
Type Systems for the Masses:
Deriving Soundness Proofs and Efficient Checkers

Sylvia Grewe1 Sebastian Erdweg1 Pascal Wittmann1 Mira Mezini1,2

1TU Darmstadt, Germany 2Lancaster University, UK

Abstract
The correct definition and implementation of non-trivial type
systems is difficult and requires expert knowledge, which
is not available to developers of domain-specific languages
(DSLs) in practice. We propose Veritas, a workbench that
simplifies the development of sound type systems. Veritas
provides a single, high-level specification language for type
systems, from which it automatically tries to derive soundness
proofs and efficient and correct type-checking algorithms.
For verification, Veritas combines off-the-shelf automated
first-order theorem provers with automated proof strategies
specific to type systems. For deriving efficient type checkers,
Veritas provides a collection of optimization strategies whose
applicability to a given type system is checked through
verification on a case-by-case basis. We have developed a
prototypical implementation of Veritas and used it to verify
type soundness of the simply-typed lambda calculus and of
parts of typed SQL. Our experience suggests that many of
the individual verification steps can be automated and, in
particular, that a high degree of automation is possible for
type systems of DSLs.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; I.2.3 [Artificial intelligence]: De-
duction and Theorem Proving

Keywords Type systems, type soundness, type checking,
first-order theorem proving

1. Introduction
Most type systems in practice are shipped without an in-

vestigation of the type system’s soundness. Practical type

systems are often too complex to permit an affordable formal
investigation, especially since language developers often lack
the necessary expertise. This is particularly true for domain-
specific languages (DSLs) routinely developed in practice
nowadays [11, 13, 15]. Our vision is to enable software engi-
neers and developers of DSLs to devise provably sound type
systems and to derive efficient and correct implementations
of type checking and type inference algorithms.

Automated verification of type soundness is a long-
standing open problem. In 2005, leading researchers in the
field defined the POPLMARK challenge [3], a benchmark
for type-soundness verification featuring first-class functions,
records, parametric polymorphism, and subtyping. While one
of the goals was to foster automated verification techniques,
to date there is no fully automated solution to the challenge.
Techniques that can automatically verify the POPLMARK
challenge or at least parts of the challenge are likely to
yield a high degree of automation for the verification of type
systems of DSLs, which tend to use more specialized, but
conceptually simpler type-system features.

A sound type system is only half of the story: It is equally
important to deliver efficient and correct implementations in
the form of type checkers and type inference algorithms. Yet,
often there is no guarantee that the type-checking algorithms
actually implement the specification of the type system. Incor-
rect implementations of sound security protocols have been
found to include extensive vulnerabilities [14]. It is impor-
tant to avoid similar problems for type systems, especially
when a language’s security model depends on the type sys-
tem and its correct implementation, as is the case for JVM
bytecode [22]. Detecting a discrepancy between specification
and implementation becomes harder due to optimizations
applied to implement a type checker efficiently. For example,
to avoid costly backtracking, it is necessary to reformulate
a type system in algorithmic form; while this reformulation
is crucial for performance, the transformation is difficult to
conduct and, without formal reasoning, may jeopardize the
correctness of the implementation. Another source of errors
is the adoption of efficient data structures that deviate from
the mathematical objects used in the formalization. For exam-
ple, Oracle’s implementation of the HotSpot bytecode verifier

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Onward!’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3688-8/15/10...
http://dx.doi.org/10.1145/2814228.2814239

137

Type checking /
inference

Type soundness?Specification

S. Erdweg and S. Grewe and P. Wittmann and M. Mezini 3

syntax TArrow: Typ "->" Typ -> Typ

contexts VarContext: ID{I} x Typ{O}
judgments VarContext{I} "|-" Exp{I} ":" Typ{O}

rules
x : T in C
============ T-Var
C |- x : T

(C; x : T1) |- e2 : T2
======================== T-Abs
C |- ⁄x:T1. e2 : T1 -> T2

C |- e1 : T1 -> T2
C |- e2 : T1
======================== T-App
C |- e1 e2 : T2

C |- e : T reduce(e) = Some(eÕ)
=================================== Preservation

C |- eÕ : T

const e1 : Exp
const e2 : Exp

axiom
reduce(e1) = someExp(eÕ)
C |- e1 : T
===================== Pre-app-IH1
C |- eÕ : T

axiom
reduce(e2) = someExp(eÕ)
C |- e2 : T
===================== Pre-app-IH2
C |- eÕ : T

goal
reduce(e1 e2) = someExp(eÕ)
C |- (e1 e2) : T
======================== Pre-app
C |- eÕ : T

Automated verification infrastructure

Domain-specific proof strategies

First-order theorem prover

Type-checker generator

Domain-specific optimization strategies

Constraint generator/solver

check
applicability
with

Type Systems for the Masses:
Deriving Soundness Proofs and E�cient Checkers
Sebastian Erdweg1, Sylvia Grewe1,
Pascal Wittmann1, and Mira Mezini1,2

1 Technische Universität Darmstadt, Germany
2 Lancaster University, United Kingdom

Abstract
The correct definition and implementation of non-trivial type systems is di�cult and requires
expert knowledge. Such knowledge is not available to developers of domain-specific languages and
specialized APIs in practice. We propose a research agenda that enables a layperson to devise
sound type systems with e�cient and correct checking and inference algorithms. Specifically,
we propose an approach that automatically derives soundness proofs and e�cient and correct
algorithms from a single, modularized, high-level specification of a type system. Modularization
of the specification and composability of the derived proofs and algorithms are key concerns for
the scalability of the underlying verification procedure and for enabling specification reuse for
common language features.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Type systems, type soundness, type checking, theorem proving

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 The full language listings

sorts Exp Typ

syntax
var: ID -> Exp
abs: "⁄" ID ":" Typ "." Exp -> Exp
app: Exp " " Exp -> Exp

function isValue : Exp -> Bool [...]
function subst : ID Exp Exp -> Exp [...]

function reduce : Exp -> Option[Exp]
reduce(⁄x:S. e) = None
reduce((⁄x:S. e1) e2) = let eÕ

2 = reduce(e2) in
if isSome(eÕ

2)
then Some((⁄x:S. e1) getSome(eÕ

2))
else if isValue(e2)

then Some(subst(x, e2, e1))
else None

reduce(e1 e2) = let eÕ
1 = reduce(e1) in

if isSome(eÕ
1)

then Some(getSome(eÕ
1) e2)

else None
reduce(x) = None

© Sebastian Erdweg and Sylvia Grewe and Pascal Wittmann and Mira Mezini;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 1. High-level architectural overview of Veritas.

comprises more than 3000 lines of C++ code. While efficient,
the correctness of the implementation is not guaranteed and
hard to check manually.

We present Veritas, a workbench for developing sound
type systems with efficient type checking. Figure 1 gives a
high-level overview of Veritas’s design, consisting of: (1) A
specification language for the syntax, dynamic, and static
semantics of a language, (2) a verification infrastructure re-
sponsible for proofs about type-system properties, and (3)
a type-checker generator infrastructure responsible for de-
riving efficient and correct type checkers and type inference
algorithms. The checker generator internally uses the verifi-
cation infrastructure to select applicable optimizations. It is
important to note that Veritas only requires users to develop
a single type-system specification, from which Veritas de-
rives soundness proofs and efficient type checkers that are
consistent with respect to each other.

