddr [29], which includes over 30 modular extensions for
C and which was shown to be practically useful [31].

The main drawback of projectional editors is their ques-
tionable usability. In a previous paper [30] we identified is-
sues in the areas of efficiently entering textual code, selecting
and modifying code, as well as infrastructure integration. In
that paper we also described how MPS addresses these issues

http://jetbrains.com/mps

and we validated the degree to which MPS succeeds at ad-
dressing these problems with a survey among 20 experienced
developers. It showed that usability is sufficient for encourag-
ing developers to use MPS. In summary, for the participants
of the survey, the benefits of language composition and mixed
notations were not destroyed by the unusual editing gestures.

Yet, the survey in [30] and a follow-on controlled exper-
iment [4] also identified issues that must be addressed in
order to align editor behavior with the expectation of users:
that editing textual notations resembles, as much as possible,
editing in traditional text editors. The first issue is that, in
order to use a projectional editor efficiently, users need to
have some understanding of the underlying AST structure of
the edited program, because the tree structure governs editing
behavior. The second issue is that editors of composed lan-
guages may exhibit inconsistent editor behaviors, confusing
the user. For example, each language extension can define
the behavior of pressing BACKSPACE on extension code. It
is crucial that these behaviors are implemented consistently
within and across languages. Otherwise, as our experiment
in [4] shows, users may perform over-deletions when they
inadvertently delete too much code or invalid insertions when
they try typing code that is not recognized by the editor.

Contribution We introduce grammar cells, a new formalism
for defining textual notations for projectional editors. Gram-
mar cells provide a way of specifying projectional editors that
preserves the advantages of projectional editing, but solves
the identified code-modification problems [4, 30]. Achieving
consistency within and between languages is simplified be-
cause of the declarative specification of editor behavior. The
need to be aware of the AST structure is reduced because
of more intuitive, linear editing of tree structures. We have
implemented grammar cells in Jetbrains MPS, but they can
also be used with other projectional editors.

Outline Sec. 2 illustrates the idiomatic problems in projec-
tional editors and shows an example editor implementation
with grammar cells. Sec. 3 provides a catalog of the gram-
mar cells, and Sec. 4 and 5 show their implementation with
lower-level abstractions. Sec. 5 also evaluates critical perfor-
mance aspects. Sec. 6 validates our approach by reviewing
project experience with grammar cells. We discuss in Sec. 7
the implementation of grammar cells in MPS and in other
tools. Sec. 8 presents related work, and Sec. 9 concludes.

2. Existing Editor Models by Example
A global variable declaration (GVD) in mbeddr C [29]
adheres to the following syntax:

"exported"? "extern"? <type> <name> ("=" <init>)? ";"

The optional flags exported and extern mark the variable
as being visible and defined outside the current module,
respectively. A variable furthermore has a type, a name, and
optionally an initializing expression. For example, this syntax
supports the following declaration:

exported int8 x = 10 * y;

We now review how different existing editor architectures
deal with this syntax in terms of editing behavior.

Text Editors In a classical text editor, users can enter the
parts of a GVD in any order. They could start with the type,
the name or any of the flags. The missing parts can be added
later to form a syntactically correct declaration. This is the
baseline expectation of users when using a textual notation in
any editor. All established text editors and IDEs follow this
approach.

Pure Projectional Editors In a pure projectional editor,
users must first select the GVD concept from a code comple-
tion menu. Once selected, the editor projects the concept with
“holes” at those places where the user can fill in the name,
type, and init expression:

The optional flags are toggleable explicitly via a menu. Pure
projectional editors are consistent in the sense that everything
is done through code completion, menus, and the “hole”
metaphor; however, they do not support fluent editing like text
editors. This does not satisfy user expectations as confirmed
by our prior study [30] and others [20]. Examples of pure
projectional editors include Prune [2] and the editor described
by Clark [8].

Projectional Editor with Actions Actions are in-place
transformations of the AST that are executed while the user
edits the program, triggered by the user’s editing activities.
For example, an action could be programmed to create
an empty init expression when the user types = on the
right hand side of the name property in a GVD. This way,
the actions improve the editing experience of projectional
editors. However, they have two problems. First, the effort for
implementing the necessary actions for all language concepts
is a lot of work. Second, by implementing the actions in
different ways, or by forgetting to implement some actions, it
is very easy to create inconsistencies in the editing behavior
within and between languages, thus confusing users. MPS is
an example of a projectional editor with actions; as far as we
know, the Intentional Domain Workbench [23] also provides
some support for actions.

Problem Statement Our goal is to provide high-level
constructs for the definition of flexible projectional editors
that feature a user experience akin to text editors as much
as possible. High-level constructs promote consistent editor
definitions because they ease adoption and eliminate the
variability in behavior induced by low-level tree actions. We
aim at supporting at least the following user interactions for
our GVD example:

1. Start with the type, then enter the name.

2. Start with extern, then enter type and name.

3. Start with exported, then enter type and name.

4. Start with exported, then continue with extern, type,
and name.

5. For an existing variable, type exported, extern or both
on the left side of the type.

6. Optionally, type = and then enter the init expression on
the right side of the name.

7. Delete the exported or extern flag by pressing Backspace
on them.

Editing of expressions must also be improved. Consider an
init expression 3 * 4 + x. Users expect to be able to enter
it linearly by typing “3”, “*”, “4”, “+”, and “x”. This re-
quires that the editor detects operator priority (or precedence)
and constructs a tree corresponding to (3 * 4) + x. Now
consider that the user wants to change the parenthesis-less
expression to 3 * (4 + x). The user expects to be able to
enter an opening parenthesis on the left of 4 and a closing
parenthesis on the right of x. This interaction leads to a re-
structuring of the tree, called cross-tree editing, which we
also aim to support.

More generally, we aim to provide high-level concepts for
recurring editor patterns. Over the last five years, a team at
itemis has spent roughly 30 person years developing MPS-
based projectional editors for a wide range of real-world lan-
guages for embedded software, system specification, require-
ments engineering, safety and security analysis, insurance
contract specification, medical software, and public benefits
calculations [29, 32]. Together with the results from our prior
survey [30] and experiment [4], this allowed us to identify re-
curring editor patterns, for which the grammar cells described
in this paper provide high-level abstractions.

3. The Grammar Cells Language
We introduce grammar cells as a high-level concept for the
definition of flexible projectional editors for textual notations.
In this section we discuss them from the perspective of the
language engineer, i.e., the user of grammar cells. In the next
two sections we switch the perspective to the implementor of
grammar cells in a language workbench such as MPS. We rely
on the GVD as an example, because it exercises all features
of grammar cells: optional parts, flags and expressions.

