
Embedding a Questionnaire DSL with SugarJ

Sebastian Erdweg

TU Darmstadt, Germany

We describe our SugarJ-based solution to the 2013 Language Workbench
Competition. As part of this competition, we developed domain-specific
language (DSL) for questionnaires that features conditional questions, locally
defined questions, derived values, name checking, type checking, checking for
overlapping question instances, and basic tool support such as code coloring.
Using SugarJ, we have realized the questionnaire DSL as a language extension
of Java that translates a questionnaire into a Java Swing component. We
have realized the questionnaire DSL via separate components for the syntax,
code generation, tool support, name checking, type checking, and overlap
checking. Moreover, we use SugarJ’s support for layout-sensitive syntax to
use indentation instead of parentheses in the design of the questionnaire DSL.

The source code of the questionnaire DSL is available online: https://github.

com/seba--/sugarj/tree/questionnaire/case-studies/questionnaire-language.

1 Introduction

SugarJ is an extensible programming language [1, 4, 3]. SugarJ is very flexible and allows
programmers to introduce arbitrary domain-specific syntax, domain-specific semantics,
domain-specific static analyses, and domain-specific editor services. Therefore, SugarJ
can accommodate extensions to support a wide range of domains with their specific
notation, invariants, and semantics accurately.

Despite this flexibility, SugarJ is also principled. SugarJ organizes language extensions
in libraries of the base language, which are activated through regular import statements.
By investigating the import statements of a source file, a programmer can modularly reason
about the language extensions that are active locally. Furthermore, the organization of
language extensions as libraries allows extension developers to decompose an extension
into multiple smaller libraries, and even to use language extensions in the definition of
other extensions.

SugarJ is realized as a compiler. Given a source file, the SugarJ compiler resolves the
dependencies of the source file, activates any imported language extensions, and compiles

1

https://github.com/seba--/sugarj/tree/questionnaire/case-studies/questionnaire-language
https://github.com/seba--/sugarj/tree/questionnaire/case-studies/questionnaire-language

the body of the source file to produce a regular Java class file. For the definition of
language extensions, SugarJ relies on the declarativity and composability of SDF [9] for
the definition of syntactic extensions, Stratego [11] for the definition of semantics and
static analyses, and on Spoofax [7] for the definition of editor services. While the SugarJ
system supports various base languages, such as Haskell [6], in this work we focus on the
Java-based variant.

In the remainder of this paper, we show to use SugarJ for embedding a domain-specific
language (DSL) into Java. To this end, we implement a DSL for questionnaires with
SugarJ. The questionnaire DSL comprises the following features:

• Domain-specific and layout-sensitive syntax that reuses Java syntax for conditional
expressions (Section 2).

• Transformation of a questionnaire into a Java Swing component that visualizes the
questions and uses reactive programming to update derived values (Section 3).

• Separately defined analyses for name resolution, type checking, and overlap detection
(Section 4).

• Editor support to provide a domain-specific syntax coloring and code folding
(Section 5).

2 Questionnaire syntax

We designed a simple layout-sensitive syntax for the questionnaires as depicted in Figure 1.
Our questionnaire DSL permits the declaration of questions, derived values, question
groups, locally defined questions, and conditionally placed questions. All of these features
are locally activated in a source file by importing the library quest.Language, which
reexports the separately defined syntax, semantics, analyses, and editor services for the
questionnaire DSL.

The most central ingredient of a questionnaire are questions. In our DSL, a question
declaration has to specify the expected answer type of the question. Our syntax definition
allows any Java type for questions, however, our semantics currently only supports the
types Boolean, Integer, and String. Following the keyword question we require a Java
variable identifier that can later in the questionnaire be used to refer to the user’s answer.
Next we expect the equality operator and finally the question text.

If a question declaration is prefixed by the keyword define, the question is locally
defined and can be used within the questionnaire by referring to it by name after the
keyword ask. Value definitions such as oldEnough are syntactically similar to questions,
but instead of the question text we expect a Java expression after the equality operator.
Questions can be organized in groups by declaring a named question group. Finally,
questions can appear depending on user’s answers to previous questions. To conditionally
place a question, it can be embedded into an if-else statement. As condition for an
if-else statement, we allow the full class of Java expressions where occurrences of variables
refer to previously asked questions.

2

package test;

import quest.Language;

public questionnaire MobileSecurity
define Boolean question securityRelevant =
Is security an issue for you?

Integer question age =

How old are you?

Integer value oldEnough = age >= 18
Boolean question useMobileDevice =

Do you use any mobile devices?

if oldEnough && useMobileDevice
question group deviceDetails

Integer question howManyDevices =

How many mobile devices do you use?

