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ABSTRACT
In language-oriented programming and modeling, software de-
velopers are largely concerned with the definition of domain-
specific languages (DSLs) and their composition. While
various implementation techniques and frameworks exist
for defining DSLs, language composition has not obtained
enough attention and is not well-enough understood. In
particular, there is a lack of precise terminology for describ-
ing observations about language composition in theory and
in existing language-development systems. To clarify the
issue, we specify five forms of language composition: lan-
guage extension, language restriction, language unification,
self-extension, and extension composition. We illustrate this
classification by various examples and apply it to discuss
the performance of different language-development systems
with respect to language composition. We hope that the
terminology provided by our classification will enable more
precise communication on language composition.

Categories and Subject Descriptors
D.3.4 [Processors]: Translator writing systems and compiler
generators; D.2.11 [Software Architectures]: Domain-
specific architectures; D.2.13 [Reusable Software]

General Terms
Languages

Keywords
language composition, domain-specific language, language
extension, language unification, self-extension

1. INTRODUCTION
Domain-specific languages (DSLs) are a prominent can-

didate for bridging the gap between domain concepts and
software developers. DSLs enable software developers to
think about the components and relations of a domain rather
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than about how these components and relations might be
represented. DSLs thus provide abstraction over the concrete
realization of domain concepts.

Not least due to the success of DSLs in practice, many
language-development systems have been investigated [18].
To implement a DSL, a language developer can, for example,
write a parser and interpreter, apply an attribute grammar
system [8, 30], use a language workbench [6, 17], write a
compiler plug-in for an extensible compiler [8, 19], or provide
a library for domain primitives using regular functions [15],
macros [28, 27], or sugar libraries [11]. Advances in DSL
implementation techniques have led to a proliferation of DSLs
in today’s software engineering research and practice, and
DSLs for many problem domains are available today.

However, realistic software projects are not just concerned
with a single problem domain but also with many secondary
domains such as data serialization and querying, communi-
cation, security, data visualization, graphical user interfaces,
concurrency, or logging. Following the idea of language-
oriented software development [5, 35], we want to provide
a separate DSL for each domain that occurs in a project
and to use all of these DSLs together. Support for this
large and changing amount of domains can only be efficiently
provided if DSLs can be implemented independently and
then composed together. Consequently, realistic software
projects in a language-oriented context require language com-
position. Most recent work on language-development systems
addresses language composition in one way or another.

At conceptual level, however, language composition is
treated rather vaguely in the literature. In particular, there
is no account the authors are aware of that specifies what
language composition exactly means. This lack of a clear
conceptual framework hinders our ability to reason about
the composability of languages or to compare the support for
language composition in different implementation techniques.

To this end, our goal is to provide precise terminology for
language composition that enables effective communication
on language composition and can serve as a basis for compar-
ing existing and future language-development systems. In
summary, we make the following contributions.

• We present a classification of language composition that
distinguishes five cases: language extension, language
restriction, language unification, self-extension, and
extension composition. We illustrate this classification
through various examples.

• We demonstrate that our classification provides precise
terminology to explain language-composition support



in existing technology and therefore clarifies our under-
standing of these systems.

• We apply our terminology to show that many language-
development systems employ multiple forms of language
composition. Without precise terminology, these differ-
ent applications of language composition can easily be
confused.

• Our classification reveals unexpected room for improve-
ment for language-composition support in existing
language-development systems. In fact, only one of the
systems we investigated supports the composition of
independent languages.

2. LANGUAGE COMPOSITION
The term “language composition” can refer to mechanisms

and usage scenarios that significantly differ in terms of flex-
ibility and reuse opportunities. In fact, the composability
of languages is not a property of languages themselves: any
two languages can be composed by stipulating a new syntax
and semantics for the composed language. Rather, language
composability is a property of language definitions, that
is, whether two definitions work together without changing
them.