Fig. 1 (A) shows the editor definition for GVDs using
grammar cells in MPS. An editor is defined for each language
concept, and it specifies how instances of that concept are
rendered in a program. Editor definitions are constructed
from cells. A list cell ([- -]) contains sequences of other
cells. Properties, such as extern, are embedded with the
{property} syntax. Child cells, such as the init expression,
use the %child% notation. Grammar cells contribute new
kinds of editor cells for use in editor definitions. In addition
to defining how a cell is rendered, each grammar cell also
implies certain well-defined editor interactions that would
otherwise have to be implemented manually.

In the rest of this section we explain the grammar cells.
Boxes show the structure of editor definitions where cells
with a darker shade represent child cells of the lighter-shaded
cell on their left. For example, in C1 C2 C3 , C2 and C3
are children of C1. Some actions are triggered when the
user enters a particular character at a specific location in the
program. We use the notation l^C^r to mark these positions,
where l represents the left side of the editor generated from
the editor definition for the language concept C; r represents
the right side.

The example in Fig. 1 (A) uses grammar cells flag, wrap
and optional, resulting in an editor that supports all seven
interaction scenarios for GVDs described in Sec. 2. The
implementation of these grammar cells relies on low level
tree transformations explained in Sec. 4.

flag flag l^child(C.cld) A flag cell represents a Boolean
flag; the text is optionally shown in the program, depend-
ing on whether the flag is true or false. A flag cell sur-
rounds the editor cell of a Boolean-typed child cld of
a concept C. It enables setting the child by typing in a
string, by default the name of the child link. It also allows
unsetting the child by pressing DELETE or BACKSPACE
on the editor cell marked with the position l.
In Fig. 1 (A) the editor cells of the extern and exported
children are wrapped with flag cells which makes it
possible to set these properties on a global variable by
typing “extern” and “exported”.

wrap wrap child(C.cld) A wrap cell lets the user enter
the child where the parent is expected, subsequently
creating the parent. It wraps the editor cell of child C.cld
and allows implicit instantiation of C by instantiating
an instance of the concept in the cld link. The user
disambiguates by selecting from the code completion
menu if more than one concept can be created from
the same child concept. Wrappers are also used for side
transformations as we explain this.
In Fig. 1 (A) the editor cell of the type: Type child is
nested in a wrap cell in order to allow the creation of a
GVD by first typing in its Type.

optional optional l^const(t) child(C.cld) An optional cell
lets the user enter an optional part of the syntax. It wraps
a child editor cell; as long as C.cld is empty, the contents
of an optional cell are not shown. Upon typing the string
t at position l, the child is set to a non-null value, and the
contents are shown.
In Fig. 1 (A) the initializer part of the GVD becomes
editable once the user types = on the right hand side of the
name property in a GVD node.

The support for fluent, linear editing of expressions also
relies on grammar cells. Fig. 1 (B) shows the generic editor
definition for all binary expressions (+, -, *, /, &&, ||, etc.).
For the operands, we use wrap grammar cells to automatically
generate the side transformations that let the user insert the

A

B

C D

Figure 1. Grammar cells in use: (A) global variable, (B) binary expression, (C) number literal and (D) parentheses.

operator tree when its symbol is entered to the left or right of
an expression. We also use constant and subsitute cells:

constant constant A string computed from the underlying
node or concept. For infix binary expressions, it displays
the operator symbol (+, * or ||).

substitute substitute l^constant Surrounds a constant cell
to support substituting the underlying concept with an-
other one, picked from the code completion menu at
position l. Proposals in the menu include those candi-
date concepts with similar structure (considering types
and cardinality of children) as the current concept (cf.
structurallyMatches in Sec. 4.2).
In our example, it supports changing operators (e.g.,
changing a * b * c to a + b * c).

To handle priorities, associativity and cross-tree editing, the
whole editor definition for binary expressions is nested in a
rule grammar cell. When the content of a rule cell changes
structurally, the editor linearizes the tree structure into a list
of tokens and parses it into a new tree (we explain the details
in Sec. 5).

rule ... Expresses that the contained cell structure should be
processed using the built-in parser.
The rule of the binary expression in Fig. 1 (B) is de-
fined as %left% constant %right% where %left%
and %right% represent the children for the left and right
hand side expressions, and the constant represents the
infix operator.

brackets brackets l^const(o) child(C.cld) const(c)^r A bracket
cell contains an opening bracket symbol o, a child cell
cld, and a closing symbol c. Typing these symbols at
positions l and r, respectively, inserts an instance of C
(the concept that has the brackets editor) into the tree,
restructuring it such that the subtree “between” the typed
o and c is contained in the cld child.
Fig. 1 (D) shows the editor definition of the parenthesis
expression. Supporting expression parenthesising is as
simple as wrapping the inner expression in a brackets cell
surrounded by the constants (and).

splittable splittable child(C.cld) A splittable cell wraps a
child whose value can be split by typing specific characters

in the middle of the literal. A splittable cell provides a
tokenizer that returns the list of tokens after the value is
split. The parser then uses the rules and the list of tokens
to derive a new subtree.
Fig. 1 (C) uses the splittable cell for the number literal to
allow splitting the value with operators, producing binary
expressions (typing + in the middle of 44 returns 4 + 4).

This 2-minute video demonstrates the resulting editor, for all
editor cells discussed in this section, using the GVD as an
example: https://youtu.be/QxXHtp90Fcs

4. Implementation of Grammar Cells
This section explains the implementation of the non-parser-
based grammar cells. Our implementation is based on low-
level actions available in MPS. They are typically used by
programmers to manually implement well-behaving editors.
However, as our experience over the last five years has
shown, it is very hard to implement the actions for a set of
languages completely and consistently – which has prompted
the development of grammar cells. In other projectional
editors where these low-level actions may not exist we still
recommend implementing them as intermediate abstractions.
We discuss the practicality of this in Sec. 7.

In the remainder of this section we formally define the
low-level actions in Sec. 4.1 and then show the mapping from
grammar cells to these actions in Sec. 4.2.

4.1 Low-Level Language
Fig. 2 shows the low-level MPS editor actions that we use
in the implementation of grammar cells: substitutions, side
transformations and delete actions. All of them are triggered
by specific user editing gestures and then execute procedural
Java code. The code is defined as a series of calls f un to
helper functions. The definition of these functions is given in
Sec. 4.2.

Substitutions A substitution for a concept C1 lets the user
create an instance c2 of some other concept C2 and then
execute some code j. Typically, the code will create an
instance c1 of C1 and set c2 as a child of c1. In the GVD
example introduced earlier, a substitution is used to allow
entering a Type when a GVD is expected (supporting scenario
1 from Sec. 2).

https://youtu.be/QxXHtp90Fcs

(substitution) subst ::= subst(| c2 : C2 7→ f un)
(side transf.) side ::= side(c@p : C | t 7→ f un)
(deletion) delete ::= delete(c@p : C | 7→ f un)
(helper func.) f un ::= reparse | replace | delete |

nameOfLink | copyStructure |
structuralMatches | new

Figure 2. MPS-provided low-level actions onto which the
grammar cells are mapped. The executable part of an action
is defined with helper functions (Sec. 4.2).

