
Toward Abstract Interpretation of
Program Transformations

Sven Keidel
Sebastian Erdweg

TU Delft, The Netherlands

Abstract
Developers of program transformations often reason about
transformations to assert certain properties of the generated
code. We propose to apply abstract interpretation to pro-
gram transformations in order to automate and support such
reasoning. In this paper, we present work in progress on the
development and application of an abstract interpreter for
the program transformation language Stratego. In particular,
we present challenges encountered during the development
of the abstract Stratego interpreter and how we intend to
solve these challenges.

CCS Concepts • Software and its engineering → Au-
tomated static analysis;

Keywords abstract interpretation, program transformation
ACM Reference Format:
Sven Keidel and Sebastian Erdweg. 2017. Toward Abstract Inter-
pretation of Program Transformations. In Proceedings of ACM SIG-
PLAN International Workshop on Meta-Programming Techniques
and Reflection (Meta’17). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3141517.3141855

1 Introduction
Program transformations are meta programs that translate
code of an input language to code of an output language.
Examples of program transformations are compilers, inter-
preters, refactorings, normalizations, etc. Developers of pro-
gram transformations often reason about transformations to
assert certain properties of the transformations’ output:
• Does the generated code of a compiler have the same
semantics as the input program?
• Is the generated code of a compiler efficient?
• Does an interpreter always return values for well-
typed programs or can it get stuck?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Meta’17, October 22, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5523-0/17/10. . . $15.00
https://doi.org/10.1145/3141517.3141855

• Does a refactoring always produces well-typed code?
• Does a normalization transform all programs to a nor-
mal form?

One way of answering these questions is by formal verifica-
tion with a proof. However, most such proofs are manual and
happen after the development of program transformations,
meaning they cannot be integrated into the development
process.

Another way of reasoning about program transformations
is by static analysis, also known as lightweight verification. A
static analysis inspects the code of a program transformation
and can compute properties about how the output of the
transformation looks like. The results of the analysis can
then be inspected by developers to find counter examples
or confirmation for the properties from above. Compared to
unit testing, a static analysis requires no input programs for
a program transformation since it computes properties that
hold for all inputs. Compared to manual verification, a static
analysis can be run automatically to continuously provide
feedback within an IDE.
In this work, we propose the static analysis of program

transformations by abstract interpretation [Cousot andCousot
1977] and describe the challenges imposed by this approach.
In particular, we present early results about our abstract
interpreter for the Stratego program transformation lan-
guage [Visser et al. 1998], which we are currently developing.
The abstract interpreter approximates the output of program
transformations without information about the input pro-
gram. The results of the analysis can be inspected to get
feedback for a given program transformation. This can be
used to find counter examples to the properties mentioned
above or for debugging a program transformation during the
development process. Based on our early experience with ab-
stract interpretation for Stratego, we describe the challenges
we encountered and how we intend to solve them.

2 Abstract Interpretation of Stratego
In this section, we demonstrate our abstract interpreter for
the Stratego [Visser et al. 1998] program transformation
language by example. As example program transformation,
we consider an evaluator for arithmetic expressions, which
we expand throughout the paper and showwhat the effects of
each change on the results of the analysis are. Note that only
the last version of our “evaluator” will actually normalize

1

https://doi.org/10.1145/3141517.3141855
https://doi.org/10.1145/3141517.3141855
https://doi.org/10.1145/3141517.3141855

Meta’17, October 22, 2017, Vancouver, Canada Sven Keidel and Sebastian Erdweg

expressions to values, whereas the other versions produce
intermediate evaluation terms.

