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1. Introduction
Language workbenches are tools that help language design-
ers to design and implement (domain-specific) programming
languages, aiming to produce a full featured programming
environment from a high-level language description. A re-
cent paper, resulting from a series of language workbench
challenge workshops, describes a collection of benchmark
problems for language workbench research [6]. In this paper,
we describe solutions to two of these benchmark problems in
the Spoofax Language Workbench [7], i.e. default formatting
in Section 3 and skeleton editing in Section 4. In addition,
we introduce a new benchmark problem — bootstrapping of
meta-languages in a workbench — and describe the support
for bootstrapping we developed for Spoofax in Section 2.

2. Bootstrapping
We propose a solution to the problem of bootstrapping the
meta-languages of language workbenches 1.

Problem A bootstrapped compiler is a compiler that can
compile its own source code, because the compiler is written
in the compiled language itself. It is common practice to
bootstrap the compiler of a general-purpose language, such
as the GCC compiler for the C language.

Language workbenches provide high-level meta-languages
for defining the compilers and environments of domain-
specific languages (DSLs). Thus, users of a language work-
bench implement the compiler of their DSL Lc not in L, but
in a high-level (domain-specific) meta-language M instead.
Therefore, bootstrapping of Lc is no longer necessary, which
is good since many DSLs have limited expressiveness and
are often ill-suited for compiler development.

What we desire instead is bootstrapping of a language
workbench’s meta-language compiler Mc. We want to use
our meta-languages for implementing our meta-language
compilers.

1 A full paper about the problem and our solution to bootstrapping meta-
languages of language workbenches is under submission

Bootstrapping in language workbenches poses three chal-
lenges:

1. Most language workbenches provide separate meta-
languages for describing the different language aspects
such as syntax, analysis, code generation, and editor sup-
port. Thus, to build the definition of one meta-language
compiler, multiple meta-language compilers are neces-
sary. This entails intricate dependencies that bootstrapping
needs to handle.

2. Most language workbenches provide an integrated de-
velopment environment (IDE) in which programs and
languages can be interactively developed. Therefore, to
be able to bootstrap meta-language compilers in the IDE
environment, interactive bootstrapping is required [9]. Im-
portantly, since meta-language changes can be defective, it
also needs to be possible to roll back to a working version
of the meta-language if bootstrapping fails.

3. Since meta-languages in language workbenches depend
on one another, it can become difficult to implement break-
ing changes that require the simultaneous modification of
a meta-language and existing client code. To be able to
evolve meta-languages, bootstrapping breaking changes
should be supported.

Note that this is a problem at the meta-level. That is, it
is a problem of the meta-language engineer, or language
workbench engineer, not the language engineer that creates
DSLs with the language workbench. However, the meta-
language engineer is a language designer too, and should
be supported in designing and developing meta-languages.

Assumptions We assume that the language workbench
runtime and environment are deterministic, and that all meta-
language compilers are deterministic. If this is not the case,
bootstrapping may never terminate.

We also assume that an existing baseline for the meta-
language compilers exist, to kickstart the bootstrapping pro-
cess. Without an existing (manually constructed) baseline,
meta-language compilers cannot be implemented in itself.

1 2016/10/14



Finally, we assume that the meta-languages are defined in
Spoofax.

Implementation An implementation requires a method for
sound bootstrapping, interactive bootstrapping, and boot-
strapping of breaking changes.

In general, there is no way to know how many iterations
are necessary until a defect materializes or after how many
iterations it is safe to stop. Therefore, for sound bootstrapping
it is required to iterate until reaching a fixpoint, that is, until
the build stabilizes. Fixpoint bootstrapping applies meta-
language compilers to a meta-language definition in iterations.
To determine if a fixpoint has been reached, we must be able
to compare the binaries that meta-languages generate. We
have reached a fixpoint if the generated binaries in iteration
k + 1 are identical to the binaries generated in iteration k.

Besides having a bootstrapping system that satisfies the
requirements above, we also need to support bootstrapping
in the interactive environments of language workbenches. In
particular, an interactive environment needs to provide oper-
ations that (1) start a bootstrapping attempt, (2) load a new
baseline into the environment after bootstrapping succeeded,
(3) roll back to an existing baseline after bootstrapping failed,
and (4) cancel non-terminating bootstrapping attempts.

All operations should work within the same language
workbench environment, without requiring a restart of the en-
vironment, or a new environment to be started. This requires
dynamic (re)loading of the meta-language compilers into the
running language workbench environment. Rolling back de-
fective changes requires versioning of meta-languages and
their dependencies, such that a rollback to a previous working
version can occur.