To clarify the situation, we develop a taxonomy of lan-
guage composition based on the idea of unchanged reuse,
that is, whether a language definition can be reused without
modifying it. Existing language-development systems differ
significantly in their support for unchanged reuse. For ex-
ample, some systems support the unchanged reuse of a base
language through extension (e.g., macro systems), whereas
other systems even allow to compose independently developed
languages unchanged (e.g., JastAddJ). To avoid ambiguous
statements, authors need to be aware of the equivocality of
language composition and we recommend to consciously use
language composition only as an umbrella term for our more
precise terminology.

2.1 Language extension (�)
When the first stable version of Java was released, it lacked

many features that we are used to today. For example, before
version 1.5, Java had no support for the foreach loop or
generics. Java was only extended with these features later on.
Similarly, earlier versions of Haskell did not include support
for let expressions (introduced in Haskell 1.1), monads, or
do notation (both introduced in Haskell 1.3) [16]. By now,
these later-added features have become characteristic for
Java and Haskell, respectively. More generally, languages
evolve over time and subsequent introduction of language
features is usual.

This brings us to the first form of language composition:
language extension. A language designer composes a base
language with a language extension. A language extension
is itself a language fragment, which typically makes little
sense when regarded independent of the base language. This
dependency of the language extension on the base language is
the main characteristic of this form of language composition.

Often, implementing a language extension involves chang-
ing the implementation of the base language. Examples
include the integration of generics into Java and do notation
into Haskell. However, the language-engineering commu-
nity has brought forward language-development systems that

particularly support language extensibility. These systems
share a common property, which we capture in the following
definition.

Definition 1. A language-development system supports
language extension of a base language if the implementation
of the base language can be reused unchanged to implement
a language extension.

Importantly, this definition only demands the reuse of
the base language’s implementation but does not regulate
how language extensions are implemented. In particular,
this definition does not prescribe whether multiple language
extensions can be used jointly. In addition to describing
terminology, we also introduce an algebraic notation for
language composition. We will later use this notation to
explain how different forms of language composition integrate.
We denote the result of composing a base language B with
a language extension E as B � E. The asymmetry of the
language-composition operator � reflects the dependency of
the extension on the base language.

Language restriction. Especially in education, it some-
times makes sense to restrict an existing programming lan-
guage. For example, to teach students functional program-
ming in Haskell, monads and type classes are rather hindering.
It might be more instructive to rigorously forbid the use these
constructs. We call this language restriction as opposed to
language extension.

Interestingly, language restriction does not require spe-
cial support by language-development systems. Instead, a
language restriction can be implemented as an extension of
the validation phase of the base language: The extension
rejects any program that uses restricted language constructs.
The same idea is used in pluggable type systems [2]. Since
language extension subsumes language restriction, we do not
treat language restriction specifically in the remainder of this
paper.

2.2 Language unification (])
Language extension and language restriction assume the

existence of one dominant (typically general-purpose) lan-
guage that can serve as the base of other languages. However,
sometimes it is more natural to compose languages on equal
terms. For example, consider the composition of HTML
and JavaScript. Both languages serve a purpose and can be
used independently: HTML for describing web pages and
JavaScript as a prototype-based programming language. If
anything, it would make sense to use the general-purpose
language JavaScript as a base language for HTML. However,
in the domain of dynamic web pages, the HTML-based view
is the central program artifact.

Accordingly, we want to compose languages in an unbiased
manner. Furthermore, the language composition should be
deep and bidirectional, that is, program fragments from either
language should be able to interact with program fragments
from the other language. For example, in the composition of
HTML and JavaScript as defined by the W3C [34], JavaScript
programs can manipulate and generate HTML documents
using the DOM tree or document.write(), and dynamic
JavaScript-based behavior can be attached to HTML ele-
ments using attributes like onMouseOver="showPopup()". In
summary, to compose HTML and JavaScript, we need to
add primitive support to JavaScript for generating HTML



document trees and to supplement the definition of HTML
elements to allow event attributes.