Stratego transformation are commonly defined as a set of
rewrite rules. A rewrite rule matches a pattern against an
input term and produces an output term by instantiating a
template. We start our exploration by defining a rewrite rule
for multiplication by zero.

eval: Mul(Zero(),_) -> Zero()

When running this evaluator with the concrete Stratego se-
mantics, we can observe one of two possible outcomes: If
the input term matches the pattern Mul(Zero(), _), then the
output is Zero, but if the input term does not match the pat-
tern, then the whole transformation fails. To be sound, an
abstract interpreter must approximate all possible outcomes
of the concrete semantics for an unknown/undefined input
term. Indeed, for this simple example, our abstract Stratego
interpreter predicts the same results the concrete semantics
computes:

Concrete Stratego Abstract Stratego
Fail, Zero() Fail, Zero()

To handle more arithmetic expressions, we add further
rewrite rules to the evaluator:

eval: Mul(Zero(), _) -> Zero()

eval: Add(Zero(), n) -> n

If the first rewrite rule fails, the concrete interpreter tries to
apply the second rule and only emits failure if that one fails
as well. The second rewrite rule copies the second operand of
Add unchanged to the output. Consequently, the concrete in-
terpreter can produce infinitely many different output terms
depending on the input term. The abstract interpreter must
predict the outputs of the transformation without knowing
about the input term. On the one hand the abstract inter-
preter cannot produce an infinite set of alternative output
terms, on the other hand soundness requires the abstract
interpreter to predict all possible outputs. The solution is to
approximate the infinite set of output terms using a finite
representation. Specifically, our analysis uses the nontermi-
nal symbol Exp to summarize all possible terms copied by the
second rewrite rule:

Concrete Stratego Abstract Stratego
Fail, Zero(), Succ(Zero()),

Mul(Add(...), Zero()), ...

Fail, Zero(), $Exp

Note that it would have been sound to drop Zero() from the
output of the abstract interpreter because $Exp subsumes
it. However, we choose to keep track of subsumed results
because they witness specific terms that were encountered
during the interpretation. For example, in an evaluator for
arithmetic expressions, tracking Zero() makes sense and can
provide added precision.

As we add more rewrite rules to the evaluator, we obtain
a larger set of possible outputs:

eval: Zero -> Zero()

eval: Mul(Zero(), _) -> Zero()

eval: Add(Zero(), n) -> n

eval: Mul(Succ(m), n) -> Add(Mul(m, n), n)

eval: Add(Succ(m), n) -> Succ(Add(m, n))

While the concrete interpreter produces a single output de-
pending on the input term, our abstract interpreter collects
all alternative results systematically:

Concrete Stratego Abstract Stratego
Fail, Zero(), Succ(Zero())

Mul(Add(...), Zero()),

Add(Mul(Zero(), Zero()),..),

...

Fail, Zero(), $Exp,

Add(Mul($Exp,$Exp),$Exp),

Succ(Add($Exp, $Exp))

We still obtain a possible Fail result because the pattern
match of eval is not exhaustive. For the other cases, the
abstract interpreter yields one alternative result for each
rewrite rule. When rewrite rules produce similar output
terms like Zero() in our example, we share part of the corre-
sponding analysis results.

So far, our evaluators only rewrite the input term once but
do not normalize expressions to values. To do that, we have
to add recursive calls of eval to our transformation, using the
Stratego syntax <f> t for the application of transformation f

to term t:

eval: Zero() -> Zero()

eval: Succ(n) -> Succ(<eval > n)

eval: Mul(Zero(), _) -> Zero()

eval: Mul(Succ(m),n) -> <eval > Add(Mul(m, n), n)

eval: Mul(e1,e2) -> <eval > Mul(<eval >e1, <eval >e2)

eval: Add(Zero(), n) -> <eval > n

eval: Add(Succ(m),n) -> Succ(<eval > Add(m, n))

eval: Add(e1,e2) -> <eval > Add(<eval >e1, <eval >e2)

This transformation recursively interprets an arithmetic ex-
pression and produces a Peano number (if the input expres-
sion is well-formed). In particular, we claim the transfor-
mation cannot produce intermediate terms containing the
Add or Mul constructors. We would like our static analysis to
confirm this hypothesis. Unfortunately, recursion also makes
static analysis notoriously difficult. The problem is that our
abstract interpreter must predict output terms for arbitrary
input terms, on which it cannot recurse finitely. On the other
hand, we want our abstract interpreter to yield a result in
finite time. Hence, while our abstract interpreter starts re-
cursively analyzing the program transformation, it has to
abort recursion soon and overapproximate the result:

Concrete Stratego Abstract Stratego
Fail, Zero(), Succ(Zero())

Succ(Succ(Zero())), ...