1 substitute action wrapGVDwithType substitutes: GVD
2 wrapped: Type
3 (nodeToWrap, parentNode) -> node<GVD> {
4 node<GVD> var = new node<GVD>();
5 var.type = nodeToWrap;
6 return var; }
7

8 left transform actions leftTypeExported transforms: Type
9 condition: (model, sourceNode) -> boolean {

10 sourceNode.parent.isInstanceOf(GVD); }
11 action: add custom items (output concept: Type)
12 matching text: "exported"
13 transform: (sourceNode, pattern)->void {
14 sourceNode.parent : GVD.exported = true; }

Figure 3. Two example actions implemented in MPS.

Side Transformations A side transformation on an instance
c of concept C will be triggered when the user enters some
string t at cursor position p. It then executes an action j.
For example, a right transformation anchored on the {name}
of a GVD is triggered by typing =; it sets the expression to
something that is non-null (scenario 6). Similarly, entering
a binary operator on the right or left of an expression inserts
a binary expression. Note that in this case the priority and
associativity of the various binary and unary operators have
to be respected, and the necessary tree restructurings have to
be implemented as part of j.

Delete Actions A delete action on an instance c of concept
C will be triggered when the user presses BACKSPACE
at cursor position p. It executes an action j that typically
deletes c or sets a flag to false. Examples include actions that
unset the extern and exported flags if BACKSPACE is
pressed on them (scenario 7), as well as the removal of binary
operators.

To illustrate these transformations in MPS, we conclude this
section with two example transformations.

Example Transformations Fig. 3, top, shows the wrapper
rule that allows users to enter a Type when a GVD is expected
(scenario 1). Line 1 specifies that the substituted node is
of type GVD, and line 2 specifies that it is substituted by a
Type. Lines 3-6 are invoked when the user enters a Type; the
code procedurally creates a GVD, sets the previously entered
Type as the type child of the GVD and then returns the newly
created GVD.

Fig. 3, bottom, shows the transformation that sets the
exported flag to true when a user types “exported” on
the left side of a Type that is a child of a GVD (scenario 5).
Line 8 specifies that the transformation applies to Types, and
line 10 asserts that the Type is a child of a GVD. The action
then matches the text “exported” (line 12) and then performs
a transformation that sets the GVD’s exported flag to true
(lines 13-14).

4.2 Translation of Grammar Cells
Fig. 4 shows the translation of grammar cells to low-level
MPS actions. The rules specify the concept for which the
editor is defined and additional constraints on the child
elements and parent-child relationships. The list notation
represents a collection of editor cells.

Helper Functions During the translation we use a set of
helper functions:

nameOfLink(C.cld) Given a child cld of concept C, the
function returns the label of C’s edge that contains the
child; in the example it would return “cld”.

new(C) Creates a new instance of the concept C.

delete(c) Removes node c from the AST.

replace(c2← c1) replaces node c1 in the AST with c2.

structuralMatches(c1) represents structural polymor-
phism [6] for MPS language concepts. It returns all lan-
guage concepts C2 that satisfy the following two condi-
tions: (1) given a concrete instance c1 : C1, let Sup repre-
sent the concept that is the type of the containment edge
that points to c1 in the AST. Clearly, C1 must be a subcon-
cept of Sup and we enforce that C2 is also a subconcept
of Sup. (2) C1 and C2 must have identical node structure
regarding number, cardinality and type of children nodes.

copyStructure(c2← c1) c1 : C1 and c2 : C2 represent
nodes where c2 ∈ structuralMatches(c1). The function
copies the children of c1 and recreates the (similar) node
structure under node c2.

reparse(c) linearizes the children of node c into a list
of tokens and rebuilds a subtree (if possible) using the
grammar rule definitions of the concept C of c and the
rules of its children (recursively).

Mapping We now explain the translation rules shown in
Fig. 4 in more detail. The flag cell is defined for a concept
C, and the wrapped child cld must have Boolean type. The
flag cell results in a side transformation which is triggered
when nameOfLink(C.cld) is typed at position l on a node
c: C. The associated action sets the value of c.cld to true.
A delete action is also generated, which sets cld to false
when pressing BACKSPACE at position l.

An optional cell wraps a child cld of a concept C, where
the child’s type is another concept T. A right transformation
triggered by typing the text t at the location of the optional

flag C, C.cld : Boolean in [flag[l^child[C.cld]]] =⇒

{
side(c@l : C | nameOfLink(C.cld) 7→ c.cld = true)

delete(c@l : C | c.cld = f alse)

optional C, C.cld : T

in [optional[list[l^constant[t], child[C.cld]]]]
=⇒

{
side(c@l : C | t 7→ c.cld = new T)

delete(c@l : C | delete(c.cld))

wrap C, C.cld : T in [wrap[child[C.cld]]] =⇒
{

subst(| t : T 7→ c = newC, c.cld = t, replace(t← c))

substitute C1 in [substitute[l^const]] =⇒

∀C2 ∈ structuralMatches(C1) :

subst(c1@l : C1 | Cm.const 7→ c2 = new C2,

copyStructure(c2← c1), replace(c1← c2))

brackets C, P, P.cld : D, C <: D

in [brackets[l^constant[open],

child[C.cld], constant[close]^r]]
=⇒

side(c@l : C | open 7→ t : D = reparse(c), replace(c← t))

side(c@r : C | close 7→ t : D = reparse(c), replace(c← t))

delete(c@l : C | t : D = reparse(c), replace(c← t))

delete(c@r : C | t : D = reparse(c), replace(c← t))
Key for the notation:

C,C1,C2,D,P,T ∈ C (language concepts) in [editor] =⇒ action(params | typed text 7→ executed code)

Figure 4. Semantics of grammar cells defined via mapping to the low-level actions introduced in Fig. 2 and Sec. 4.1.

cell is generated that instantiates a T and stores it in cld. The
generated delete action lets the user delete cld at position
l on c.

The context of the wrap cell is similar to that of optional.
However, the wrap grammar cell results in a single subst
action, which, when creating an instance t of T, creates an
instance c of C as well, sets the target of cld to t and replaces
node t with c.

The substitute cell deals with replacing concepts. When-
ever the code completion menu is queried at position l on
an instance c1 : C1, it finds C1’s structurally matching con-
cepts Cm. It then uses subst actions for all Cm to trigger
a node structure replacement of c1 upon selecting the ele-
ment Cm from the completion menu by typing its operator
associated constant Cm.const (the operator symbol for binary
expressions).