This illustrates the next form of language composition:
language unification. A language designer composes two
independent languages by unification. Like in mathematical
unification, language unification requires that parts of the
languages are equalized. For example, deep integration often
requires sharing of primitive data types such as numbers or
strings. Also, like in mathematical unification, the unified
language subsumes its two constituents.

Language unification is very difficult to achieve in prac-
tice and rarely supported by language development systems.
Often language unification requires the composition of lan-
guage implementations by hand. The reason for this seem-
ingly incompatibility of languages is the lack of a common
back-end (for example, compiled for different VMs or sepa-
rate interpreter engines). Unification is simpler if the same
language-development system implements both languages.
In particular, sometimes support for language extension suf-
fices to unify two languages, for example, regular expressions
and Java. More generally, though, we apply the following
definition.

Definition 2. A language-development system supports
language unification of two languages if the implementation
of both languages can be reused unchanged by adding glue
code only.

Notably, this definition permits the adaption of the unified
languages as long as their implementations remain unchanged.
Generally, we can assume that some program weaves the
two language implementations together. As usual in compo-
nent engineering and modularity discussions, we refer to the
program that weaves two languages as glue code.

We write L1 ]g L2 to denote the language that unifies L1

and L2 with glue code g. The symmetry of the language
operator ] reflects that unification composes languages on
equal terms. Due to glue code, though, ] is not necessarily
a symmetric relation, that is, L1 ]g L2 only equals L2 ]g L1

for different glue code g. Moreover, the unification of two
languages is typically not unique. For example, in HTML ]g

JavaScript, the glue code g determines the attribute name
onMouseOver, which might as well be called onPointerOver.

2.3 Self-extension (←[)
For many subdomains of a software project exist special-

purpose languages that provide functionality specific to the
domain. Examples of such DSLs include SQL for data query-
ing, XML for data serialization and regular expressions for
string analysis. Since these languages each only tackle a
small part of a software system, it makes sense to make their
functionality available in a general-purpose language that
can serve as a bridge between these DSLs.

Traditionally, this form of language composition is called
language embedding: A domain-specific language is embed-
ded into a host language by providing a host-language pro-
gram that encapsulates the domain-specific concepts and
functionality [15]. However, the term “language embedding”
is ambiguous because it only describes the result of integrat-
ing one language into another language. However, such inte-
gration can not only be achieved with pure-embedding-like
techniques but also using language extension in an extensible
compiler, for example, where the embedding is described as a
compiler plugin. Since the decisive difference to other forms

of language composition is how we integrate languages, our
terminology should reflect that. In particular, we aim to
exclude systems where the extensibility is external to the
host language.

We call this form of language composition self-extension.
To compose a host language with an embedded language, a
language implementer develops, in the host language itself,
a program which defines the embedded language. Often
the definition of the embedded language simply consists of a
host-language API for accessing domain-specific concepts and
functionality. More advanced languages also enable the self-
extension of the host language’s syntax, static analyses, and
IDE support. Because the implementation of an embedded
language is itself a regular program of the host language, the
host language extends itself.

There are various ways of self-extending a language, but
two extension styles are most popular: string embedding
and pure embedding. In string embedding, a program of the
embedded language is represented as a string of the host lan-
guage and the embedded language provides an API for evalu-
ating embedded programs. A good example of string embed-
ding is the integration of regular expressions into Java (similar
for many other host languages). A programmer writes a reg-
ular expression "a[b-z]*" as a string and passes it to the
library function Pattern.match as in Pattern.match("a[b-

z]*","atext"). Pattern.match parses and compiles the reg-
ular expression at runtime and matches it against the given
input text "aText". Another example for string embedding
is the integration of SQL into Java, where SQL queries are
represented as Java strings (see package java.sql). Gener-
ally, string-embedded programs do not compose well with
each other because string embedding reifies a lexical macro
system [10]. In particular, string embeddings are vulnerable
to injection attacks [3].