Fail, Zero(), Succ(Zero())

Succ($Exp),Succ(Succ($Exp))

$Exp

2

Toward Abstract Interpretation of Program Transformations Meta’17, October 22, 2017, Vancouver, Canada

This result is sound since nonterminal Exp subsumes all Peano
numbers produced by the concrete interpreter. But this re-
sult is not very precise, because nonterminal Exp describes
many terms that the transformation does not actually pro-
duce. Instead of Exp, we would much rather learn from the
analysis that the transformation is guaranteed to produce
Peano numbers. Indeed, our analysis produced the following
witnesses (all subsumed by $Exp):

Zero(), Succ(Zero()), Succ($Exp), Succ(Succ($Exp))

The witnesses indicate that the results appear to be Peano
numbers, but there is no guarantee for that.

In the following we discuss the three main challenges for
abstract interpretation of program transformations in some
more detail: termination, soundness, and precision.

3 Challenge 1: Termination
An abstract interpreter must terminate in finitely many steps,
no matter what. That is, an abstract interpreter must be a
computable function over the transformation code, even
though the transformation code may diverge. Abstract inter-
preters tend to analyze recursive programs through a fixpoint
computation that converges after finitely many steps [Niel-
son et al. 1999]. This has triggered a lot of research about
how to ensure a fixpoint is reached and how to speed up
convergence.
To control termination of our abstract interpreter, we

model its call stack explicitly: Every recursive call in the
interpreter pushes a stack frame to the stack and every re-
turn pops the corresponding stack frame again. In order to
ensure that the abstract interpreter indeed terminates, we
adopt a technique developed by Van Horn and Might for
abstract machines [Horn and Might 2010]. Where they al-
located states of the abstract machine on a heap with finite
address space, we allocate stack frames on such heap. Since
the stack frames are persisted throughout the interpretation
and the address space is finite, the interpreter will exhaust
the address space eventually. While the interpreter can reuse
previously used addresses, it must join the previous with the
new results. This way, the interpreter can trade in precision
for faster termination.

4 Challenge 2: Soundness
An abstract interpreter is sound if it predicts all possible re-
sults produced by the concrete interpreter. But is soundness
an important property when analyzing program transforma-
tions? We argue that soundness is very important whenever
analysis results are acted upon. The reason is that a sound
analysis is reliable: It cannot “forget” any actual results and
it cannot ignore corner cases. Thus, decisions formed on the
basis of a sound abstract interpreter are actually meaningful.

The approach of abstract interpretation was designed
by Cousot and Cousot to support the systematic construc-
tion of an abstract interpreter based on a concrete inter-
preter [Cousot and Cousot 1979]. However, proving sound-
ness of an abstract interpreter is difficult and requires deep
knowledge about order theory and Galois connections as
well as reasoning about two interpreters in parallel (the con-
crete and the abstract one). For program transformations,
proving soundness is particularly difficult because we have
to reason about program properties rather than value prop-
erties — we have to reason about metaprograms rather than
programs. For example, instead of reasoning about whether
a variable holds a positive number after an assignment, we
would have to reason about whether a transformation rule
produces assignment code with that property. This is why
our analysis targets a simpler property of program trans-
formations, namely the syntactic shape of generated code.
But even for this simpler property proving soundness is a
serious endeavour: We failed to prove our abstract Stratego
interpreter sound at first.
We are currently exploring a new style for defining ab-

stract interpreters such that soundness proofs become easier.
The key idea is to let the concrete and abstract interpreters
share a parameterized implementation, such that a sound
instantiation of the parameters yields a sound abstract inter-
preter for the concrete interpreter. To achieve the necessary
parameterization, we are exploring what we call arrow-based
abstract interpreters. Arrow-based abstract interpreters use
arrows [Hughes 2000], a generalization of monads, to ab-
stract from differences between the concrete and the abstract
domain. We are currently using this approach to develop
concrete and abstract interpreters for Stratego and prove
them sound.