A brackets cell results in actions that allow inserting and
deleting the left and right constants around the child cld of a
concept C: a left transformation at position l with constant
open and a right transformation at position r with constant
close. In both cases, after the edits, the actions use the parser
to build a new subtree and replace the existing node c with
the new subtree rooted at t. The delete actions allow the
user to delete the opening and closing constants at position l
and r and take care of valid tree structures that represent the
effect of the edits.

The rule cells are used for expression-like structures
where trees must be restructured according to priority and
associativity, and where cross-tree editing, such as those
provided by the bracket cell, must be supported. The next
section explains the details.

5. Linearization and Parsing
A major challenge in projectional editors is the linear editing
of tree structures that are governed by priority and associativ-
ity rules (e.g., expressions) as well as modifying such trees

in locations that do not lead to simple exchanges of single
nodes (e.g., inserting or deleting parentheses in expressions).
Our solution to this problem uses on-demand linearization of
the respective (sub-)tree, plus subsequent reassembly through
parsing [1, 14] that respects priority and associativity (see
Fig. 5). This functionality is part of the rule cell.
Our parser is a non-directional depth-first-search-based parser
(known as Unger’s parsing method [25]). We chose this tech-
nique for three reasons. First, it is a simple algorithm with
backtracking support due to its depth-first nature. Second, we
must support extensibility of grammar rules, to enable lan-
guage extensions without worrying about the parser. A parser
that relies on a precomputed parsing table does not easily
allow such extensibility. A depth-first search based parser,
however, allows adding new grammar rules on-demand when
a language extension is activated (as long as there is a way
of dealing with ambiguity). Finally, the parser knows in ad-
vance the whole input because the linearization creates the
full list of tokens from a subtree. This allows the use of a
non-directional parser with essentially unlimited lookahead.
Our optimizations (discussed in Sec. 5.2) rely heavily on
accessing random elements of the input.

We have implemented our own parser because we do not
parse text, so the mainstream parser generators are of no
use. Our parser also exploits specifics of our tool (explained

Figure 5. A parsing cycle comprises the user changing the
tree (1), which is then linearized (2), reparsed according to
structure, priority and associativity (3) and then projected
back in the editor (4).

int8 +

10*

i

⎲⎳

type

left

rightleft

right

expr

X

init

20

Node whose editor
has no rule definition
Node whose editor
has rule definition

User edit

Set of nodes that
will be linearized

Traversal along
ancestors

int8 x = 20 * i + 10⎲⎳x:GVD

Figure 6. Linearization approach: after a change (insert,
delete) of a particular node (20 in the example), the linearizer
traverses the tree up until the last node whose editor contains
a rule; in our example, this is the + expression. Linearization
then includes all descendants of this node whose editors
include rules. Non-rule-editor nodes, such as ∑, are included
in the linearized version as one token.

below), and no out-of-the-box parser knows about – and
hence, exploits – these specifics.

5.1 Differences to Typical Parsers
Our use of parsing is very different from parsing text in a
classical editor. We discuss the differences here.

As shown in Fig. 5, the linearized list of tree nodes
is a temporary artifact: it is created from an existing tree
through linearization. This means that we already start with
tokens. There is no need to create tokens from a sequence of
characters (except in the splittable cell discussed above). We
distinguish three kinds of tokens:

Child token: represents a node in the AST. It may have
substructure which is parsed recursively.

Constant token: either represents a string literal (such as a
keyword or operator) or a primitive-type child of an AST
node; primitive-type children internally store their values
as strings.

Reference token: contains a pointer to an AST node that
may not be part of the parsed subtree. Because it is a
pointer, no recursive parsing happens.

Linearization proceeds along the AST structure, governed by
the rule cells, and stops at nodes whose editor does not use a
rule cell. Fig. 6 explains the details.

Note that parsing never creates new nodes (except for
brackets), it only restructures existing nodes; new nodes are
always created directly by a user’s editing gestures (which
is the distinguishing feature of projectional editors). The
linearized version is created from this tree. This has two
consequences. First, since a user’s edit actions cannot create
invalid trees (except regarding to priority and associativity),
the tree can always be reparsed. No error handling and error
recovery must be supported. Second, even for nodes that

are linearized into a string (such as operators), it is always
known from which node they were created. This information
is useful to resolve ambiguities. We explain this in detail
below.

5.2 Parsing Algorithm
Fig. 7 shows the parsing algorithm in pseudocode. The
reparse function represents the core of the cycle shown
in Fig. 5 and is triggered after every user-initiated change of
the AST (through code generated from the grammar cells). It
linearizes the tree and then reparses it. We now explain the
parse function in more detail, based on an example: the a +
b * c expression.

The arguments of parse represent the current set of
tokens that must be parsed, as well as the expected result
concept. When we initially reparse a + b * c, the list of
tokens would be a, +, b, *, c and the expected concept
is Expression. Parsing is recursive; the parse function calls
itself in line 26 (with different arguments). This shows the
depth-first nature of the parser algorithm.

Collecting Candidate Rules In line 5 we collect all rules
that are applicable to the expected concept, Expression in
our case. Only those can be relevant for parsing an instance of
concept. To collect these rules, we enumerate all direct and
indirect subconcepts of Expression that have a rule-based
editor (several hundreds in mbeddr C and all of its exten-
sions); among them PlusExpression, MultiExpression
and VarRefExpression.

Priority In line 6 we sort them by priority. Recall that ex-
pressions with lower priority will end up further up in the tree,
so in terms of the parser, they have to be recognized first. Line
6 thus sorts the rules by ascending priority. In the example,
PlusExpression will come before MultiExpression in
the list of sorted rules.

We then iterate over all the rules in line 8 and try to match
them against the list of tokens. Whenever we find a match,
we immediately create and return the subtree.

Splitting Line 9 splits the tokens (argument of parse)
into SubRangeTuples (see Fig. 8 for the nomenclature).
One SubRangeTuple consists of as many SubRanges as
the number of elements in a rule because each element
of a rule must be matched with a SubRange of tokens
while searching for a match. The algorithm tries all pos-
sible SubRangeTuples. Consider the PlusExpression’s
rule, %left% “+” %right%: it has three elements, so we
split the list of tokens into SubRangeTuples with three el-
ements each: [a,+,b*c],[a,+b,*c],[a,+b*,c],[a+,b,*c],
[a+,b*,c],[a+b,*,c]. As the number of possibilities grows
quickly,1 we apply optimizations to filter out possibilities that
would not lead to a valid parse tree.

1 In case of n tokens and t rule elements, the number of possible splits is(n−1
t−1

)
. This number grows quickly; it is the root cause of the performance

behavior shown in Fig. 10.