Bootstrapping helps to detect changes that break a
language implementation. However, sometimes breaking
changes are desirable, for example, to change the syntax
of a meta-language. If we change the syntax definition of
some language M and the code written in M simultaneously,
bootstrapping fails to parse the source code in a later iteration
because the baseline only supports the old syntax of M. The
bootstrapping environment should provide operations for
bootstrapping breaking changes, which also require dynamic
loading and versioning.

Spoofax supports bootstrapping of meta-languages with
dynamic loading, dependencies between meta-languages, ver-
sioning, and a fixpoint bootstrapping implementation. Meta-
languages can be bootstrapped interactively in the Spoofax
Eclipse plugin. More details about the implementation can
be found in the artifact.

Usability The user interface for bootstrapping is shown in
Figure 1.

A meta-language engineer can import meta-language
definitions into the Eclipse environment, make changes to
the definitions, and run bootstrapping operations on the
definitions to produce new baselines. The Eclipse console
displays information about the bootstrapping process, e.g.

when a new iteration starts, which artifacts were different
during language product comparison, and any errors that
occur during bootstrapping.

When bootstrapping fails, changes are reverted, and the
console shows observed errors. Bootstrapping can also be
cancelled by cancelling the bootstrapping job in the Eclipse
progress view. When bootstrapping succeeds, the new base-
line and meta-language definitions are dynamically loaded,
such that the meta-language engineer can start making
changes to the definitions and run new bootstrapping op-
erations.

Impact If there is no existing baseline for the meta-
languages yet, this has to be created. If a meta-language
compiler is not deterministic, it has to be changed such that it
is. However, no other artifacts have to be changed in order to
perform bootstrapping operations. Therefore, the solution is
very modular; any Spoofax meta-language with a determinis-
tic compiler and an existing baseline can be bootstrapped.

Composability The bootstrapping solution composes well
with the rest of the language workbench, because fixpoint
bootstrapping reuses the existing compilation and dynamic
loading infrastructure of Spoofax, and plugs into Spoofax
via a context menu. Other parts of the language workbench
are not affected by bootstrapping. It composes well with
the other benchmark problems, because none of the other
benchmarking problems are about compilation or dynamic
loading. Furthermore, any meta-language defined in Spoofax
can be bootstrapped, because the support for bootstrapping is
general.

Limitations One limitation of fixpoint bootstrapping is that
it can be slow. Many meta-language definitions are compiled
with many meta-language compilers, multiple times until a
fixpoint is reached. For example, bootstrapping Spoofax’s
meta-languages, depending on the kind of change, can take
10 to 20 minutes.

Uses and Examples Bootstrapping yields four main advan-
tages:

1. A bootstrapped compiler can be written in the compiled
high-level language,

2. it provides a large-scale test case for detecting defects in
the compiler and the compiled language,

3. it shows that the language’s coverage is sufficient to
implement itself, and

4. compiler improvements such as better static analysis or the
generation of faster code applies to all compiled programs,
including the compiler itself.

Most general-purpose languages, such as C/C++ [12, 1],
Java [2], and C# [11], are bootstrapped because of these
advantages.

Meta-languages can benefit from the same advantages
when bootstrapped. For example, the Stratego meta-language
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Figure 1. The Spoofax Eclipse plugin with support for bootstrapping. Meta-language definitions are imported as projects on the
left, which are developed interactively in the (SDF and Stratego) editors on the right. Once the meta-language engineer is done
changing the meta-languages, all meta-language projects are selected and ’Bootstrap (fixpoint)’ is selected to start a fixpoint
bootstrapping operation. Bootstrapping with a single iteration for breaking changes is also supported. The console on the bottom
displays the progress of the bootstrapping operation, in this case that (after several iterations) a fixpoint was reached.

is bootstrapped [16], providing a significant test case for the
Stratego language and compiler. Recently, the Rascal com-
piler has been bootstrapped [3], simplifying the development
of the compiler because of higher-level specification.

However, support for sound bootstrapping of meta-
languages in language workbenches is limited, typically
lacking a solution for fixpoint bootstrapping, interactive boot-
strapping, and rollbacks. For example, MPS [18] does not
support versioning or undoing changes, making rollbacks
impossible if defects are introduced. While (partially) boot-
strapped theirselves, Xtext [4], Rascal [8], and Ensō [10, 15]
do not provide a general solution for fixpoint bootstrapping.
Older versions of Spoofax bootstrapped a meta-language by
a single compilation step, which is not sound because it does
not uncover defects that occur after several fixpoint iterations.