5 Challenge 3: Precision
The result of an abstract interpreter is only useful if it is
sufficiently precise. For example, an abstract interpreter for
Stratego that concludes a transformation produces “some
term” would probably not be very useful. However, precision
is necessarily limited given our previous requirements: ter-
mination and soundness. Therefore, the challenge is to find
representations of program properties that are sufficiently
precise yet soundly computable.
In Section 2, our abstract interpreter tried to predict the

shape of terms produced by a transformation. We repre-
sented a transformation’s possible output terms as a set of
alternative terms with nonterminal symbols at places where
the result was imprecise, as in Succ($Exp). The termination
requirement ensures that the set of alternatives always re-
mains finite, since only finitely many alternatives can be
explored before the analysis must terminate and conclude
“some term”.

3

Meta’17, October 22, 2017, Vancouver, Canada Sven Keidel and Sebastian Erdweg

We can change the precision of our abstract interpreter
by changing the representation of program properties. In
fact, the representation for the shapes of terms shown in
Section 2 is already an improvement over the representation
we used originally. Our original representation for shapes
of terms did not distinguish between different nontermi-
nals and used a single placeholder * for unknown terms, as
in Succ(*). However, we found that when analyzing target
languages with richer syntax based on many different non-
terminals, a single placeholder loses too much information.
For example, Succ(*) includes Succ(Assign(...)) as well ass
Succ(MethodDec(...)). Such imprecision causes ripple effects
whenever generated code is also input to a transformation,
that is, whenever a transformation produces intermediate
terms. The problem with imprecise intermediate terms is
that the imprecision in the input causes further imprecision
in the output.
To improve the precision without losing soundness, we

also had to change the concrete interpreter of Stratego. Specif-
ically, Stratego is an untyped language that allows the con-
struction of ill-formed terms such as Succ(MethodDec(...)).
Because such terms witness bugs in many cases, in previous
work [Erdweg et al. 2014] we proposed a dynamic type sys-
tem for Stratego that prevents the construction of ill-formed
terms altogether. Our representation of terms with nonter-
minals is only sound in this variant of Stratego.
In the future work, we want make our analysis signifi-

cantly more precise. In particular, we would like the analysis
to confirm that the evaluator for arithmetic expressions from
Section 2 indeed only produces Peano numbers as output
terms. To achieve this, we need a more precise representa-
tion of term shapes. Our plan is to use (regular) tree gram-
mars [Aiken and Murphy 1991] for that purpose. Tree gram-
mars describe sets of trees through recursive productions.
For example, we can describe the Peano numbers as follows:

PN ::= Zero() | Succ(PN)

The main advantage compared to the representation of terms
with nonterminals (Succ($Exp)) is that tree grammars are not
required to reuse nonterminals from the target language. In-
stead, tree grammars can define new nonterminals for a sub-
set of terms described by an existing nonterminal. For exam-
ple, nonterminal PN describes a subset of the terms described
by the existing nonterminal Exp. This can make our abstract
interpreter significantly more precise. While it seems clear
that tree grammars can still soundly approximate the actual
output terms, termination is less certain. We will explore
this in future work.

6 Evaluation
Accompanying this proposal, we created a prototype for
an abstract interpreter of Stratego. The source code of the

interpreter can be found online.1 We evaluated the analysis
results of our prototype for 4 program transformations: a
PCF type checker and interpreter, a desugaring of the pretty
notation for Haskell arrows [Hughes 2000], a normalization
procedure for arrows [Liu et al. 2009], and a Go to JavaScript
compiler. To evaluate the adequacy of the analysis results, we
inspected terms in the result set of the analysis and classified
them as true or false positives, depending on if there exists
a concrete term that is transformed by the concrete Stratego
interpreter to a term that fits the pattern of the abstract term.
The analysis produced good results except for the PCF and
Go to JavaScript case study, caused by imprecise tracking
of aliases and by missing type information of terms. We
intend to address these issues with extensions of the abstract
interpreter in future work.