1 function pnode reparse(Node node, Concept concept)
2 return parse(linearize(node), concept)
3

4 function pnode parse(list<Tok> toks, Concept concept)
5 list<Rule> rules = get rules for subconcepts of concept
6 rules = sort rules by priority
7

8 foreach rule in rules
9 set<SubRangeTuple> allSubRangeTups = split(toks, rule)

10 allSubRangeTups = filter allSubRangeTups by constants
11 allSubRangeTups = filter allSubRangeTups by ambiguity
12

13 if rule is left-associative
14 allSubRangeTups = sort long to left allSubRangeTups
15 else
16 allSubRangeTups = sort long to right allSubRangeTups
17

18 label check:
19 foreach subRangeTuple in allSubRangeTups
20 root = new pnode(toks, rule.getSymbols())
21 foreach subRg, e in subRangeTuple, rule.elements
22 if e is child
23 if subRg.size == 1 && subRg.first is child
24 child = new pnode(subRange, e)
25 else
26 child = parse(subRange, e.concept)
27 if child != null
28 root.addChild(child)
29 else
30 continue check
31 else if (e is constant)
32 if not(subRg.size == 1 &&
33 subRg.first is constant &&
34 subRg.first.value == e.symbol)
35 continue check
36 else if (e is reference)
37 if not(subRg.size == 1 &&
38 subRg.first is ref &&
39 isSubConcept(subRg.first.concept, e.concept))
40 continue check
41 return new pnode(toks, rule.elements)
42 return null // parsing failed at this point

Figure 7. The parsing algorithm in pseudocode.

Line 10 rejects possibilities that are incompatible with the
constant elements in the current rule. We start with this filter
because it only requires string matching, which is cheap, and
because in typical cases it leads to a significant reduction of
possibilities. Of the six possibilities for PlusExpression
we can immediately filter out all but one by observing
that a constant rule element can only be matched with a
SubRange of length 1 where the single token has the same
value as the rule element (the + in this case). For example,
the possibility [a,+b,*c] can never match, because at the

Figure 8. The nomenclature used in the text. Rules are part
of editor definitions and specify the syntax of language
concepts. They consist of RuleElements (children, constants
and references). The linearized tree is split into a set of
SubRangeTuples. A SubRangeTuple consists of a list of
SubRanges, each grouping Tokens.

position of the constant + element in the rule we find +b in
the SubRangeTuple. Even though the possibility [a+b,*,c]
has a SubRange of length 1 at the position of +, it is also
rejected because the values are incompatible (+ vs. *). This
leaves [a,+,b*c] as the only possibility.

Ambiguity Line 11 deals with ambiguity by relying on
the fact that the tokens are created from valid trees. Con-
sider a + b: all tokens know that they originate from a
PlusExpression. If another rule is available (for a differ-
ent expression) that consumes the same tokens and has the
same priority and associativity, parsing would be ambiguous
(both reach line 11). However, the user has already made the
disambiguation when he entered PlusExpression. Since
the tokens have a reference to their originating concept, we
can filter out the other alternatives due to mismatch with the
tokens’ context concepts. It is tempting to do ambiguity fil-
tering before the loop in line 8 to avoid splitting altogether
and improve performance. However, syntactically ambiguous
expressions could be used as part of a subtree that is parsed
in one go, thus we can only filter out incompatible splits
specifically for a particular rule.

Associativity Lines 13-16 sort the SubRangeTuples accord-
ing to associativity. For a left-associative rule we prefer the
possibilities with the longest leftmost SubRange, because
these result in a subtree which resembles expressions that
bind to the left. For right associativity, we sort by length of
rightmost SubRange in descending order. In our example, we
are already down to one possibility thus this sorting has no ef-
fect. However, in case of a+b+c as the original expression, the
possibility [a+b,+,c] would be preferred over [a,+,b+c],
thus respecting plus’ left associativity.

Matching Line 19 iterates over all remaining SubRange-
Tuples, matching them against the current candidate rule.
Line 21 is a parallel loop over the SubRanges and rule ele-
ments, matching each rule elements against the token types
introduced earlier. There are three cases:

child If the rule element is a child token (line 22) we branch
further: for a SubRange with a single child token (e.g., a),
we have found a match and we create a new parse node.
Otherwise, if the SubRange has more than one element
(e.g., a*b) it must be parsed and we call parse recursively.
If either alternative creates a new node, we add it to
the previously created root node. We have successfully
constructed a (sub-)tree.

constant If the rule element is a constant (e.g., +) and the
SubRange contains a single constant token with the same
textual value, we continue matching SubRanges against
rule elements. Otherwise, the current rule will not match,
and we try the next possibility by jumping to the check
label in line 35.

reference A reference is handled similarly to a constant, but
instead of comparing the textual symbols, we enforce that

the concept of the pointed-to node is a subconcept of the
expected one.

We have now reached line 41. At this point, we have matched
a rule against a SubRangeTuple and we construct the corre-
sponding parse result. We return and unwind the recursive
calls; if we have parsed a subtree, we end up returning to
line 26, where we add the just constructed subtree to the
containing root.

Finally, a null value is returned in line 42 if none of the
rules matched the input; no subtree replacement happens in
this case. This happens, for example, if the input contains
unbalanced parentheses. After the user fixes the problem by
balancing the parentheses, a new parsing attempt is started
that will then create a tree that respects the structure expressed
by the parentheses.

5.3 Discussion
We introduce parsing into the projectional MPS editor be-
cause it provides better support for dealing with operator
priority, associativity, and cross-tree editing while improving
end-user experience and reducing the effort for language im-
plementation. At the same time, we do not want to risk the
two main benefits of projectional editing, non-textual nota-
tions and language composition. In this subsection we revisit
these concerns.

Priority Line 6 sorts the rules to ensure that higher priority
operators are matched “further into” the parsing process,
making them end up lower in the tree, encoding the higher
priority. The language concepts underlying the tokens specify
a numerical value for the priority.2

Associativity Lines 13-16 deal with associativity by ensur-
ing that for left-associative rules the SubRangeTuple with
the longest leftmost SubRange is tried first; each language
concept indicates its associativity.

Ambiguity The support for language composition and ex-
tensibility relies on the fact that there are never any problems
with ambiguity. The reason for this is that, because program
nodes are entered one at a time, “constructs with the same
syntax” that would lead to ambiguities in parsers are disam-
biguated by the user at the time of entry. Despite our use
of parsing, the tree is still modified by the user using the
usual projectional in-place transformations; thus, there is no
problem with ambiguity during entry. However, there might
be a problem during the reconstruction of the tree based on
the token list. But as previously explained, each token knows
its originating language concept, so we can filter SubRange-
Tuples that are incompatible with a given grammar rule.