We think that meta-languages should be bootstrapped
to benefit from the advantages listed above, and that meta-
languages should be bootstrapped in a sound way to ensure
that all defects of a meta-language are found.

Effort The effort of creating an existing baseline ranges
from minutes to months. If a meta-language is already boot-
strapped, it only requires minutes to manually construct a
baseline for that meta-language. However, if a meta-language
is not already bootstrapped, the meta-language has to be com-
pletely reimplemented in itself, which can take months. In

the case of Spoofax, the meta-languages were already boot-
strapped, it only took a day to construct a baseline for all the
meta-languages.

The effort for making a meta-language compiler determin-
istic can also vary a lot. In the case of Spoofax, the meta-
languages were not deterministic because name generation
was not deterministic. It took us two days of debugging and
refactoring to make the compilers completely deterministic.

Other than that, no effort is required to start bootstrapping
a meta-language.

Artifact We have evaluated our bootstrapping solution
by applying it to eight of Spoofax’s meta-languages
against seven changes. The Spoofax bootstrapping repos-
itory https://github.com/spoofax-bootstrapping/
bootstrapping contains the evaluation of the bootstrap-
ping solution, and links to the source code implementing
fixpoint bootstrapping. To try out bootstrapping in Spoofax,
the nightly version of Spoofax is required, which can be
downloaded from our website at http://metaborg.org/
en/latest/source/release/note/nightly.html.

3. Specification of Default Formatting
Syntax definition formalisms allow language designers to
specify a language’s syntax. From this specification they
generate parsers that construct an abstract representation
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from a given program in that language. However, in most
cases the inverse is also necessary, as part of language
development involves pretty-printing, i.e. presenting abstract
representations back to the user in some visual form. Thus,
parsers and pretty-printers are important elements to consider
when defining a language.

In our solution to implement a default formatter/pretty-
printer we use SDF3 [17]. SDF3 is a syntax definition
formalism that combines the specification of a parser and
a pretty-printer in the same formalism. Production rules in
SDF3 can be written as templates, specifying not only the
structure of elements in a language but also retaining layout
information necessary to define the concrete form of such
elements.

Assumptions We assume a language specification written
in SDF3.

Implementation We derive a formatter based on the SDF3
definition by generating rewrite rules responsible for travers-
ing the abstract syntax tree and produce the concrete represen-
tation for its elements. In our implementation, this traversal
produces elements in the Box language [14], as this language
provides more flexibility on how to format terms, e.g. consid-
ering horizontal and/or vertical alignment and indentation.

Templates in SDF3 consist of a list of lines that might
contain literal strings, placeholders or layout as its elements.
To generate a pretty-printer that produces formatted code
in the box language, each line in a template produces an
horizontal box (H). We construct this box by iterating over
the elements of a template line. Literal or layout elements
produce string boxes (S), whereas a placeholder element
recursively constructs the boxes necessary to pretty-print the
top-level term.

Figure 2 shows an example of a pretty-printer generated
from a small syntax definition. Note that we generate vertical
boxes (V) for elements in lists that are separated by newlines.
Note also that elements of the list are indented according to
the layout defined in the template. The final result is wrapped
in a vertical box corresponding containing all the lines of the
complete program. To produce the formatted program, we
convert this top-level box to a string.

Usability To define a default formatter from the language
specification, language engineers can write template produc-
tions and edit its layout. For regular context-free productions,
the generated formatter separates symbols by a single whites-
pace. The user can apply the formatter via a menu in the
editor.

Figure 3 illustrates an example of formatting code using
the formatter derived from SDF3. In the figure, on the left we
see the SDF3 definition for the QL language using template
productions, in the middle, a program containing unformatted
elements and the same program formatted from applying the
pretty-printer generated from SDF3. Finally, on the right, the
abstract syntax tree of the same program.

Impact Template productions in SDF3 only retain layout
for pretty-printing, thus, they do not affect other aspects of
the syntax definition such as parser generation. The language
engineer must define its productions in the grammars as
templates, and include the desired layout in each production.
However, the impact is still reasonably low, as it is not
necessary to change anything other than the syntax definition.