String question whatOS =

Which operation system are you mainly using?

ask securityRelevant
else

if oldEnough
Boolean question usePC =

If you do not use a mobile device,

are you maybe using a PC?

if usePC
ask securityRelevant

Figure 1: Example questionnaire in SugarJ,

Syntax definition. SugarJ language extensions are organized in regular libraries of the
base language and declared with a sugar declaration. For the questionnaire DSL, we
decomposed the language definition into separate sugar declarations for syntax, semantics,
analyses, and editor services. Figure 2 shows excerpts of the syntax definition for the
questionnaire DSL.

SugarJ uses a layout-sensitive extension [5] of SDF [9] for the implementation of
syntax. For the questionnaire DSL, the syntax definition is mostly straight forward. We
integrate questionnaires as a top-level declaration into the base language Java, which
allows us to declare questionnaires in place of, for example, a Java class. A questionnaire
consists of a list of question elements QuestElem. In the excerpt of Figure 2, we show
the definition of regular questions and conditionals. For example, we specify that a
conditional question element ConditionalQuest starts with the keyword if followed by a
condition in Java-expression syntax. The body of a conditional is again a list of question
elements and the else branch is optional.

We designed a layout-sensitive syntax for our questionnaire DSL: We require that

3

package quest.lang;
public sugar Syntax {

// top-level questionnaire declaration
context-free syntax

Quest -> ToplevelDeclaration
AnnoOrSugarMod* "questionnaire" JavaId QuestList -> Quest {cons("Questionnaire")}

-> QuestList {cons("QNil")}
QuestElem QuestList -> QuestList {cons("QCons"), layout(1.first.col == 2.first.col)}

...
// question
context-free syntax

Question -> QuestElem {layout(1.first.col < 1.left.col)}
QuestType "question" QuestId "=" QuestText -> Question {cons("Question")}
QuestionString -> QuestText {cons("QuestText"), layout(1.first.col <= 1.left.col)}

JavaID -> QuestId {cons("QuestId")}
JavaID -> QuestType {cons("QuestType")}

// conditional question
context-free syntax

ConditionalQuest -> QuestElem
"if" JavaExpr QuestList ConditionalElse? -> ConditionalQuest {cons("CondQuest"),

layout(1.first.col < 2.first.col && 1.first.col < 3.first.col && 1.first.col == 4.first.col)}

"else" QuestList -> ConditionalElse {layout(1.first.col < 2.left.col)}
...

}

Figure 2: Syntax definition for the questionnaire DSL.

all elements on the same nesting level start at the same column. For example, all
questions inside a question group must be indented the exact same amount of whitespace.
Furthermore, we require that elements filling multiple lines must be indented further
from the second line on. For example, the question text must start further to the right
than the first line of the question declaration.

To enable the declarative specification of layout-sensitive syntax, we extended SDF and
its Java-based scannerless generalized LR parser with layout constraints [5]. As shown in
Figure 2, we denote layout constraints as annotations of regular SDF productions. A
layout constraint restricts the applicability of the context-free production it annotates by
constraining the relative positioning of subtrees. For example, for question lists QuestList,
we require that the head of the list and the tail of the list must be horizontally aligned,
that is, they must start at the same column. We use numbers to refer to the subtrees
parsed by a production (1 refers to the first subtree). The token selector first selects the
first token of a subtree; token selector left selects the left-most token of a subtree. Based

4

on these tokens, we do arithmetic computation and comparison based on the column
and line number of tokens. For example, the constraint 1.first.col < 1.left.col specifies that
subtree 1 must adhere to Landin’s offside rule [8], that is, all tokens must be further
indented than the first token of the subtree.

The syntax for the questionnaire DSL integrates into the Java base language by
declaring that a questionnaire can be used where a Java top-level declaration is expected
(production Quest -> ToplevelDeclaration). This way, after importing the sugar declaration
quest.lang.Syntax or the wrapper quest.Language, questionnaires can be mixed into otherwise
regular Java files. Accordingly, the SugarJ parser will produce a syntax tree that contains
both Java nodes and nodes of the questionnaire DSL. We define the semantics of the
questionnaire DSL by transforming this mixed syntax tree into a syntax tree that only
contains Java nodes.

3 Questionnaire semantics

A SugarJ language extension defines the semantics of the extended syntax by translation
into the base language (or extensions thereof). For the questionnaire DSL, we generate
code that uses the Java Swing API to present the questionnaire to the user. In Figure
Figure 3, we show the generated GUI for the MobileSecurity questionnaire from Figure 1.

Figure 3: Java Swing GUI generated from the MobileSecurity questionnaire from Figure 1.

We generate the GUI for a questionnaire by separately translating different question-
naire elements into JComponent instances. Depending on the answer type of a question or
derived value (String, Boolean, or Integer), we generate JTextField or JCheckBox instances.
We group elements of a question group inside a JPanel component with visible border.
For conditionals, we group elements of the then and else branch in two borderless JPanel

components whose visibility we dynamically change depending on the condition.