Alternatively, programs of the embedded language can also
be expressed as a sequence of API calls in the host language.
Paul Hudak coined the term pure embedding for this kind of
self-extension [15]. As an example, consider the embedding
of XML into Java using JDOM. A program of the embedded
language XML is simply a Java program that utilizes the
JDOM API:

Element book = new Element("book");

book.setAttribute("title", "Sweetness and Power");

Element author = new Element("author");

author.setAttribute("name", "Sidney W. Mintz");

book.addContent(author);

A purely embedded language does not provide its own syntax
but instead reuses the syntax of the host language. Therefore,
programs of a purely embedded language can be readily
mixed with code from the host language, for example, to
retrieve the author name from a database.

Clearly, the term self-extension can only apply to lan-
guages and not to language-development systems in general.
Accordingly, we define:

Definition 3. A language supports self-extension if the
language can be extended by programs of the language itself
while reusing the language’s implementation unchanged.

Self-extension has two essential advantages over regular
language extension. First, to run or compile a program of
a self-extended host language, the standard interpreter or



compiler of the host language is reused. In contrast, sys-
tems that support regular language extensions often require
compiler configurations that reflect the activated extensions,
which may differ for different source files. Second, since
self-extensions are implemented in the self-extensible lan-
guage itself, extensions can be used when writing further
self-extensions. In particular, this enables the integration of
meta-DSLs, that is, DSLs for implementing further DSLs [11].

We write H ←[ E to denote the self-extension of a host
language H with the embedded language E. As defined
above, the implementation of E has to be an instance of
H. The asymmetry of the language operator ← [ reflects this
dependency of the embedded language on the host language.

2.4 Extension composition
So far, we have identified three language-composition sce-

narios a language or language-development system may sup-
port: language extension, language unification, and self-
extension. However, these properties only describe to which
extent a system supports base-language composition with a
single extension or language. Our terminology so far does not
describe to which extent a system supports the composition
of extensions, that is, whether different extensions can work
together.

Let us first note that systems which support language uni-
fication also support unification of extensions: L ]g (E1 ]h

E2). On the other hand, for systems that only support
language extension, we need to distinguish three cases: no
support for extension composition, support for incremental
extension, and support for extension unification. In a system
that does not support any form of extension composition,
two extensions B � E1 and B � E2 cannot be used in
combination at all. In contrast, in a system that supports
incremental extension, an extended language B � E1 can
in turn be extended to (B � E1) � E2. Here, extension E2

may be specifically built to work on top of E1. Incremental
extension supports Steele’s idea of growing a language [25].
Finally, in a system that supports extension unification, two
independent extensions can be composed and used together
B � (E1 ]g E2) by using some glue code g. Extension
unification supports growing a language modularly.

Self-extension adheres to the same case distinction for ex-
tension composability (no extension composability, incremen-
tal extension or extension unification). In addition, though,
self-extensible languages support another interesting form of
extension composition, namely self-application. Since imple-
mentations of extensions are programs of the host language
itself, a host-language extension E1 can be used in the imple-
mentation of another extension E2, that is, H ← [ E2 where
E2 ∈ (H ←[ E1).

This discussion shows that language composition is not
only important for the base language but also for exten-
sions. Therefore, precise terminology is crucial to enable
clear statements about the language-composition support of
a system and to prevent confusion about whether a state-
ment addresses base-language composability or extension
composability. Furthermore, this discussion illustrates the
utility of an algebraic notation for describing and reasoning
about language composition.

3. LANGUAGE COMPONENTS
Support for language composition is often not uniform

for all components of a language definition because differ-

ent low-level techniques and high-level considerations apply
to different aspects of a language. Generally, a language
consists of syntax and semantics. Accordingly, most lan-
guage definitions stipulate the syntax and semantics of a
language separately. However, for machine-processed lan-
guages and programming languages in particular, this pic-
ture is not entirely correct. In fact, the definition of many
machine-processed languages consists of three artifacts: a
context-free syntax, a collection of non-context-free valida-
tion procedures (the static semantics), and a definition of
the language’s behavior (the dynamic semantics). While
the reason for separating context-free syntax and validation
is a technical one—generic context-sensitive parser frame-
works are inefficient—we cannot ignore the implications on
language design and language composition.