Uses and Examples All mainstream IDEs provide support
for formatting a program, thus, language workbenches aim to
somehow generate such tools from the language definition. In
our solution, we integrate the definition of parsing and pretty-
printing into a single formalism. Other syntax definition
formalisms such as SYM [5] and Extended SDF [13] also
unify the language specification to produce a parser and a
pretty-printer. However, our approach avoids redundancy of
operators, as the specification of layout is explicit in SDF3
templates, and the language engineer does not need to use
special operators to specify layout and formatting like in other
formalisms.

Composability The generated pretty-printer is a separate
artifact generated from the language specification and can
be reused for other purposes, e.g., when pretty-printing an
abstract representation of a code template inside a completion
proposal. Furthermore, language projects can depend on
external pretty-printers, using them to produce formatted
code when generating code in another language, for example.

Limitations Currently, the default formatter generated from
SDF3 is not comment-preserving. Furthermore, when writing
template productions users might need to specify how to
tokenize lexical elements inside a template. SDF3 allows the
specification of tokenize rules separately, and they affect all
template productions inside a file.

Effort The default formatter is automatically derived from
SDF3 syntax definitions, thus, no extra effort is required from
the user. In spite of that, it is necessary that the language de-
signer integrates the desired layout into the syntax definition
writing grammar rules as template productions, otherwise, the
default formatter separates elements by a single whitespace.

Artifact SDF3 is part of Spoofax Language Workbench and
can be downloaded at our website.

4. Skeleton Editing
Skeleton editing helps new users to discover language fea-
tures and increases coding efficiency as the user can insert
larger pieces of code at once. In our solution, we implement
skeleton editing through syntactic code completion. We auto-
matically derive proposals as templates from the the grammar
and expand such templates to construct larger skeletons.

Templates may contain placeholders to define points to
further expand the program. We construct a placeholder for
each non-terminal in the syntax definition and make them
part of the language. We derive placeholder expansions from
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rules

  prettyprint-Start :
    Form(t1__, t2__) -> 

  
 
  prettyprint-Question :
    Question(t1__, t2__, t3__) -> 

  
  prettyprint-Type :
    BoolTy() -> 

module SDF3

syntax

  Start.Form = <
    form <ID> {
      <{Question "\n\n"}*>
    }
  >
  
  Question.Question = <
    <ID> : <Label> <Type>
  >
  
  Type.BoolTy   = <boolean>

SDF3

"form "H S ID

V Question

" {"S

I "  "

H "}"S

ID " : "H S Label " "S Type

H “boolean”S

Pretty-printer to Box

Figure 2. Deriving pretty-print rules from SDF3 templates.

Figure 3. Spoofax Environment containing syntax definition, unformatted program, formatted program and abstract syntax tree.
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the productions of the placeholder’s non-terminal which
guarantees that selecting an expansion results in a correct
program. Our solution2 is based on definitions written in
SDF3 and built inside Spoofax. We reuse the SDF3 generated
pretty-printer to properly format proposals.

Assumptions We assume a language definition written in
SDF3.

Implementation Our solution derives syntactic code com-
pletion from a syntax definition in SDF3. First of all, we
extend the syntax definition with rules for placeholders that
can explicitly appear in the program or in a completion pro-
posal. The language engineer can define the characters of
a placeholder in a configuration file so placeholders do not
clash with elements of the language. For example, the lan-
guage engineer can write:

p l a c e h o l d e r :
p r e f i x : "#"
s u f f i x : "#"

and all placeholders would be of the form #NAME#, with
#NAME# being the name of the placeholder. Hence, for each
non-terminal in the language, we generate a placeholder of
that non-terminal, allowing an explicit placeholder to appear
wherever the non-terminal can appear in the program.

Next, we produce all terms that a placeholder can ex-
pand to. Each grammar rule with a constructor defines a
placeholder expansion. We encode placeholder expansions as
rewrite rules, and apply these rules whenever code comple-
tion is triggered when the cursor is in a placeholder node.

In Figure 4 we show the template rules for allowing
explicit placeholders in a program and the rewrite rules, both
automatically generated from a definition written in SDF3.
Note that we only specified a single character (#) that prefixes
the placeholder name, thus, our placeholders are of the form
#NAME.

We use origin tracking to identify whether a placeholder
node contains the cursor. If it does, we show all placeholder
expansions formatted according to the grammar as comple-
tion proposals. Completing the program, i.e. selecting a pro-
posal, replaces the placeholder by its formatted expansion
that may or may not contain more placeholders. Users con-
struct larger skeletons by navigating through placeholders
and selecting one of its expansions or finally replacing a
placeholder textually.