For proving type soundness, we use automated first-order
theorem proving in combination with automated proof strate-
gies that incorporate domain knowledge about type systems.
As type soundness in most type systems is not a first-order
property, proof strategies are necessary, for example, to syn-
thesize and apply domain-specific induction schemes from
the specification. Moreover, the proof strategies synthesize
the main theorems and auxiliary lemmas, such as progress
and preservation as well as substitution lemmas.

To generate efficient type checkers, we define a set of
optimization strategies that apply type-system domain knowl-
edge to identify inefficiencies and rewrite the type system
into a form that is algorithmically more efficient. To be ef-
fective, the optimizations have to make assumptions about
the type system. We capture these assumptions in conserva-
tive applicability conditions of the optimizations and use the
automated verification scheme from above to select soundly
applicable optimizations. This is essential to guarantee that
the final optimized type checker is correct by construction,
that is, it conforms to the high-level type-system specification
and the soundness proof carries over to the implementation.

A more long-term vision is to support the modular speci-
fication and verification of language features, such that lan-

guage developers can pick and choose language features as
needed. Of course, we must guarantee the composed type
system to be sound. To ensure scalability, we want to reuse as
much of the individual proofs as possible. In contrast to most
prior work, we are willing to accept that proof composition
sometimes fails, in which case we discard the invalid proofs
and automatically verify the involved lemmas again in the
composed language.

While this project is at an early stage, our experiments so
far support the feasibility of Veritas. We have been able to use
a prototypical implementation of Veritas with the automated
first-order theorem prover Vampire [20] to verify the type
soundness of the simply-typed lambda calculus and of parts
of a typed variant of SQL. For these proofs, we generated
auxiliary lemmas by hand and manually applied induction.
Moreover, we have successfully devised and applied optimiza-
tion strategies that bring a context-free subtyping relation into
an algorithmic form. Specifically, our optimization strategy
eliminates generic reflexivity and transitivity subtyping rules,
thus improving performance significantly. While far from
conclusive, our experiments so far are very encouraging. In
summary, we make the following contributions:

• We present the design of Veritas, a workbench for devel-
oping sound type systems with efficient type checkers.
Veritas provides a high-level specification language and
derives a soundness proof and an efficient checker from a
single type-system specification.
• Veritas utilizes the power of modern automated first-order

theorem provers for non-inductive reasoning. On top of
that, Veritas provides automated support for induction and
type-system-specific verification strategies.
• Veritas identifies sources of inefficiency in a type system

and includes optimization strategies to rewrite a type
system into an optimized form. To ensure optimizations do
not change a type system, Veritas verifies the applicability
condition of an optimization before applying it.
• We developed a prototypical implementation of Veritas

and conducted case studies on the simply-typed lambda
calculus and on a typed variant of SQL.

138

S. Erdweg and S. Grewe and P. Wittmann and M. Mezini 3

syntax TArrow: Typ "->" Typ -> Typ

contexts VarContext: ID{I} x Typ{O}
judgments VarContext{I} "|-" Exp{I} ":" Typ{O}

rules
x : T in C
============ T-Var
C |- x : T

(C; x : T1) |- e2 : T2
======================== T-Abs
C |- ⁄x:T1. e2 : T1 -> T2

C |- e1 : T1 -> T2 C |- e2 : T1
=================================== T-App

C |- e1 e2 : T2

C |- e : T reduce(e) = some(eÕ)
=================================== Preservation

C |- eÕ : T

const e1 : Exp
const e2 : Exp

axiom
reduce(e1) = some(eÕ)
C |- e1 : T
===================== Pre-app-IH1
C |- eÕ : T

axiom
reduce(e2) = some(eÕ)
C |- e2 : T
===================== Pre-app-IH2
C |- eÕ : T

goal
reduce(e1 e2) = some(eÕ)
C |- (e1 e2) : T
======================== Pre-app
C |- eÕ : T

Type-system specificationLanguage syntax and semantics

Generated theorem (example)

2 Type Systems for the Masses

sorts Exp Typ

syntax
var: ID -> Exp
abs: "⁄" ID ":" Typ "." Exp -> Exp
app: Exp " " Exp -> Exp

function is-value : Exp -> Bool [...]
function subst : ID Exp Exp -> Exp [...]

function reduce : Exp -> Option[Exp]
reduce(⁄x:S. e) = none
reduce((⁄x:S. e1) e2) = some(subst(x, e2, e1))
reduce(e1 e2) = let eÕ

1 = reduce(e1) in
if is-some(eÕ

1)
then some(get-some(eÕ

1) e2)
else none

reduce(x) = none

S. Erdweg and S. Grewe and P. Wittmann and M. Mezini 3

syntax TArrow: Typ "->" Typ -> Typ

contexts VarContext: ID{I} x Typ{O}
judgments VarContext{I} "|-" Exp{I} ":" Typ{O}

rules
x : T in C
============ T-Var
C |- x : T

(C; x : T1) |- e2 : T2
======================== T-Abs
C |- ⁄x:T1. e2 : T1 -> T2

C |- e1 : T1 -> T2 C |- e2 : T1
=================================== T-App

C |- e1 e2 : T2

C |- e : T reduce(e) = Some(eÕ)
=================================== Preservation

C |- eÕ : T

const e1 : Exp
const e2 : Exp

axiom
reduce(e1) = someExp(eÕ)
C |- e1 : T
===================== Pre-app-IH1
C |- eÕ : T

axiom
reduce(e2) = someExp(eÕ)
C |- e2 : T
===================== Pre-app-IH2
C |- eÕ : T

goal
reduce(e1 e2) = someExp(eÕ)
C |- (e1 e2) : T
======================== Pre-app
C |- eÕ : T

Figure 2. Example specification for the simply-typed lambda calculus.

2. The Veritas Approach
In this section, we describe the design of Veritas and how
we approach the derivation of type-soundness proofs and of
optimized type systems. We illustrate our approach using
the simply-typed lambda calculus and subtyping as running
examples and highlight the involved challenges.

2.1 Specification of Type Systems
We aim at automatically deriving soundness proofs and effi-
cient checkers from a single specification of a type system.
This requires a specification language that supports proof au-
tomation and optimizations of type checkers. We designed a
preliminary domain-specific language for specifying abstract
and concrete syntax, dynamic semantics for the specified
syntax, typing contexts, typing judgments, and typing rules.
For type soundness verification, Veritas generates axiomatic
specifications and auxiliary lemmas from a specification. For
supporting optimizations, our language supports the annota-
tion of input and output positions in the declaration of typing
contexts and typing judgments. The type-checker generator
of Veritas uses these annotations for applying optimizations
and for generating efficient type-checker implementations.