The relation between language-definition artifacts is de-
picted in Figure 1. First, a parser checks whether the input
source code adheres to the given context-free grammar and
either rejects the program with an error message or produces
an abstract syntax tree. Subsequently, the language valida-
tion procedure processes the resulting syntax tree and either
accepts or rejects it, together with the original source artifact.
If the code is not valid, validation generates an error report.
If the program is instead valid, validation may add informa-
tion to the AST (for instance, overload resolution in Java).
Next, the language’s (dynamic) semantics takes a syntax
tree as input and produces the meaning of the corresponding
program. The behavior of the dynamic semantics may be
unspecified for programs which are rejected during parsing
or validation.

In addition to these classical components of a language
processing pipeline, we include integrated development envi-
ronments (IDEs) as a fourth component into Figure 1 and the
discussion in the present paper. IDEs provide an editor with
various editor services to the programmer. Editor services
may include syntax coloring, code outline, code folding, code
completion, reference resolving to jump to the definition of
an identifier, or refactorings. More generally, this component
includes all programming tools that a developer can use to
write, navigate or maintain programs. While IDE support
is not directly part of a language definition, it is essential
for the productivity of programmers. Furthermore, only few
systems exist that support the composition of IDE support
for different languages.

Our separation of languages into four components is gen-
eral and covers any programming language. For instance,
the Java programming language [12] declares a context-free
syntax, a type checker, and a compiler that produces byte
code. Instead of using a general context-sensitive parser
to parse Java’s context-sensitive syntax directly, compilers
parse the context-free syntax first before applying special-
purpose validations such as type checking and the remainder
of compilation. In addition, various IDEs for Java exist, for
example, Eclipse or IntelliJ IDEA. Another example lan-
guage is XML: XML’s context-free syntax and XML validity
can both be checked efficiently, whereas the application of
a general-purpose context-sensitive parser will likely lead
to inefficient XML processing. Finally, note that language
components similarly exist for DSLs such as SQL, VHDL, or
DOT.

However, some languages combine two or more of the
language components we identified. Prominently, dynami-
cally typed languages such as Ruby or Smalltalk perform
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Figure 1: A typical language processing pipeline.

well-typedness validation as part of their dynamic semantics.
Alternatively, type checking and parsing can be combined
to resolve syntactic ambiguities by typing information [4].
LaTeX even applies parsing and validation as part of its
dynamic semantics: it repeatedly parses, validates and exe-
cutes the next command or macro until the complete source
file is processed [10]. Finally, in Smalltalk, even the IDE is
interpreted by the language’s dynamic semantics and can be
modified at runtime.

4. EXISTING TECHNOLOGIES
We introduced new terminology for language composition

in order to enable more precise descriptions of existing and
future technologies. In this section, we exemplify the use of
our terminology to classify existing language-development
systems with respect to their language-composition support.

We reviewed existing language-development systems as
described in the literature in light of our classification. Table 1
summarizes our findings. Each cell in the table shows how
a system supports composition with respect to a specific
language component, both regarding language extension or
unification (first symbol) and regarding incremental extension
or extension unification (second symbol, in parentheses). The
last column applies to all language components and records
whether a system supports self-extension. We have been
somewhat liberal in our judgment for extension unification
and also acknowledged support to systems that only support
unification for non-interacting language extensions.

Different technologies follow very different approaches to
achieve language composability. One of the simplest and also
most popular mechanisms is hand-written preprocessors [24].
To extend a language, a programmer writes a preprocessor
that translates the extended language into the base language.
However, each extension requires its own preprocessor and
preprocessors can only be composed sequentially, that is, run
one after another. Consequently, preprocessors only support
incremental extension but not extension unification.