Variants Our approach also supports expanding a program
in cases where the cursor is not in a placeholder node. We
can also expand programs by expanding a recursive structure
or adding an optional element that is not part of the program.
By using the respective non-terminal that corresponds to
such terms, we inject a selected proposal that e.g., adds an
element to a list, or expands an expression term to another one,

2 A full paper named Principled Syntactic Code Completion using Place-
holders is under submission at SLE’16.

module QL

context-free syntax //regular production rules

  Start.Form = <
    form <ID> {
      <{Question "\n\n"}*>
    }
  >
  
  Question.Question = <
    <ID> : <Label> <Type>
  >
  
  Type.BoolTy   = <boolean>

context-free syntax //derived rules for placeholders

  Start.Start-Plhdr       = <#Start> 
  Question.Question-Plhdr = <#Question> 
  ID.ID-Plhdr             = <#ID> 
  Label.Label-Plhdr       = <#Label> 
  Type.Type-Plhdr         = <#Type>

rules  //rewrite rules for placeholder expansions

  rewrite-placeholder:
    Start-Plhdr()    -> Form(ID-Plhdr(), [])

  rewrite-placeholder:
    Question-Plhdr() -> Question(ID-Plhdr()
                               , Label-Plhdr()
                               , Type-Plhdr())
                         
  rewrite-placeholder:
    Type-Plhdr()     -> BoolTy()

Figure 4. Generating syntactic code completion from an
language definition written in SDF3.

keeping the original expression and using placeholders for the
inserted terms. To expand the program in such way, whenever
the cursor is in the surrounding layout of a recursive structure
or an optional term, we calculate the expansions according to
the grammar, and inject the selected proposal in the program.
Skeleton editing continues from there, by either expanding
explicit placeholders or injecting placeholder expansions into
recursive or optional nodes.

Usability The user construct skeletons of code by iteratively
navigating through placeholders and selecting a proposal to
expand the program. After selecting a proposal the developer
can expand or textually replace placeholders inserted by the
proposal. Users can also navigate to a part of the program
that does not have a placeholder but a recursive or an optional
node, and expand the program by the variant described before.

Figure 5 shows some of the iterations to construct the
skeleton and eventually the final program containing a ques-
tion and a conditional, as the user textually replace placehold-
ers for lexical symbols in the skeleton.
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1 2

3 4

5 6

Figure 5. Constructing a program step by step by syntactic code completion.

Uses and Examples Existing IDEs and language work-
benches often propose erroneous code templates that yield
syntax errors when inserted. For example, Eclipse largely
ignores the syntactic context at the cursor position and pro-
poses the insertion of an else-block without a corresponding
if -statement, yielding a syntax error after insertion as we can
see in Figure 6.

Furthermore, the set of code templates available to the
user in IDEs is limited, and it is not possible to construct a
more complex skeleton by only using code completion. In our
implementation, code completion is sound and complete, i.e.,
completing a program does not introduce syntax errors and it
is possible to construct any program by only triggering syn-
tactic code completion, only manually rewriting placeholders
for lexical elements.

Figure 6. Eclipse: Unsound completion yields syntax error.

Impact and Composability Our solution depends on the
language definition as we extend the syntax with extra pro-
ductions to parse explicit placeholders. We also need a mech-
anism to format code templates, so it is necessary to change
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the language pretty-printer. However, since we implement
our solution in SDF3, parser and pretty-printer are specified
together and a formatter is automatically derived. Another
important point to note is that our solution allows editing
incomplete programs (containing explicit placeholders) in
a textual editor without having syntax errors on incomplete
structures.

Limitations Currently placeholder expansions only contain
syntactic elements. Moreover, since we do not consider the
language’s semantics, even though expansions are syntacti-
cally correct, they might produce programs with type errors.
Another limitation is that code templates might contain only
small structures, therefore it might take a large number of
iterations to generate more complex skeletons.

Effort No additional effort on the user nor language engi-
neer is necessary as syntactic code completion is automati-
cally derived from SDF3 syntax definitions. However, one
should consider the effort of specifying the concrete syntax
of the language in SDF3 templates to produce placeholder
expansions that are properly formatted.

Artifact Our solution is available in the latest nightly ver-
sion of the Spoofax. The project containing an implemen-
tation for the questionnaire language and the examples
shown in this paper is available at https://github.com/
MetaBorgCube/metaborg-ql/tree/lwb-2016.
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