In the upper part of Figure 2, we exemplify our specifica-
tion language with the simply-typed lambda calculus. On the
left-hand side, we specify the sorts, syntax, and dynamic se-
mantics of the calculus, where sort ID is predefined. We define
the semantics as a small-step call-by-name operational se-
mantics in function reduce. On the right-hand side, we define

the type system of the calculus including syntax for function
types, a typing context, a typing judgment, and typing rules.
Using input and output annotations, we declare that the typ-
ing context VarContext maps variable identifiers of sort ID
to types of sort Typ. Similarly, the declared typing judgment
takes a context and an expression as input and produces a
type as output. In the premises of rules T-Var and T-Abs, we
use the built-in syntax for contexts to look up and insert a
variable binding, respectively. Veritas generates this syntax
using the input and output annotations of the typing context
specification.

From a specification, Veritas generates axiomatic specifi-
cations in the standardized TPTP format [34], which can be
processed by many theorem provers. TPTP syntax consists
of axioms and conjectures in the from of first-order formulas
on function terms. Consequently, Veritas first translates all
declared constructors, typing contexts, the generated lookup
and insertion syntax, and typing judgments into function sym-
bols. Next, Veritas synthesizes axioms about the equality and
inequality of the function terms that represent constructors
and form a term algebra. We translate function definitions
into first-order implications, where each individual case of a
function definition becomes a separate implication. Typing
rules are translated similarly: Veritas translates all premises
(above the bar) and all conclusions (below the bar) to TPTP,
and the conjunction of the premises implies the conjunction
of the conclusions.

139

Generated for Verification

Axioms Theorems/lemmas

Term algebra

Axiomatic specifications

Predicate decl., axiomatic specification

Functions for lookup and for insertion

Inversion lemmas, substitution lemma

Inversion lemma, Progress & Preservation

Structural properties (e.g., weakening)

Specification

Abstract syntax tree

Reduction, Substitution

Typing rules

Typing context

Figure 3. Overview of generated axioms, theorems, and lemmas for the specification of the simply-typed lambda calculus.

The column Axioms of Figure 3 gives a high-level
overview of the axioms that Veritas generates. For exam-
ple, Veritas translates the app constructor from Figure 2 to
a function vapp with two arguments. The generated axioms
specify that two app terms are equal if and only if the two
arguments to vapp are equal and that a function term vapp
is never equal to a function term modeling constructors var
or abs. Veritas translates the four function equations for the
function reduce into five TPTP axioms by splitting the if ex-
pression in the third equation into two separate cases. The
translation of function definitions also takes the order of the
function equations into account. For example, the TPTP rep-
resentation of the last equation of reduce explicitly requires
the argument x to be unequal to any of the argument patterns
from the previous cases.

Consistency Checks. Type-system specifications can be hard
to get right. Undesired logical inconsistencies might creep
into the function definitions or typing rules by mistake. For
example, the conclusion of a typing rule might contradict
its premises. It is also possible that no single definition of
a specification is inconsistent by itself, but that definitions
yield a inconsistency in combination. Inconsistencies of this
kind can be very hard to discover manually.

Veritas provides a lightweight approximate consistency
check to help developers in discovering such logical incon-
sistencies even before attempting a full type-soundness proof.
The consistency check collects the axioms generated from a
specification and passes them to a first-order theorem prover,
asking it to prove false from the set of axioms. If this proof
succeeds, a logical inconsistency was discovered and Veritas
reports the function definition equations or typing rules that
cause the inconsistency. If the first-order theorem prover can-
not construct a proof for false in the given time, then either
there is no logical inconsistency in the definitions or there
is an inconsistency that is too complex to be discovered in
the given time. Our experiments with the consistency check
show that a first-order theorem prover like Vampire [20] can

discover even complex logical inconsistencies within a few
seconds.

Challenges. The specification language should support the
specification of arbitrary programming-language features. For
example, we plan to incorporate support for variable-length
data structures such as records. Furthermore, the specification
language should provide notation comprehensible to software
engineers and developers of DSLs. Our current notation is
based on literature on type systems. We plan to revise this in
the future, for example, by building on the syntax used by
Spoofax [38].

2.2 Automated Metatheory
Veritas contains a verification infrastructure that automates
type-soundness proofs as far as possible by applying domain-
specific knowledge about type systems. The verification
infrastructure automatically derives soundness theorems,
or more specifically, progress and preservation theorems
(see [28]). For example, for the specification of the simply-
typed lambda-calculus described above, we prove the preser-
vation theorem shown at the bottom of Figure 2.

Typically, the proofs of such theorems require induction,
which is a higher-order reasoning technique. However, we
discovered that the proofs of individual induction cases often
only require first-order reasoning if the appropriate induction
hypotheses are locally given as axioms. This is possible
because the formulation of preservation and progress only
requires first-order logic. Veritas exploits this observation by
applying domain-specific proof techniques to break down
proofs into subgoals that can be solved by automated first-
order theorem provers.

The domain-specific proof techniques include, for exam-
ple, the generation of several inversion lemmas, such as inver-
sion of the typing relation and of the reduction semantics. For
our running example of the simply-typed lambda-calculus,
Veritas generates the the inversion lemma T-inv shown in
Figure 4. Lemma T-inv states that, given a well-typed e, one
of the three typing rules from Figure 2 must have succeeded

140

C |- e : T
============================== T-inv
OR
=> exists x.

e == x and
x : T in C

=> exists x, e2, T1, T2.
e == λ x:T1. e2 and
T == T1 -> T2 and
(C; x : T1) |- e2 : T2

=> exists e1, e2, S.
e == app(e1, e2) and
C |- e1 : arrow(S, T) and
C |- e2 : S

Figure 4. Inversion lemma for typing relation from STLC

on e. Veritas displays T-inv to the user in the format of our
specification language for inspection, and Veritas includes
the TPTP translation of T-inv in the axiom set that is used as
input to the automatic first-order theorem prover.

Other lemmas that are typically used in type-soundness
proofs are lemmas on preservation and progress of auxiliary
functions used in the reduction semantics. Veritas automat-
ically generates such auxiliary lemmas for combinations of
auxiliary functions and typing judgments. In general, Veritas
conservatively generates more lemmas than may be necessary
for proving type soundness, but only verifies those lemmas
that are actually required.

For example, in the simply-typed lambda-calculus from
Figure 2, function reduce uses function subst for substitution
and contains one typing judgment. Hence, Veritas generates
one lemma stating that substitution makes progress on well-
typed expressions and one lemma stating that substitution
does not change the type of a well-typed expression. The
latter lemma is commonly known in the literature as substitu-
tion lemma [28]. It is required in the proof of the preservation
theorem from Figure 2. The lemma on progress of substitu-
tion, however, is not required in the progress proof for the
simply-typed lambda-calculus and will hence be discarded.

Apart from lemmas for auxiliary functions, preservation
and progress proofs often require lemmas about structural
properties of the typing context. Some of these lemmas can be
readily derived based on the annotation of the context’s input
and output positions. As shown in Figure 2, the context of the
simply-typed lambda calculus takes variable names as input
and maps them to their type. This entails that the context is
not order-sensitive and ignores duplicates. Other structural
properties such as weakening or strengthening depend on
the type system at hand. Veritas generates such lemmas
but only verifies those that are required by the soundness
proof. For the simply-typed lambda-calculus example, Veritas
generates strengthening and weakening lemmas, both of
which are required in the soundness proofs. The right column
of Figure 3 gives an overview of all lemmas which Veritas

generates for the soundness proof of the type system of the
simply-typed lambda calculus.