5

package quest.lang;

import concretesyntax.Java;
import quest.lang.Syntax;
import quest.analysis.Typing;

public sugar Transform {
desugarings

desugar-questionnaire
desugar-question
desugar-derived-value
desugar-question-group
desugar-conditional-group
desugar-local-quest
desugar-quest-ref

rules
desugar-questionnaire :

Questionnaire(mods, Id(java x), body) ->

<put-mods(|mods); put-fields(|fields)>
java tdec |[

class java x extends javax.swing.JFrame {
public java x(String s) { super(s); }
public static void main(String[] args) {

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {

java x frame = new java x("Questionnaire");
frame.init();
frame.setPreferredSize(new java.awt.Dimension(800,600));
frame.pack();
frame.setVisible(true);

}
});

}
public void init() {

// Add components to the container.
// Constructs (e.g., conditional quest blocks) may change the current container.
javax.swing.JComponent container = new javax.swing.JPanel();
container.setLayout(

new javax.swing.BoxLayout(container, javax.swing.BoxLayout.Y AXIS));
getContentPane().add(container);
∼block:Block(flat-body)

}
}

]|
where <flatten-questlist> body => flat-body

; (QuestVars; map(strip-annos); nub) => vars
; <map(...)> vars => fields

...
}

Figure 4: Semantics of the questionnaire DSL.

6

In Figure 4, we display an excerpt of the questionnaire semantics. SugarJ allows
the definition of transformations inside sugar declarations. A desugarings block declares
transformations that the SugarJ compiler should automatically apply to programs,
whenever these transformations have been brought into scope using import statements.
For the declaration of transformations themselves, we use the program-transformation
language Stratego [11], which like SDF is part of the SugarJ language.

We import three libraries when defining the questionnaire semantics in Figure 4.
First, we activate support for program generation using concrete Java syntax [10]. This
allows us to generate Java code by writing regular Java code inside brackets |[...]| with
escapes ∼. Next we import the questionnaire syntax that declares the constructors of
the questionnaire DSL. And third, we import the extension that defines type analysis for
questionnaires. We require the typing extension to generate different Swing components
depending on a question’s answer types.

Finally, we use a simple form of reactive programming to realize the automatic update
of derived values and conditions: For each answer, derived value, and condition, we
generate an object of the change-observable Variable class. We install change listeners
between the variables according to the actual data dependencies, so that changes from a
user’s answer propagates to relevant derived values and conditions. Furthermore, we let
the generated Swing components observe the question, derived value, or conditional they
represent, so that the user interface updates accordingly. The separation between backend
(inter-dependent variables) and frontend (Swing components observing one variable each)
largely simplified the development of the code generator for the questionnaire DSL.

4 Questionnaire static analysis

We define three static analyses for the questionnaire DSL: name resolution, type checking,
and overlap detection. While type checking and overlap detection depend on successful
name resolution, we were able to define the analyses separately and do not impose a
global ordering of their execution.

To this end, we employed a new strategy for the definition of monotonic analyses:
Fix-point accumulation of analysis data by chaotic iteration. In this pattern, an analysis
does not return a value but installs analysis data (e.g., the value a reference points to
or a value’s type) as an annotation to the term. We iteratively apply each analysis
until none can provide further analysis data, that is, until we reached a fix-point. This
pattern elevates the composability of Stratego [2] to enable the implicit composition of
inter-dependent analyses, where one analysis can only proceed when another has already
computed a required value.

For example, type checking requires name resolution to compute the type of referenced
questions. The type checking of a question reference will fail until name resolution has
computed and annotated the value that the reference points to. We show the definition
of name resolution in Figure 5.

First, we define auxiliary rules to install and retrieve naming-specific annotations.
Then, we declare an analysis that scopes the dynamic rules LocalQuest (for locally defined

7

package quest.analysis;
import quest.lang.Syntax;
public sugar Naming {

rules
retrieve-reference = get-anno(|"reference")
put-reference(|t) = rm-anno(|"name-error"); put-anno(|"reference", t)

retrieve-name-error = get-anno(|"name-error")
put-name-error(|t) = put-anno(|"name-error", t)

analyses
{| LocalQuest, ActiveQuest: analyze-names|}

rules
analyze-names = Questionnaire(id, id, analyze-names)
analyze-names = QNil
analyze-names = QCons(analyze-names, analyze-names)

analyze-names = ?Question(, QuestId(name),); new-active-name(|name)
analyze-names =

?val; DerivedValue(id, QuestId(?name), analyze-expr-names);
where(<new-active-name(|name)> val)

analyze-names = QuestGroup(id, analyze-names)
analyze-names = ConditionalQuest(analyze-expr-names,

analyze-names-local-scope,
?None + Some(analyze-names-local-scope))

analyze-names = ?LocalQuest(Question(, QuestId(name),)); new-local-name(|name)
analyze-names =