This works well in practice, but it comes with one limita-
tion. Consider two different multiplication concepts M1 and
M2 that have the same grammar rule (same symbol, same

2 A utility is available that reports the priorities of all language concepts used
in a given set of languages.
concepts for left and right children) and a plus expression

P which expects an M2 as the left child. Suppose the user
created the expression a*b as an instance of M1 and wants to
extend the expression to a*b+c. In the current implementa-
tion this is not possible because the context of the M1 is not
compatible with M2 (recall that P expects an M2). Without
context-based filtering the parser could find a valid subtree
that uses M2 and P. In our implementation, the user must first
“disambiguate” by changing M1 to M2 (easily achieved due to
substitute cells) and then it is possible to type in the + symbol.
We accept this limitation of context-based filtering because
otherwise parsing may inadvertently change concepts, which
we think is unacceptable. To illustrate this, consider a situa-
tion where the user composes languages that define concepts
that can consume the same tokens but their priorities are
different. If the user creates instances of the low-priority con-
cepts and starts editing them, a parser without context restric-
tion would start updating the user’s program with instances
of the high-priority concepts.

Non-Textual Notations The use of the parser does not pre-
vent the use of non-textual notations. Recall that linearization
only happens for nodes that use rule cells; the others are kept
as single tokens in the linearized version of the tree. For exam-
ple, in the case of a sum symbol in an expression 20∗∑ i+10,
the whole sum (including limits and the body) is represented
as a single token (cf. Fig. 6); the list of tokens would be [20,
*, <sum>, +, 10]. No priority/associativity/parenthesis-
based restructuring is possible into and out of such nodes; a
rule-less concept acts as a barrier during linearization. How-
ever, this is also not expected; such expressions behave as if
they were parenthesized: 20∗ (∑(i))+10.

Parentheses Parentheses are an example of cross-tree
editing because usually, parentheses are inserted around
nodes that are not children of the same parent. Consider
changing the expression 4 + 3 * 7 to (4 + 3) * 7. In
the original tree, the 3 is a child of the * and the 4 is a child of
the +. Thus parentheses cannot be inserted by replacing one
node with a parenthesis expression that contains the original
node; cross-tree editing is required.

Parentheses are typically encoded with a ParensEx-
pression that projects the opening and closing symbols,
and the parenthesized child expression between them. In
grammar cells, once the tokens have been linearized, the
parser builds a ParensExpression from the opening and
closing parenthesis symbols.

However, the intermediate stage, where a user has only
entered only the opening or closing symbol, cannot be repre-
sented as a valid tree, and thus will not be successfully parsed.
We solve this problem by storing unbalanced symbols in an
annotation (nodes that are in the AST without the underly-
ing concepts knowing of them). The side transformations
that allow entering the symbols are generated from bracket
cells (see Fig. 4). Only when two of them are entered in a
balanced way will the parser remove the annotations and

Figure 10. Reparsing time vs. expression size. Plot is
cropped for space reasons; time for size 50 is 1067 ms. The
blue horizontal line is at 40 ms.

Figure 9. A histogram of the expression sizes. Over 97%
of expressions have fewer than 10 sub-expressions. The
maximum size is 50, but we cut the diagram because the
y-value is so low that it cannot be recognized.

create a ParensExpression. Deleting a symbol breaks up a
ParensExpression, attaches annotations on corresponding
nodes, and restructures the tree as needed.

5.4 Performance
The performance of the parser is important because, in con-
trast to parser-based systems, every tree change (i.e., in the
worst case, every key press) requires execution of the parser
(see Fig. 5). To find out whether the performance is accept-
able, we have performed three steps. First, we have investi-
gated the size of expressions in realistic code bases. Second,
we have measured the parser performance for the expression
sizes found. Third, we have experimented empirically with
the editor, subjectively judging its responsiveness.

The Size of Expressions We investigated three differ-
ent mbeddr C systems regarding the size of expressions:
Smart Meter [31], the Toyota ITC static analysis benchmark
(https://github.com/regehr/itc-benchmarks), and Amazon s2n
(https://github.com/awslabs/s2n). Table 1 shows the results.
We counted all expressions that had at least one child (a
standalone variable reference was not counted), and we ig-
nored expressions that contain multiple separately parsed
expressions (such as array initializers or a fraction bar); the
constituent expressions were counted as separate expressions,
though. The biggest expression we found contained 50 subex-

pressions (a whole lot of flags were or’ed into a byte array),
the overall average is around 4. Fig. 9 shows the distribution
of expression sizes.

Measurement We measured parser performance automati-
cally using the following algorithm:

1. Start with an expression of size one (such as 10).

2. Prepend one of +, -, *, / and another number (result-
ing, for example, in 20 * 10).

3. Parse 10 times and calculate the average parse time.

4. Repeat from 2 until the size of the expression is 50.

The parse times are shown in Fig. 10: the relation of parse
time vs. expression size is exponential. While this is generally
bad news, it also shows that up to a size of 35, the parse time
is below 40 ms (measured on a developer laptop, a 2.7 GHz
Macbook Pro running OSX 10.11 and Java 1.8). The resulting
delay during typing is not noticeable. This has also been
empirically confirmed by interactively editing expressions of
this size.

In addition to the size of the input, the parse time also
depends on the number of language concepts (and hence,
to-be-matched rules, see the loop in line 8 of Fig. 7). The
measurements above have been performed in a program that
includes all of mbeddr’s C extensions; the numbers are the
worst case.

Evaluation During our investigation of expression sizes
we have only found 4 expressions with a size of more than
35 (including the one of size 50), which is 0.02 % of all
expressions. Since these can always be refactored into smaller
subexpressions (using local or global variables), and since
expressions of this size are generally a bad idea regarding
maintainability, we decided to ignore these expressions. We
conclude that the performance of the parser is satisfactory
and leave the investigation of further optimizations as future
work.

6. Experience and Validation
The goal of grammar cells is to make it easier to build high-
quality editors for textual notations where users can type code
in a way that resembles text editors as much as possible. The
necessary low-level code is generated in a consistent way in
order to avoid surprising the user. Many of the problems men-
tioned before [4] (such as the invalid trailing insertions and
over deletions mentioned in the introduction) can be traced
back to inconsistencies in the manually implemented actions.