Induction. Beyond lemmas from the provided specification,
we also derive induction schemes for structural induction, for
induction on recursive functions, and for induction on typing
derivations. We automatically apply these induction schemes
in proofs, starting with the main progress and preservation
theorems. We use domain knowledge and heuristics to select
an induction scheme and induction variables. For example,
structural induction is often applied on expressions of the
specified language and not, for example, on the context. When
applying an induction scheme, we generate induction cases as
subgoals along with the corresponding induction hypotheses.

We translate each induction subgoal into the TPTP format
and pass it to an automated first-order theorem prover. To each
induction subgoal, we add the available induction hypotheses
and the previously generated auxiliary lemmas and axiomatic
specifications as axioms. Based on these axioms, we invoke
the first-order prover to derive a proof for the induction
subgoal. We interpret the result returned by the prover to
decide how to proceed with the proof. If the proofs of all
induction subgoals are successful, we determine which of the
generated lemmas were used within the proofs and proceed
with proving each of these lemmas using the same overall
approach.

For example, consider the preservation theorem for the
simply-typed lambda calculus at the bottom of Figure 2. Our
verification infrastructure applies structural induction on the
input expression of the typing judgment. The application case
of the preservation theorem with e = e1 e2 looks as follows:

consts e1, e2 : Exp

goal
reduce(e1 e2) = some(e′)
C |- (e1 e2) : T
======================== Pre-app
C |- e′ : T

axioms
reduce(e1) = some(e′) C |- e1 : T
=============================== Pre-app-IH1
C |- e′ : T

reduce(e2) = some(e′) C |- e2 : T
=============================== Pre-app-IH2
C |- e′ : T

We fix the subexpressions e1 and e2 locally as constants to en-
sure the induction hypotheses Pre-app-IH1 and Pre-app-IH2
only apply to these subexpressions; all other variables are
universally quantified. Our infrastructure translates the induc-
tion case to TPTP and passes it to an automated first-order
theorem prover, along with the induction hypotheses as well
as inversion and substitution lemmas. The automated proof
succeeds as we report in Section 4.

141

User-supplied types and subtyping relation:

judgments Type{I} "<:" Type{I}
syntax TArrow: ... -> Typ
syntax TInt: "int" -> Typ

S = T
====== S-Refl
S <: T

T1 <: S1 S2 <: T2

===================== S-Arrow
S1 → S2 <: T1 → T2

Unfolded reflexivity typing rule:

int = int
======== S-Refl-1
int <: int

int = T1→T2

=========== S-Refl-2
int <: T1→T2

S1→S2 = int
=========== S-Refl-3
S1→S2 <: int

S1→S2 = T1→T2

=============== S-Refl-4
S1→S2 <: T1→T2

Optimized subtyping relation (S-Refl-2 and S-Refl-3 are unsatisfiable; S-Arrow subsumes S-Refl-4):

======== S-Refl-1
int <: int

T1 <: S1 S2 <: T2

===================== S-Arrow
S1 → S2 <: T1 → T2

Figure 5. Optimizing reflexivity of subtyping by unfolding and subsumption.

Challenges. In general, automated verification does not scale
well with the size of the input theory. An experiment that we
conducted confirms that even for the simply-typed lambda
calculus, the first-order prover sometimes fails to find a proof
within a reasonable amount of time when providing it with
all available lemmas (that is, including unnecessary ones).
Hence, it is important to provide as few lemmas to the prover
as possible. To this end, we will design type-system-specific
heuristics for selecting lemmas a priori. For example, we
can leave out lemmas on functions that are not transitively
called within the current proof goal. Another challenge is
handling variable binding, recognized as one of the main
challenges in the POPLMARK challenge [3]. Our current
approach uses a notion of α-equivalence based on nominal
logic [29]. Since our specification language abstracts from
the actual encoding of typing contexts in first-order logic, we
will experiment with different alternatives, potentially using
multiple approaches side-by-side. Another challenge is to
derive all relevant induction schemes and auxiliary lemmas
such that the automated verification of subgoals succeeds.
Guided by our experiments with the POPLMARK challenge
and other calculi, we will extend our proof strategies to
derive relevant lemmas, incorporating techniques developed
by others that proved successful [1, 21, 30].

2.3 Deriving Efficient Type Checkers
Given a type-system specification, we generate the correct
and efficient implementation of a type checker. The cor-
rectness of the implementation is mandatory to establish a
link between the implementation and the specification with
its metatheoretical properties. However, the generated type
checker also has to be efficient to be useful in practice.

The main source of inefficiency of type checking comes
from typing rules that are not syntax directed, that is, typing
rules with overlapping conclusions. Given an input program
and overlapping typing rules, we cannot statically decide

which typing rule to apply, but instead have to use costly
backtracking. Another source of inefficiency is the use of
inefficient data structures. In particular, pure mathematical
data structures such as associative lists or an immutable
representation of types often yield insufficient performance.
To generate efficient type checkers, we eliminate overlapping
typing rules by refactoring the type system and we select
efficient data structures based on the user-supplied annotation
of input and output positions. We then translate the type
system into a constraint system. Here, we focus on the
elimination of overlapping typing rules.

We declare a refactoring as a set of optimization strategies.
Each strategy defines a transformation of the type system and
an applicability condition that captures the optimization’s
assumptions on the type system. An applicability condition
can be an arbitrary first-order formula. We use our verification
infrastructure to check if an optimization is applicable to
the current type system. We prove the correctness of the
transformation itself by hand.

For example, we provide optimizations to eliminate typing
rules with unsatisfiable premises and to remove premises that
are tautologies. The applicability condition of these optimiza-
tions is the premise whose unsatisfiability or tautology needs
to be shown. Other optimizations handle overlapping typing
rules. For example, we provide an optimization that unfolds
typing rules by replacing metavariables in input positions of
the conclusion with all possible combinations of syntactic
constructors in order to narrow down overlapping rules to
single syntactic constructs. As final example, we provide an
optimization that checks subsumption of overlapping typing
rules. Given two typing rules Pi

C and Qj

D such that D ⇒ C
and

∧
Pi ⇒

∧
Qj , we eliminate the former rule and only

keep the stronger, latter rule.
Using these optimizations, we can for example automati-

cally optimize the declarative specification of reflexive sub-
typing as shown in Figure 5, where we added base type int.

142

The rule for reflexivity S-Refl overlaps with rule S-Arrow.
We can eliminate the overlap by first unfolding metavariables
S and T in S-Refl, eliminating rules S-Refl-2 and S-Refl-3
with unsatisfiable premises as well as rule S-Refl-4, which is
subsumed by S-Arrow.