AspectLisa [21], ableJ [30] and JastAddJ[8] follow more
sophisticated approaches and build on attribute grammars.
Attribute grammars [7, 29] enable the definition of new pro-
ductions to extend the base syntax and new attributes to
extend the base language validation and semantics. Since
AspectLisa and ableJ allow language extensions to reuse
and extend base-language attributes, they support language
extension, where the base language does not have to be
changed. In addition, AspectLisa applies aspect-oriented
programming to add new attributes to productions of the
base language. On the other hand, JastAddJ applies aspect-
oriented programming and rejects information hiding to sup-
port overwriting attributes. Accordingly, JastAddJ supports
the composition of languages by unifying their respective
implementations, that is, by only adding glue code and not

changing previous implementations. The same also applies
to IDE support [23].

Spoofax [17] follows an alternative approach to language
composition based on SDF for syntax composition and Strat-
ego for semantic composition. SDF [13] applies scannerless
generalized LR parsing, which enables the unification of ar-
bitrary context-free grammars. However, generalized parsing
may result in a syntax tree that contains ambiguities. SDF
supports the elimination of ambiguities on the basis of glue
code, that is, without changing the original grammars. For
semantic composition, Spoofax applies the Stratego term
rewriting language [31], which supports adding rules to han-
dle an extended base language. Stratego does not support the
adaption of an existing rule base, though, which is necessary
to unify languages.

Polyglot [19] is an extensible compiler that allows language
extensions to integrate into various compiler phases. For ex-
ample, a language extension can extend the parsing, type
checking, and code generation phase of the compiler to sup-
port additional language constructs. Polyglot achieves lan-
guage extensibility with method delegation, where compiler
actions are delegated to extensions, which further delegate
to yet other extensions. Polyglot does not support language
unification since adapting the behavior of extensions is not
supported.

Self-extensible languages. The following language-
development systems are self-extensible languages, that is,
the base language itself is used to implement language ex-
tensions or glue code. The extended base language can then
be used in the implementation of further self-extensions.
Notwithstanding this similarity, self-extensible languages
come in various flavors.

String embedding and pure embedding are approaches
that apply to any base language that supports strings and
code reuse. In string embedding, programmers use language
extensions by writing specially-formatted strings of the base
language, which the extension parses and evaluates at run-
time of the program. A typical example of a string-embedded
language is the language of regular expressions. The main
problem of string embedding is the lack of proper structural
abstraction. Therefore, string embeddings fall back to lexical
abstraction and composition of program snippets, which is
error-prone and forestalls static syntax analyses [10]. Fur-
thermore, since IDEs require a structural representation of
programs, string embedding comes without IDE support.
Nevertheless, string embedding is widely applied in prac-
tice, for example, to issue SQL queries or generate XML
documents.

Pure embedding takes a more structural approach than
string embedding and represents programs as API calls [15].
In particular, a programmer can nest or sequentialize calls to
such a special-purpose API. Moreover, API calls can readily



Syntax Validation Semantics IDE Self-ext.

OpenJava [26] �( ) �(]) yes
pure embedding [15] �(]) �(]) yes
MPS [33] �(]) �(]) �(]) yes
string embedding �( ) �( ) yes
AspectLisa [21] �( ) �( ) �(]) no
Converge [28] �( ) �( ) �( ) yes
preprocessors [24] �(�) �(�) �(�) no
Racket [27] �(�) �(]) �(]) yes
JSE [1] �(]) �( ) �(]) yes
Helvetia [22] �(]) �(]) �(]) yes
ableJ [30] �(]) �(]) �(]) no
Polyglot [19] �(]) �(]) �(]) no
JastAddJ [8] �(]) ](]) ](]) ](]) no
Spoofax [17] ](]) �(]) �(]) �(]) no
SugarJ [11] ](]) �(]) �(]) �(]) yes