?QuestRef(QuestId(name));
if <LocalQuest> name => ref

then put-reference(|ref)
else put-name-error(|"Could not resolve reference.")

end;
new-active-name(|name)

analyze-names-local-scope = {| LocalQuest: analyze-names |}

rules
analyze-expr-names = topdown(try(analyze-expr-name))
analyze-expr-name =

?ExprName(Id(name));
if <ActiveQuest> name => ref

then put-reference(|ref)
else put-name-error(|"Could not resolve reference.")

end

rules
new-local-name(|name) = ?t; rules (LocalQuest : name{t*} -> t)
new-active-name(|name) = ?t; rules (ActiveQuest : name{t*} -> t)

Figure 5: Name resolution by annotating references.

8

questions) and ActiveQuest (for asked questions and derived values). The rule analyze-names

traverses a questionnaire, registers new names with the dynamic rules, and resolves names
of question references. The rule analyze-expr-names resolves expression variables inside
the definition of derived values and the condition of a conditional question.

Similar to name resolution, the definition of type checking and overlap detection
traverses the questionnaire and installs analysis data. However, these analyses depend
on the outcome of name resolution. For example, to type-check a question reference, we
retrieve the referred element, extract its type, and install this type as the type of the
reference:

analyze-types =

?QuestRef();
where(retrieve-reference; retrieve-type => type);
put-type(|type)

Due to the dependency on name resolution, type checking of references will be delayed
until name resolution has installed a pointer to the referred element. Chaotic fix-point
iteration then ensures that we in fact derive all analysis data. In future work, we plan to
replace chaotic iteration with a scheduler that dynamically orders static computation to
minimize overhead.

package quest.lang;
import quest.lang.Syntax;
public editor services Editor {

folding
Quest
Question
QuestGroup
ConditionalQuest

colorer
darkgrey = 100 100 100
keyword = 127 0 85 bold

QuestText : blue
QuestId : darkgrey
QuestType : keyword

}

Figure 6: Definition of simple editor services for the quesitonnaire DSL.

5 Questionnaire IDE support

SugarJ uses Spoofax [7] to provide domain-specific editor services on a file-by-file basis [3].
To this end, SugarJ developers can define extended editor services in regular libraries,

9

Figure 7: Editor support for the development of questionnaires: code coloring, code
folding, reference resolution, type information.

and activate these services by importing the library locally. For the questionnaire DSL
we define simple editor services in the library quest.lang.Editor shown in Figure 6.

In addition, based on the static analyses, we define reference resolution (CTRL-click)
and show type information in hover-help pop-ups. In the definition of these editor services,
we simply extract the relevant analysis data from the syntax tree using retrieve-reference

etc. We illustrate the resulting editor for the questionnaire DSL in Figure 7.

6 Conclusion

We have shown how to embed a DSL for questionnaires in SugarJ. We have defined domain-
specific syntax, semantics, analyses, and editor services. In particular, we were able to

10

modularly define analyses by accumulating analysis data in a fix-point computation.

References

[1] S. Erdweg. Extensible Languages for Flexible and Principled Domain Abstraction.
PhD thesis, Philipps-Universiät Marburg, 2012.

[2] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled. In
Proceedings of Workshop on Language Descriptions, Tools and Applications (LDTA),
pages 7:1–7:8. ACM, 2012.

[3] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and E. Visser.
Growing a language environment with editor libraries. In Proceedings of Conference
on Generative Programming and Component Engineering (GPCE), pages 167–176.
ACM, 2011.

[4] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based
syntactic language extensibility. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 391–406.
ACM, 2011.

[5] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Layout-sensitive generalized
parsing. In Proceedings of Conference on Software Language Engineering (SLE),
volume 7745 of LNCS, pages 244–263. Springer, 2012.

[6] S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive language
extensibility with SugarHaskell. In Proceedings of Haskell Symposium, pages 149–160.
ACM, 2012.

[7] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 444–463.
ACM, 2010.

[8] P. J. Landin. The next 700 programming languages. Communication of the ACM,
9(3):157–166, 1966.

[9] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

[10] E. Visser. Meta-programming with concrete object syntax. In Proceedings of Con-
ference on Generative Programming and Component Engineering (GPCE), volume
2487 of LNCS, pages 299–315. Springer, 2002.

[11] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building program optimizers
with rewriting strategies. In Proceedings of International Conference on Functional
Programming (ICFP), pages 13–26. ACM, 1998.

11

	Introduction
	Questionnaire syntax
	Questionnaire semantics
	Questionnaire static analysis
	Questionnaire IDE support
	Conclusion