To support informative type-error messages, we adopt
a proposal by Heeren et al. to annotate error messages on
premises in typing rules [18]. However, Heeren et al. directly
use type constraints as premises such that the constraint solver
can report the error messages attached to those constraints
that fail. We found using type constraints too invasive on DSL
developers because type constraint are relatively low-level
and we would rather allow DSL developers to use arbitrary
logical premises (as we did in the above examples). For this
reason, we developed and adopted a variant of Heeren et
al.’s approach that supports error annotations on arbitrary
premises, where error messages can refer to metavariables
available in the typing rule. When generating constraints,
we propagate error messages to type constraints and report
corresponding errors when a constraint fails during constraint
solving.

Challenges. To identify relevant optimizations, we will in-
vestigate different type systems, from lambda calculi to DSLs
and languages like Java, and analyze the occurring overlap-
ping typing rules. This will also provide insights into heuris-
tics that govern the order of applying optimizations. Further
challenges include the efficient handling of type systems that
use type normalization and the automated selection of effi-
cient data structures that behave equivalent to the ones used
in the formalization.

2.4 Language and Proof Composition
To enable scalability of our verification and type-checking
infrastructures, we support the composition and extension
of specifications together with the associated proofs and
type checkers. We handle large languages by deriving and
composing proofs and optimized type checkers of smaller
parts of the language. To this end, we do not aim at deriving
open-world proofs and type checkers in the sense that they
already account for potential extensions of the type system.
Rather, we aim at porting proofs and type checkers derived
under a closed-world assumption to an extended closed world,
reusing as much of the previous proofs and type checkers as
possible.

We adapt our specification language to provide extension
points that allow for adding new constructors to a syntactic
domain, new equations to a function definition, and new
typing rules for a typing judgment [12, 24]. We track the
use of closed-world reasoning within our proofs in order
to determine which parts of a proof are affected by the
new definitions. Often we can restore the proof by only
considering the added definitions instead of redoing the proof
from scratch. We do the same for proofs that were used to

validate the applicability of optimizations and incrementally
apply optimizations to the new typing rules.

For example, consider adding syntax, reduction rules, and
typing rules for numeric literals and addition to the simply-
typed lambda calculus. The extension weakens the previously
derived induction schemes and inversion lemmas by adding
alternative cases. Thus, we have to reconsider every proof
that uses an outdated induction scheme or inversion lemma.
For example, we used structural induction in the proof of type
preservation. We extend the proof by adding induction cases
for numeric literals and addition. Only when no monotone
extension of a proof is possible, we start the proof from
scratch.

Challenges. To track the use of closed-world reasoning, we
must inspect the used proof strategies and proofs generated
by the first-order theorem prover in order to derive delta-
theorems whose proof suffices to extend the original theorem
to the extended system. Another challenge is to derive incre-
mental versions of type-system optimizations. It is not obvi-
ous if our prior work on incremental query execution [25] is
applicable here.

3. Prototypical Implementation
We have developed a prototypical implementation of Veritas
using the Spoofax language workbench [19]. The source
code of our prototype is available online.1 Figure 6 shows a
screenshot of our prototype.

Our prototype provides a specification language like the
one presented in Section 2.1 but excludes concrete syntax
and includes modules for scoping definitions. Given a speci-
fication, our implementation automatically generates a term
algebra for the abstract syntax, axiomatic specifications and
inversion lemmas for functions, and TPTP proof goals for
lemmas and theorems. Currently, we add progress and preser-
vation theorems as well as auxiliary lemmas to the specifi-
cation by hand. Our Spoofax-based implementation comes
with an Eclipse plug-in that performs syntactic and semantic
analysis of a specification.

Our Eclipse plug-in allows developers to trigger consis-
tency checking as well as the verification of proof goals. For
every proof goal, we collect all axioms and lemmas that are
available in the lexical context of the proof goal. We translate
the axioms, lemmas, and the proof goal into the standard-
ized TPTP format [34]. In our current implementation, we
apply induction schemes by hand as explained in Section 2.2.
In fact, we currently delegate all proof goals to first-order
theorem provers.

As first-order theorem prover, our prototype uses Vam-
pire [20]. Vampire is a state-of-the-art automated theorem
prover that has won the system competition of the conference
of automated deduction in the category unrestricted first-order
problems continuously since 2002. Vampire reads proof goals

1 https://github.com/stg-tud/type-pragmatics

143

https://github.com/stg-tud/type-pragmatics

Figure 6. Our Veritas prototype provides an Eclipse plug-in for editing specifications and triggering verification.

in the TPTP format and yields either a proof that the goal
is valid, a proof that the goal is invalid, or a timeout. If the
Vampire yields a proof, it is possible to extract the proof tree
and check it for correctness.

Our prototype supports the optimization and generation
of type checkers for simple type systems. To this end, we
first make all patterns in typing rules linear and then apply
optimizations in a fixpoint iteration, using the optimizations
described in Section 2.3. We use the optimized typing rules
for constraint generation. The set of supported constraints
is currently limited to equality and subtype constraints. In
case optimizations leave overlapping typing rules, we use
backtracking to consider alternative constraint sets.

4. Case Study 1: Simply-typed λ-calculus
In our first case study, we used our prototype of Veritas to
model the type system of the simply-typed lambda calculus.
Most of this case study was already covered in Section 2.
Here, we provide some further details.

Verification of Type Soundness. Vampire was able to auto-
matically prove most of the given induction cases, including
rather complicated cases that require lots of auxiliary lemmas
and proof steps. For example, the proof of preservation for the
application case uses 24 auxiliary statements, some of which

Defined functions 11

Defined axioms 10

Induction hypotheses 18

Verified lemmas 9

Proof by induction 5

Goals submitted to Vampire 25

Total Vampire run-time 72.277 sec

Figure 7. Statistics on the simply-typed lambda calculus.

result from function definitions, some of which result from
type-rule definitions, and some of which refer to previously
proved lemmas. In particular, the proof used its induction
hypothesis and the substitution lemma.

Figure 7 gives an overview of our specification of the
simply-typed lambda calculus. In our current version, we
defined 10 axioms for conducting the proofs. These axioms
include inversion lemmas that our prototype of Veritas does
not generate automatically yet. Furthermore, the 10 axioms
include axioms about name-binding: We implemented a
substitution function that replaces bound variables with fresh
variables to avoid capture. We specified the generation of

144

syntax
table: AttrList RowList -> Table
named-ref : TName -> TRef

tvalue : Table -> Query
select-all-from : TRef -> Query
select-some-from : AttrList TRef -> Query
union : Query Query -> Query

Figure 8. Syntax for a subset of SQL.

fresh variables axiomatically by requiring that a fresh variable
cannot occur freely in an expression. We also introduced a
predicate for determining whether two expressions in the
simply-typed lambda calculus are α-equivalent. Again, we
defined this predicate axiomatically instead of implementing
a concrete function. This is similar to models of name-binding
in nominal logic [29]. As mentioned earlier in Section 2.2, we
are not yet committed to a specific approach to name-binding
and used axiomatic specifications instead.