Expr. Count Avg. Size Std. Dev. Max

Smart Meter 10,000 3.82 3.21 40
Toyota ITC 5,399 3.36 2.22 20
Amazon s2n 3,033 4.09 3.06 50

Table 1. Expression sizes for three mbeddr C projects.

https://github.com/regehr/itc-benchmarks
https://github.com/awslabs/s2n

At the same time, the benefits of projectional editing – using
non-textual notations mixed with text, as well as language
modularity – must not be compromised. To validate the ap-
proach, we have not conducted another study or experiment
like the ones mentioned before [4, 30] because grammar
cells specifically fix issues found in this study. However, we
gathered significant experience from real-world projects, as
summarized below:

Project Use All of mbeddr’s 34 C extensions and around 30
additional languages now use grammar cells. No problems
with ambiguities or mixed notations have been found so far
by us or our users. In addition, the feedback we received
from our users regarding the consistency of the editors has
been positive. We have also used grammar cells in several
other language development projects. In particular, we have
taught them to new MPS language developers working for
our customers. Using grammar cells, even these relatively
novice users have been able to build high-quality editors for
MPS. Several of them called grammar cells a “game changer”
and expressed that “they wouldn’t use MPS without grammar
cells.”

Speed of Development As part of a new research project
we have developed a new expression language from scratch.
Relying on grammar cells, and in particular, the integrated
parser, we have built the complete language and editor in
an afternoon, including dealing with priority, associativity,
parentheses support, and splittable literals. While expression
languages are not built very often (they are a prime candidate
for reuse and extension), this is an impressive proof of the
effectiveness of grammar cells: traditionally, building good
expression languages has been a matter of several days and
involved hundreds of lines of algorithmic, barely reusable
code.

Limitations Grammar cell-based editors are still not exactly
like text editors. Differences include: flags can only be added
or removed completely (one cannot remove the “rn” of
extern); typing exported when there are several different
language concept whose editor can start with exported
pops up the code completion to select the intended concept;
and while sequences of flags can be entered in every order,
they will always be projected in the order specified by the
projection rules. However our experience indicates that these
remaining differences are not perceived as problems.

7. Tool Integration
We discuss the integration of grammar cells into MPS and
into other language workbenches.

MPS MPS is bootstrapped, so the languages used by MPS
for language definition are MPS languages themselves. This
allows extending those languages with MPS’ means for
language extension. The grammar cells are an extension of
MPS’ editor definition language. Similar to the extensions for

mathematical notations, tables or diagrams [28], the grammar
cells language defines new cell types that can be used in
MPS editor definitions. From these, we generate regular MPS
editor cells plus the necessary low-level actions.

Other Tools Grammar cells can also be added to other
projectional editors, such as those discussed in [12] or [8].
Editors that support the low-level transformations (Sec. 4.1),
can directly implement grammar cells, assuming that the syn-
tax definition language is extensible to include the necessary
markup. If these low-level actions do not exist, our discussion
in Sec. 4.1 should provide enough detail to implement them.
For this to work, the only precondition is the editor’s ability
to hook into keyboard events (such as pressing + on the right
hand side of an expression). However, since a projectional
editor relies on these keyboard events to modify the tree in
the first place, this requirement is easily met.

8. Related Work
We discuss related work regarding language workbenches,
the usability of projectional editors, the role of parsing in
projectional editors and language compositions with parser-
based IDEs.

Language Workbenches All contemporary projectional
editors are part of language workbenches, i.e., tools that allow
users to define, compose and use their own languages [13].
Four out of the ten tools that took part in the 2013 Language
Workbench Challenge are projectional editors [12]. At the
time of the challenge, both Onion and Más [5] were in very
early stages of development and did not provide support for
grammar cell-style specification of usable editors. The tools
have since been discontinued. The Whole Workbench [24]
emphasizes structured notations (trees, tables) and does not
emphasize usable textual editors.

Projection and Usability An early example of a projec-
tional editor is the Incremental Programming Environment
(IPE) [16]. It supports the definition of several notations for a
language as well as partial projections, where parts of the AST
are not shown. However, IPE did not address editor usability;
to enter 2+3, users first have to enter the + and then fill in the
two arguments. Another early example is GANDALF [17];
the report in [20] states that the authors experienced similar
usability problems as IPE: “Program editing will be consider-
ably slower than normal keyboard entry, although actual time
spent programming non-trivial programs should be reduced
due to reduced error rates.”

The Intentional Programming project [9, 22] has gained
widespread visibility and has popularized projectional edit-
ing; the Intentional Domain Workbench (IDW) is the con-
temporary implementation of the approach. IDW supports
diverse notations [7, 23]. Since it is a commercial system,
we cannot evaluate its usability, and whether facilities simi-
lar to grammar cells are available. What is known from the

above-mentioned publications suggests that this is not the
case.

Clark describes a projectional editor [8] relying on tree
transformations. No emphasis has been put on usability.
However, since tree change events are available, grammar
cells could definitely be integrated.

Scratch [15] is an environment for learning programming.
It uses a projectional editor, but does not focus on textual
editing; it relies mostly on nested blocks/boxes. So does
GP [18]. Textual notations, and thus grammar cells, are
not relevant. Prune [2] is a projectional editor developed
at Facebook. The goal is explicitly to not feel like a text
editor; the hypothesis is that tree-oriented editing operations
are more efficient than those known from text editors. While
this is an interesting hypothesis, our considerable experience
with using projectional editing in real projects has convinced
us that this approach is not feasible; hence the work described
in this paper.

Projection and Parsing The Synthesizer Generator [21]
is a projectional editor which, at the fine-grained expression
level, uses textual input and (regular, textual) parsing. While
this improves usability, it destroys many of the advantages
of projectional editing in the first place, because language
composition and the use of non-textual notations at the
expression level is limited.

Eco [10] relies on language boxes, explicitly delineated
boundaries between different languages used in a single pro-
gram (e.g., the user could define a box with Ctrl-Space).
Each language box may use parsing or projection. This way,
textual notations can be edited naturally, solving the usability
issues associated with editing text in a projectional editor.
However, it is not clear whether fine-grained mixing between
different boxes will work in terms of usability. For example,
consider a projectional editor for a mathematical notation em-
bedded (in its own box) inside an otherwise textual editor for
C code. As part of the mathematical expression, users would
like to use (textual) references to C variables. Providing an
integrated user experience without the need to constantly
switch boxes manually, as well as integrated symbol tables,
may not be a trivial problem. More generally, Eco has been
developed with a background in parsing, trying to get some
of the advantages of a projectional editor through language
boxes. Our work starts out from projectional editing, trying
to get to a more parser-like editor experience. A systematic
and in-depth comparison of the trade-offs between the two
approaches would be an interesting exercise.

To the best of our knowledge the use of Unger’s parsing
method in a projectional workbench is unique; we did not
find other related solutions.

Language Compositions with Parsers Parser-based sys-
tems mitigate ambiguities by some form of disambiguation
logic. This is fundamentally different from projectional edi-

tors which rely on the user’s explicit choice for disambigua-
tion. Our embedded parser relies on the choice of the user
when reparsing a program fragment; no additional disam-
biguation logic is needed.