Table 1: Support for language composition in existing language-development systems: No composition
(empty), extension but no extension composition �( ), incremental extension �(�), extension unification
�(]), language unification ](]).

be mixed with regular base language code as well as with
calls to other special-purpose APIs. There is, however, one
constraint that is often overlooked: Pure embeddings must
share their data representations. For example, suppose an
extension provides its own collection data type. This prevents
reuse of functionality from the base language such as mapping
or sorting as well as integration with other extensions that
can only process standard collections. As pointed out by
Mernik et al. [18], pure embedding enables the reuse of IDE
support of the base languages such as code completion for a
special-purpose API. However, true domain-specific editor
services such as SQL-specific code coloring is not in the focus
of pure embedding.

Converge [28], JSE [1], OpenJava [26], and Racket [27]
enable language extensions with macros and macro-like fa-
cilities. A macro is much like a normal function except it is
run at compile-time. Consequently, a macro does not take
or produce normal runtime data, but instead takes and pro-
duces compile-time data, that is, representations of programs.
Converge, JSE, and Racket represent programs as syntax
trees, whereas OpenJava represents programs as metaobjects.
None of these systems support language unification since the
meaning of a previously defined macro cannot be changed.
However, some macro systems come with more advanced
support for unifying independent language extensions. For
example, Racket supports extension unification through local
and partial macro expansion, which enables the collaboration
of independent macros [27].

SugarJ [11] is similar to macro systems but supports more
flexible syntax composition. Like Spoofax, SugarJ employs
SDF [13] to support the unification of arbitrary context-free
grammars, where additional glue code can coordinate be-
tween grammars to eliminate ambiguities. To specify the
validation and semantics of extensions, SugarJ uses Strat-
ego’s support for composing partial pattern matches through
equally-named rules. Since pattern matches can only be
added, SugarJ does not support the unification of an exten-
sion’s validation or semantics. Moreover, SugarJ provides
IDE support for the base language and extensions [9]. IDE
support is extensible because it aggregates information from

all extensions (e.g., for code completion) or chooses the most
specific editor service available (e.g., for syntax coloring).

Helvetia [22] leverages Smalltalk’s dynamic nature to en-
able extensibility of parsing, compilation, and IDE support.
Helvetia extensions are implemented through annotated
methods, which Helvetia organizes in a global rule set. When-
ever two or more rules are active in the parser, compiler, or
IDE, Helvetia throws an error. It is not possible to adapt
existing extensions non-invasively.

The projectional language workbench MPS [33] rejects
parsing and applies intentional programming instead. Es-
sentially, MPS maintains a central program representation,
which can be thought of as an AST, and displays projections
of the AST to the programmer. To edit a program, a pro-
grammer sends edit directives to MPS, which applies the
edits to the central AST and updates the projection. This
way MPS provides IDE support and creates a user experi-
ence close to usual programming environments. Furthermore,
MPS supports extensibility: The central program representa-
tion can be extended by new concepts, which can integrate
into existing projections, validations, and code generation.
As in the other systems, once defined, the behavior of an
extension is fixed [32].

Summary. We have shown how our terminology for lan-
guage composition is useful to explain existing systems and
distinguish between them meaningfully. In particular, our
terminology enables the precise description of composition
support with the base language in contrast to composition
support for language extensions.

We are aware that our discussion of existing technologies
is incomplete and many more systems deserve attention.
In particular, we excluded any tools from this discussion
that do not support semantic extensibility, because without
semantics programs of an extended language cannot be run.
However, since the goal of this work is the clarification of
language composition in general, we believe the omission of
any particular system is negligible. Furthermore, we excluded
semantic IDE services like debugging or testing from the



present discussion. An investigation of the composability of
such services remains future work.