Type Checking. We used our prototype to derive a type
checker for the simply-typed lambda calculus with numbers
and subtyping. The specification includes declarative rules for
reflexivity and transitivity, which our prototype successfully
eliminates through optimization. We also have experimented
with a strategy to eliminate the subsumption rule using an
optimization that composes typing rules by inlining one rule
into the premise of another. We have yet to implement and
evaluate this optimization. If successful, the resulting type
checker contains no overlapping typing rules and will not
require any backtracking.

Summary. Our first case study confirms two of our central
hypotheses, namely that automated first-order theorem prov-
ing is capable of verifying induction cases of type-soundness
proofs and that optimizations with applicability conditions
can be implemented and used for deriving efficient type
checkers.

5. Case Study 2: Typed SQL
SQL is a query language for data tables that is not statically
typed. Hence, SQL queries that access non-existent tables or
attributes of tables will be executed, but fail at run-time. We
started a case study in our prototype on the development of a
sound type system for a statically typed variant of SQL. We
fully modeled SQL’s syntax, reduction semantics, and typing
rules and successfully verified type preservation and progress
for four selected language constructs.

Syntax. Figure 8 shows part of our syntactic model for
SQL. We model tables (sort Table) as a list of attribute
names (AttrList) and a lists of rows, which are in turn lists
of fields. SQL queries (Query) evaluate into table values
(constructor tvalue). Constructor select-all-from models pro-
jection of all attributes of a table (SELECT * FROM TRef).

function
reduce : TStore Query -> Option[Query]
reduce(ts, tvalue(t)) = none
reduce(ts, select-all-from(ref)) =

let t = lookup-ref(ref, ts) in
if is-some(t)
then some(tvalue(get-some(t)))
else none

reduce(ts, select-some-from(al, ref)) =
let t = lookup-ref(ref, ts) in

if is-some(t)
then let projected = project(al, t) in

if is-some(projected)
then some(tvalue(table(al, get-some(projected))))
else none

else none

reduce(ts, union(tvalue(t1), tvalue(t2))) =
let t = table-union(t1, t2)

if is-some(t)
then some(tvalue(get-some(t)))
else none

reduce(ts, union(tvalue(t1), q2)) =
let q′2 = reduce(ts, q2)

if is-some(q′2)
then some(union(tvalue(t1), get-some(q′2)))
else none

reduce(ts, union(q1, q2)) =
let q′1 = reduce(ts, q1)

if is-some(q′1)
then some(union(get-some(q′1), q2))
else none

Figure 9. Reduction semantics for a subset of SQL.

Here, we only show named table references (named-ref), but
SQL also features references to joined tables. Constructor
select-some-from models projection of a table to a given
list of attributes (SELECT AttrList FROM TRef). Construc-
tor union combines two SQL queries by building a single
duplicate-free table that contains all rows yielded by the two
queries.

Reduction Semantics. Figure 9 shows an excerpt of the dy-
namic semantics of SQL. We modeled the dynamic semantics
as a small-step structural operational semantics that assumes
a table store, which we modeled as a list of bindings from
table names (TName) to tables (Table). The projection cases
select-all-from and select-some-from look up a table refer-
ence (TRef) in a given table store, using auxiliary function
lookup-ref (not shown). In the case of select-all-from, the se-
mantics simply yields the table that results from the lookup.
In the case of select-some-from, the dynamic semantics first
looks up the referenced table and then consecutively tries
to find columns for each attribute selected, using auxiliary
function project. The dynamic semantics gets stuck if the

145

welltyped-table(TT, table(al, rows))
=============================== T-tvalue
TTC |- tvalue(table(al, rows)) : TT

clookup(ref, TTC) == some(TT)
=============================== T-select-all-from
TTC |- select-all-from(al, ref) : TT

clookup(ref, TTC) == some(TT)
project-type(al, TT) == some(TTp)
================================== T-select-some-from
TTC |- select-some-from(al, ref) : TTp

TTC |- q1 : TT
TTC |- q2 : TT
======================== T-union
TTC |- union(q1, q2) : TT

Figure 10. Typing rules for a subset of SQL.

referenced table is unbound or if the projection selects an
attribute not provided by the referenced table.

For union queries, we specified three reduction rules.
We defined one contraction rules for building the union of
two table values, and we defined two congruence rules for
recursively performing a reduction step on either of the two
subqueries. Reduction of a union query gets stuck if either of
the two subqueries gets stuck or if the subqueries yield tables
that define different attributes.

Note that for the current subset of SQL which we consider,
reduce never changes the table store. In the future, we plan
to add SQL expressions that create, update, or delete tables
from the table store.

Typing. Well-typed SQL queries do not get stuck, but fully
evaluate to well-typed tables. We define the type of an SQL
query as the type of the table that this SQL query yields when
evaluated. The type of a table is a list of pairs of attribute
names and field types, that is, a typed table schema. A field
type in a typed table schema fixes the type of all fields in
a corresponding column. Analogously to the table store in
the dynamic semantics, we use a table-type context in the
type system. A table-type context is a list of bindings from
table names to table types. We use the metavariable TT to
denote table types and metavariable TTC to denote table-type
contexts.

Figure 10 shows some of the typing rules of SQL. For
type checking table values (TValue) with regard to a table
type TT, we require that predicate welltyped-table is satisfied.
Predicate welltyped-table checks whether the attribute names
in TT and in the attribute list al of the table are the same, and
whether the values stored in the rows of the table adhere to

the field types in TT. This implicitly includes a check that all
rows have the same length.

We type check a projection select-all-from by resolving
the table reference ref in the context, using auxiliary function
clookup. Note that this lookup can fail if ref cannot be resolved
in TTC. Our typing rule explicitly requires that the lookup
succeeds and yields some table type TT. For select-all-from,
this type is the result type of the query. For select-some-from,
we first project the table type to attribute list al using function
project-type, which fails if not all required attributes are
defined by the type. The result type of the query becomes the
result of the call to project-type. To type check a union query,
we require that both subqueries are not only well-typed but
actually provide tables of the same type.

Type Soundness. To prove our specification of typed SQL
sound, we need to show that well-typed SQL queries do not
get stuck but evaluate to well-typed tables. To this end, we
define preservation and progress theorems:

theorem
reduce(ts, q) = some(q′)
TTC |- q : TT
StoreContextConsistent(ts, TTC)
============================ SQL-Preservation
TTC |- q′ : TT

theorem
!is-value(q)
TTC |- q : TT
StoreContextConsistent(ts, TTC)
============================= SQL-Progress
exists q′. reduce(ts, q) = some(q′)

The preservation and progress theorems both require that
the table store ts used in the dynamic semantics and the
table-type context TTC used in the typing rules are consistent
with each other (predicate StoreContextConsistent). Predicate
StoreContextConsistent checks whether all tables in the table
store are well-typed according to the corresponding type in
the table-type context.

So far, we have successfully verified preservation and
progress for tvalue and select-all-from, preservation for
select-some-from, and progress for union. Figure 11 sum-
marizes our efforts. We defined and proved 17 lemmas, 9
of which required an induction proof. In total, we submitted
35 proof goals to Vampire, which ran for a total of 142.749
seconds.

Summary. Our experience so far with using Veritas for
specifying a sound type system for SQL suggests Veritas is
well-suited for developing sound type systems for DSLs. In
particular, we are confident that we can automate significant
portions of finding type-soundness proofs in subsequent
versions of Veritas.