ANTLR [19], a parser generator for LL(k) grammars, al-
lows a grammar to extend one other grammar; composition
of several grammars is not supported. Resulting ambiguities
must be handled by (invasively) refactoring the grammar. In
some cases, syntactic predicates are sufficient. Blender [3]
relies on a GLR parser and supports full context-free lan-
guages. It supports modular language composition and em-
bedding. Ambiguities are handled through the underlying
lexer’s longest matching analysis and on the ordering of pro-
duction rules. However, this becomes impractical when mul-
tiple separately implemented grammars are composed.

The Syntax Definition Formalism (SDF) [26] relies on a
scannerless GLR parser and supports full context-free lan-
guages. SDF provides declarative constructs to deal with am-
biguities: specifying priority and associativity of production
rules, preferences, rejections, and restrictions. SDF organizes
productions into modules, supporting modular grammar com-
position. If disambiguation logic is required, it can be defined
in a separate module, no invasive change to composed mod-
ules is required.

All of the previous approaches become impractical if
multiple languages are composed, because disambiguation
may be needed between all of them. This is reinforced by
our observation that parser-based techniques have not been
used to build a system of dozens of composable language
extensions like mbeddr [29].

9. Conclusion
In this paper we have described grammar cells, a formal-
ism for defining usable and consistent editor behaviors for
textual notations in projectional editors, based on findings
from editor usability studies performed in previous work. In
particular, grammar cells generate the low-level behavioral
code that lets users comfortably enter, change and delete pro-
gram nodes. Some cells rely on parsing to handle priority,
associativity and cross-tree editing for expressions. We have
successfully implemented and evaluated grammar cells based
on MPS; however, the approach could also be used with other
projectional editors.

Using grammar cells, projectional editors better meet
users’ expectations of behaving like text editors for textual
notations. The implementation effort for such usable editors
is much lower than using traditional approaches. At the
same time, the core benefits of projectional editors, language
modularity and the use of non-textual notations, are not
compromised.

Ultimately, this will help with the adoption of projectional
editors in practice, bringing a wide variety of languages to
diverse application domains.

References
[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation,

and Compiling. Prentice-Hall, Inc., 1972.

[2] K. Beck and T. Hirai. Prune: A Code Editor that is Not a Text
Editor. https://www.facebook.com/notes/kent-beck/prune-
a-code-editor-that-is-not-a-text-editor/1012061842160013,
2015.

[3] A. Begel and S. Graham. Language Analysis and Tools for
Input Stream Ambiguities. In Fourth Workshop on Language
Descriptions, Tools and Applications (LDTA), 2004.

[4] T. Berger, M. Voelter, H. P. Jensen, T. Dangprasert, and
J. Siegmund. Efficiency of Projectional Editing: A Controlled
Experiment. In 24th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE), 2016.

[5] M. Boersma. Más Workbench. http://www.mas-wb.com, 2013.

[6] L. Cardelli. Structural Subtyping and the Notion of Power Type.
In 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 1988.

[7] M. Christerson and H. Kolk. Domain Ex-
pert DSLs, 2009. Talk at QCon London 2009.
http://www.infoq.com/presentations/DSL-Magnus-
Christerson-Henk-Kolk.

[8] T. Clark. A General Architecture for Heterogeneous Lan-
guage Engineering and Projectional Editor Support. ArXiv
1506.03398, 2015.

[9] K. Czarnecki and E. Ulrich. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[10] L. Diekmann and L. Tratt. Eco: A Language Composition
Editor. In 7th International Conference on Software Language
Engineering (SLE). 2014.

[11] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language Compo-
sition Untangled. In Twelfth Workshop on Language Descrip-
tions, Tools, and Applications (LDTA), 2012.

[12] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly,
A. Loh, et al. The State of the Art in Language Workbenches.
In 6th International Conference on Software Language Engi-
neering (SLE). 2013.

[13] M. Fowler. Language Workbenches: The Killer-App for
Domain Specific Languages?, 2005.

[14] D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical
Guide. Ellis Horwood, 1990.

[15] C. M. Lewis. How Programming Environment Shapes Percep-
tion, Learning and Goals: Logo vs. Scratch. In 41st ACM Tech-
nical Symposium on Computer Science Education (SIGCSE),
2010.

[16] R. Medina-Mora and P. H. Feiler. An Incremental Program-
ming Environment. IEEE Trans. Software Eng., 7(5), 1981.

[17] D. Notkin. The GANDALF Project. Journal of Systems and
Software, 5(2):91–105, May 1985.

[18] Y. Ohshima, J. Mönig, and J. Maloney. A Module System for
a General-Purpose Blocks Language. In Blocks and Beyond
Workshop (BLOCKS AND BEYOND), 2015.

[19] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing:
The Power of Dynamic Analysis. In ACM International Con-
ference on Object Oriented Programming Systems Languages
& Applications (OOPSLA), 2014.

[20] S. W. Porter. Design of a Syntax Directed Editor for PSDL
(Prototype Systems Design Language). Master’s thesis, Naval
Postgraduate School, Monterey, CA, USA, 1988.

[21] T. W. Reps and T. Teitelbaum. The Synthesizer Generator.
In ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments (SDE),
1984.

[22] C. Simonyi. The Death of Computer Languages, the Birth
of Intentional Programming. In NATO Science Committee
Conference, 1995.

[23] C. Simonyi, M. Christerson, and S. Clifford. Intentional Soft-
ware. In 21st Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA), 2006.

[24] R. Solmi. Whole Platform. http://whole.sourceforge.net, 2013.

[25] S. H. Unger. A global parser for context-free phrase structure
grammars. Commun. ACM, 11(4):240–247, Apr. 1968.

[26] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

[27] M. Voelter. Language and IDE Modularization and Composi-
tion with MPS. In 5th Summer School on Grand Timely Topics
in Software Engineering (GTTSE), LNCS. Springer, 2011.

[28] M. Voelter and S. Lisson. Supporting Diverse Notations in
MPS’ Projectional Editor. In 2nd International Workshop on
The Globalization of Modeling Languages (GEMOC), 2014.

[29] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: In-
stantiating a Language Workbench in the Embedded Software
Domain. Automated Software Engineering, 20(3):339–390,
2013.

[30] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards User-
Friendly Projectional Editors. In 7th International Conference
on Software Language Engineering (SLE), 2014.

[31] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using
C Language Extensions for Developing Embedded Software:
A Case Study. In ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015.

[32] M. Voelter, J. Warmer, and B. Kolb. Projecting a Modular
Future. IEEE Software, 32(5), 2015.

	Introduction
	Existing Editor Models by Example
	The Grammar Cells Language
	Implementation of Grammar Cells
	Low-Level Language
	Translation of Grammar Cells

	Linearization and Parsing
	Differences to Typical Parsers
	Parsing Algorithm
	Discussion
	Performance

	Experience and Validation
	Tool Integration
	Related Work
	Conclusion