One important conclusion of our study is the lack of wide-
spread support for language unification in existing systems.
In our study, JastAddJ is the only tool that supports language
unification for semantics. Language unification requires that
a system supports the adaption of independently imple-
mented languages, for example, by glue code. In JastAddJ,
the flexible adaption by glue code is based on aspect-oriented
programming. This suggests that technologies that favor flex-
ibility over modularity in the sense of information hiding [20]
should be more thoroughly investigated as a foundation for
language-development systems.

5. RELATED WORK
Other authors have described DSL-related patterns but

with less focus on reusability of language implementations.
Spinellis [24] describes and classifies patterns for DSL de-
sign and implementation. Mernik et al. extend Spinellis’
work and present an extensive survey [18] that covers various
aspects of DSL development methodologies: They identify
different DSL development phases, discuss when DSL develop-
ment is appropriate, and compare different implementation
techniques for DSLs. Mernik et al. also survey language-
development systems and mention the use of DSLs as meta-
languages within such systems. Spinellis and Mernik et al.
distinguish whether an existing language is restricted or
extended with new elements. As explained in Section 2.1,
we instead identify these scenarios and consider language
restriction as an extension to the validation system. In addi-
tion, we distinguish language unification, self-extension, and
extension composability.

Hofer et al. [14] distinguish hierarchical and peer language
composition in the context of embedded DSLs. We can
describe hierarchical language composition through (H �

L1) � L2 and peer language composition through H �

(L1 ]g L2). Our notation thus covers these scenarios while
supporting the description of language-composition scenarios
in a uniform way.

6. CONCLUSIONS
The goal of this paper is two-fold. First, we want to raise

awareness on the many meanings of language composition
and on the consequent ambiguity in discussions on language
composition. For this ambiguity, we believe the lack of
precise terminology deserves major blame. Therefore, our
second goal is the classification of language composition and
the introduction of precise terminology to describe language
composition. We hope that the terminology introduced in
this paper can clarify future discussions and communication
on language composition.
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SugarJ: Library-based syntactic language extensibility.
In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 391–406. ACM, 2011.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM)
Language Specification, (3rd Edition). Addison-Wesley,
2005.

[13] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism SDF – reference
manual. SIGPLAN Notices, 24(11):43–75, 1989.

[14] C. Hofer, K. Ostermann, T. Rendel, and A. Moors.
Polymorphic embedding of DSLs. In Proceedings of
Conference on Generative Programming and
Component Engineering (GPCE), pages 137–148. ACM,
2008.

[15] P. Hudak. Modular domain specific languages and tools.
In Proceedings of International Conference on Software
Reuse (ICSR), pages 134–142. IEEE, 1998.

[16] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A
history of Haskell: Being lazy with class. In Proceedings
of Conference on History of Programming Languages
(HOPL), pages 1–55. ACM, 2007.

http://bracha.org/pluggableTypesPosition.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf


[17] L. C. L. Kats and E. Visser. The Spoofax language
workbench: Rules for declarative specification of
languages and IDEs. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 444–463. ACM, 2010.

[18] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37:316–344, 2005.

[19] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An extensible compiler framework for Java.
In Proceedings of Conference on Compiler Construction
(CC), volume 2622 of LNCS, pages 138–152. Springer,
2003.

[20] K. Ostermann, P. G. Giarrusso, C. Kästner, and
T. Rendel. Revisiting information hiding: Reflections
on classical and nonclassical modularity. In Proceedings
of European Conference on Object-Oriented
Programming (ECOOP), volume 6813 of LNCS, pages
155–178. Springer, 2011.

[21] D. Rebernak, M. Mernik, P. R. Henriques, and M. J. V.
Pereira. AspectLISA: An aspect-oriented compiler
construction system based on attribute grammars.
Electronic Notes in Theoretical Computer Science,
164(2):37–53, 2006.

[22] L. Renggli, T. Gı̂rba, and O. Nierstrasz. Embedding
languages without breaking tools. In Proceedings of
European Conference on Object-Oriented Programming
(ECOOP), volume 6183 of LNCS, pages 380–404.
Springer, 2010.
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