146

Defined functions 31

Function tests 34

Defined axioms 7

Induction hypotheses 10

Verified lemmas 17

Proof by induction 9

Goals submitted to Vampire 35

Total Vampire run-time 142.749 sec

Figure 11. Statistics on the current status of typed SQL.

6. Discussion
As described in the previous Section, we have applied Veritas
to model the simply-typed lambda calculus and a typed vari-
ant of SQL. In this section, we report on our experience with
applying Veritas. We describe shortcomings of the Veritas
prototype and suggest features to remedy these shortcomings.

6.1 Metatheory for DSL Developers
The targeted audience of Veritas are DSL developers who
want to augment their DSL with a type system but lack the
required knowledge about type systems. Our vision is that a
DSL developer only specifies the DSL’s semantics and type
system, from which Veritas automatically derives a soundness
proof and an efficient type checker. To provide good usability
to DSL developers, it is important to hide the technical details
of how Veritas conducts proofs and selects optimizations.
Therefore, Veritas must provide a high degree of automation
and must reduce user interaction to a minimum.

One of the reasons we believe a high degree of automa-
tion is possible for DSLs is that DSL type systems are often
conceptually simpler than type systems of general-purpose
languages. For example, many DSLs do not make use of
polymorphic language constructs and only require reasoning
about simple types. Our SQL case study supports this hypoth-
esis: All operations act upon tabular data and there are no
language constructs for abstraction. Similar properties hold
for DSLs of other domains, for example, state machines [15],
digital forensics [37], or questionnaires [13].

Another aspect of addressing DSLs is that the language
specification and the derived type checker must represent
DSL programs in a format chosen by the DSL developer. This
is important so that the type checker can be integrated with
other DSL tools such as an IDE or a compiler. For this reason,
Veritas adopts a generic syntax-tree representation instead
of using a representation that is potentially easier to reason
about, as done by other metatheory systems. For example,
Twelf uses higher-order abstract syntax [27] and Coq-based
formalizations often adopt a nameless representation (e.g., de
Bruijn indices) [6] or a locally nameless representation [7].
Such representations not only require DSL developers to

model their syntax twice and provide translations between
them, such representations also preclude DSLs with non-
standard name binding. In contrast, the generic syntax-tree
representation used by Veritas is flexible enough to support
most DSL designs, but proofs involving names may be harder.

6.2 Proof Automation and Proof Guidance
To support DSL developers, proof automation is paramount in
Veritas. In many cases, we get proof automation by submitting
proof obligations to an automated first-order theorem prover
such as Vampire. However, clear enough, the first-order
theorem prover may fail to find a proof. Typically, this
happens for one of two reasons. First, the submitted proof
obligation may not be first-order verifiable, for example
because it requires second-order reasoning by induction or
because the proof obligation is false. Second, the theory
required to verify the submitted proof obligation may be
too complex for the prover to find a proof within the given
time frame.

To this end, Veritas will feature proof strategies for recov-
ering after a first-order theorem prover failed to verify a sub-
mitted proof obligation. Our strategies will try to determine
where the proof got stuck by applying forward reasoning to
find intermediate proof goals. We submit the intermediate
proof goals as proof obligations to the first-order theorem
prover. If the prover succeeds but the required time increased
severely compared to the previous goal, this calls for an aux-
iliary lemma for the proof obligation in order to avoid an
explosion of the search space. If the prover succeeds quickly,
we continue to apply further forward reasoning and to submit
proof obligations. If the prover fails and the proof obligation
refers to one or more recursive functions, this calls for an
inductive proof.

Using these and other strategies, we hope to provide a
high degree of automation to DSL developers. Nevertheless,
Veritas’s specification language will also feature constructs
for guiding the prover, for example, for manually selecting a
timeout or for manually providing auxiliary lemmas.

6.3 Detecting Specification Flaws
When verifying the soundness of a type system, it may turn
out that the design or specification of the type system is
flawed and needs fixing. One indication for a flaw in the type
system is that the soundness proof fails. In our case studies,
we manually specified test cases alongside the reduction
semantics and type system in order to detect flaws early on.
This proved to be very useful. We plan to integrate automated
methods for finding counterexamples such as QuickCheck [9]
into Veritas in order to find and present counterexamples to
the DSL developer. For test execution, we currently use the
first-order theorem prover, but we could generate Prolog code
just as well.

However, a different kind of flaw is much harder to de-
tect: If the specification is logically inconsistent, lemmas may
be provable even though they are invalid. As described in

147

Section 2, Veritas provides support for finding such inconsis-
tencies through an approximate consistency check that can
be invoked by the developer. In our case studies, this check
identified multiple inconsistencies in earlier versions of our
specifications, which we were able to subsequently fix.

Since the consistency check is approximate, it may fail to
find all inconsistencies. While conducting our case studies,
we sometimes detected irregularities when inspecting the
proof provided by Vampire. Typical examples of irregularities
include an inductive proof that does not make use of the
induction hypothesis or a proof showing that a function has
some property, but the definition of the function was not
used. Sometimes, these irregularities turned out to result
from an inconsistent specification, which we were able to
subsequently detect by applying the consistency check for a
longer time on the set of lemmas occurring in the irregular
proof. We plan to augment Veritas with automated support
for detecting inconsistencies this way. Concretely, we plan
to incorporate patterns of proof smells that trigger a detailed
examination of the specification’s consistency.

6.4 Optimizing a Specification for First-order Proving
While working with our case studies, it turned out that
minor changes to the formulation of a proof goal can impact
the performance of first-order theorem provers significantly.
For example, in one case of the SQL case study, a proof
became verifiable for Vampire only after inlining the premise
table = cons(row, rest) into the other premises and into the
conclusion of the lemma. More generally, it seems that
the performance of Vampire improves significantly after
inlining as many equations as possible. We plan to integrate
such optimizations into Veritas in order to generate proof
obligations in a form that can be efficiently dealt with by
first-order theorem provers. Moreover, we plan to make use
of multi-core machines and submit proof obligations to first-
order theorem provers in parallel.

7. Prior Work
Our approach targets the automated verification of type
soundness and the derivation of an efficient type checker from
a single type-system specification. Despite several existing
solutions to the POPLMARK challenge [5, 8, 23, 39], there
has been no automated solution to date.

The probably highest potential of full automation among
the set of solutions submitted to the POPLMARK challenge is
the Twelf approach [17]. Twelf is a special-purpose theorem
prover for properties of logics and programming languages
based on the logical framework (LF).

Encoding a type system specification and a corresponding
soundness proof in Twelf requires thorough knowledge of
logical frameworks. In contrast, we target DSL developers,
which most likely do not have expertise in logical frameworks.
To avoid the logical frameworks notation, the more recent LF-
based tool SaSyLF [2] allows for specifying language syntax,

semantics and type systems by using paper-like notation.
However, SaSyLF targets an educational context for teaching
students type theory, and not the development of DSLs.
In particular, LF-based approaches like Twelf and SaSyLF
employ higher-order abstract syntax [27], which often does
not align well with the syntax of a DSL.