7 Related Work
Abstract interpretation has been applied to program transfor-
mations in the past. Cousot and Cousot [2002] use abstract
interpretation to assert that a transformation preserves the
semantics of programs by showing that the abstract seman-
tics is the same. Takai [2004] uses abstract interpretation
to verify undecidable safety properties of term rewriting
systems. And Mycroft [1982] uses abstract interpretation to
justify program transformations that improve efficiency.

In this work, we use abstract interpretation to help devel-
opers reason about program transformations. In contrast to
the mentioned work, we propose an abstract interpreter for
program transformations that is independent of the seman-
tics of the object language and computes syntactic properties
of the meta language rather than semantic properties of the
object language. This has the benefit that the same abstract
interpreter can be used to analyze program transformations
for all object languages and developers do not need to spec-
ify the semantics of their object language, which can be a
huge effort. Furthermore, developers can deduce semantic
properties of the object language from syntactic properties
of the meta language by encoding an interpreter of the object
language as a meta program.

8 Conclusion
We have proposed the abstract interpretation of program
transformations in order to assist developers in reasoning
about program transformations and the code they generate.
Based on our experience on developing an abstract inter-
preter for the Stratego transformation language, we have
presented and discussed three challenges we encountered:
termination, soundness, and precision. While these chal-
lenges are common for any static analysis tool, they are
specifically difficult to solve for static analyses of metap-
grograms. We discussed how these challenges affected the
development our abstract Stratego interpreter.
1https://github.com/svenkeidel/stratego-ai.git

4

https://github.com/svenkeidel/stratego-ai.git

Toward Abstract Interpretation of Program Transformations Meta’17, October 22, 2017, Vancouver, Canada

References
Alexander Aiken and Brian R. Murphy. 1991. Implementing regular tree

expressions. In Proceedings of the 5th ACM conference on Functional
programming languages and computer architecture. Springer-Verlag New
York, Inc., New York, NY, USA, 427–447.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program
analysis frameworks. In Proceedings of Symposium on Principles of Pro-
gramming Languages (POPL). ACM, 269–282.

Patrick Cousot and Radhia Cousot. 2002. Systematic design of program
transformation frameworks by abstract interpretation. In ACM SIGPLAN
Notices, Vol. 37. ACM, 178–190.

Sebastian Erdweg, Vlad Vergu, Mira Mezini, and Eelco Visser. 2014. Mod-
ular Specification and Dynamic Enforcement of Syntactic Language
Constraints. In Proceedings of International Conference on Modularity
(AOSD). ACM, 241–252.

David Van Horn and Matthew Might. 2010. Abstracting abstract machines.
In Proceeding of the 15th ACM SIGPLAN international conference on Func-
tional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010. 51–62.

John Hughes. 2000. Generalising monads to arrows. Sci. Comput. Program.
37, 1-3 (2000), 67–111.

Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative arrows
and their optimization. In Proceedings of International Conference on
Functional Programming (ICFP), Vol. 44. ACM, 35–46.

Alan Mycroft. 1982. Abstract interpretation and optimising transformations
for applicative programs. (1982).

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles
of program analysis. Springer.

Toshinori Takai. 2004. A verification technique using term rewriting systems
and abstract interpretation. In RTA, Vol. 3091. Springer, 119–133.

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Build-
ing Program Optimizers with Rewriting Strategies. In Proceedings of the
third ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98), Baltimore, Maryland, USA, September 27-29, 1998. 13–26.

5

	Abstract
	1 Introduction
	2 Abstract Interpretation of Stratego
	3 Challenge 1: Termination
	4 Challenge 2: Soundness
	5 Challenge 3: Precision
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