As for proof automation, Twelf provides an interactive
proof mode as well as support for automated inductive theo-
rem proving [32], using a meta-logical framework. However,
in contrast to the Veritas approach we propose, the meta-
logical framework implemented within Twelf is not specifi-
cally tailored to type soundness proofs. In particular, Twelf
does not attempt any lemma generation.

Metatheory tools such as Ott [33] target the non-automated
verification of language definitions by generating definitions
and proof stubs in interactive theorem provers like Coq, Is-
abelle, and Twelf. The language workbench Spoofax also
targets verification of type soundness, but it is not clear how it
aims to automate such proofs [38]. Syme and Gordon present
a semi-automated technique for type-soundness proofs of
virtual machines that do not involve inductive reasoning [35].
Their approach requires that a user indicates relevant reduc-
tion rules to control for example the unwinding of recursive
definitions in the proof. This guided reduction serves as input
to a decision procedure. Roberson et al. present a model-
checking approach for verifying the soundness of type sys-
tems [31]. They check whether a finite set of program states
induced by the given semantics satisfies progress and preser-
vation. The approach effectively detects errors in type-system
specification in many cases, but cannot prove the absence of
errors.

Delaware et al. propose a theory for modularizing type-
soundness proofs targeting open-world reuse [10]. Lorenzen
and Erdweg present an automated method for type-soundness
proofs that is limited to desugared language extensions [24].
More generally, there are various techniques for automated
verification [1, 21, 30], some of which we plan to incorporate
into our tool as proof strategies.

For generating type checkers, Gast introduces an approach
that uses proof search based on unification and backtracking,
but also supports manually stipulated optimizations [16].
Bergan presents a framework Typmix for implementing
extensible type systems that also relies on backtracking in
case type-checking clause fails [4]. Ortin et al. describe a type-
checker generator TyCC that generates non-optimized type-
checker implementation for object-oriented languages, where
typing rules are defined by implementing a specific Java
interface [26]. Tomb and Flanagan use Prolog to implement
type checking and inference in a two-phase approach similar
to constraint generation and solving, but do not address
overlapping typing rules [36].

148

8. Conclusion
DSL developers define type systems, but lack the necessary
knowledge to devise sound specifications in combination
with correct and efficient type checkers. We presented the
design of Veritas, a workbench for developing sound type sys-
tems with efficient type checkers that does not require expert
knowledge. Veritas automatically derives soundness proofs
and efficient algorithms from a single type-system specifica-
tion to ensure that the soundness guarantees carry over to the
implementation. Veritas combines off-the-shelf automated
first-order theorem proving with automated proof strategies
tailored toward type systems. Automated verification is also
important for deriving efficient type checkers, because the
applicability of an optimization strategy needs to be verified.

We developed a prototypical implementation of Veritas
that submits proof goals to the automated first-order theorem
prover Vampire. While our prototype does not yet support
automated proof strategies beyond using Vampire, we have
been able to construct proofs by applying simple proof
strategies by hand. Based on our experience with formalizing
the simply-typed lambda calculus and part of SQL, we are
confident that it is possible to automate such proofs in Veritas.
We hope that, through the development of Veritas, we can
empower DSL developers to accompany their DSLs with
sound and efficient type checking.

Acknowledgments
We would like to thank the anonymous reviewers for their
comments. This work was supported by the BMBF within
EC SPRIDE.

References
[1] Markus Aderhold. Automated synthesis of induction axioms

for programs with second-order recursion. In Proceedings
of International Joint Conference on Automated Reasoning,
volume 6173 of LNCS, pages 263–277. Springer, 2010.

[2] Jonathan Aldrich, Robert J. Simmons, and Key Shin. SASyLF:
an educational proof assistant for language theory. In Proceed-
ings of the 2008 International Workshop on Functional and
Declarative Programming in Education, pages 31–40. ACM,
2008.

[3] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,
J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios
Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized Metatheory for the Masses: The
POPLMARK Challenge. In Proceedings of International Con-
ference on Theorem Proving in Higher Order Logics (TPHOL),
pages 50–65. Springer-Verlag, 2005.

[4] Tom Bergan. Typmix: A framework for implementing modular,
extensible type systems. Master’s thesis, UCLA, 2007.

[5] Stefan Berghofer. A solution to the POPLMARK challenge
using de Bruijn indices in Isabelle/HOL. Automated Reasoning,
49(3):303–326, 2012.

[6] N. G. De Bruijn. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the church-rosser theorem. Indagationes Mathe-
maticae, 34:381–392, 1972.

[7] Arthur Charguéraud. The locally nameless representation.
Automated Reasoning, 49(3):363–408, 2012.

[8] Alberto Ciaffaglione and Ivan Scagnetto. A weak HOAS ap-
proach to the POPLMARK challenge. In Proceedings of Work-
shop on Logical and Semantic Frameworks with Applications
(LSFA), pages 109–124, 2012.

[9] Koen Claessen and John Hughes. Quickcheck: A lightweight
tool for random testing of Haskell programs. In Proceedings of
International Conference on Functional Programming (ICFP),
pages 268–279. ACM, 2000.

[10] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and
Bruno C.d.S. Oliveira. Modular monadic meta-theory. In
Proceedings of International Conference on Functional Pro-
gramming (ICFP), pages 319–330. ACM, 2013.

[11] Sebastian Erdweg, Stefan Fehrenbach, and Klaus Ostermann.
Evolution of software systems with extensible languages and
DSLs. IEEE Software, 31(5):68–75, 2014.

[12] Sebastian Erdweg and Felix Rieger. A framework for exten-
sible languages. In Proceedings of Conference on Generative
Programming and Component Engineering (GPCE), pages
3–12. ACM, 2013.

[13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte
Boersma, Remi Bosman, William R. Cook, Albert Gerritsen,
Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat,
Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu,
Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi
van der Woning. The state of the art in language workbenches.
In Proceedings of Conference on Software Language Engineer-
ing (SLE), volume 8225 of LNCS, pages 197–217. Springer,
2013.

[14] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew
Smith, Lars Baumgärtner, and Bernd Freisleben. Why Eve and
Mallory love Android: An analysis of android SSL (in)security.
In Proceedings of Conference on Computer and Communica-
tions Security (CCS), pages 50–61. ACM, 2012.

[15] Martin Fowler. Domain-Specific Languages. Addison Wesley,
2010.

[16] Holger Gast. A generator for type checkers. PhD thesis,
University of Tübingen, 2004.

[17] Robert Harper and Daniel R. Licata. Mechanizing metatheory
in a logical framework. Functional Programming, pages 613–
673, 2007.

[18] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra.
Scripting the type inference process. In Proceedings of In-
ternational Conference on Functional Programming (ICFP),
pages 3–13. ACM, 2003.

[19] Lennart C. L. Kats and Eelco Visser. The Spoofax language
workbench: Rules for declarative specification of languages
and IDEs. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), pages 444–463. ACM, 2010.

149

[20] Laura Kovács and Andrei Voronkov. First-order theorem prov-
ing and vampire. In Proceedings of International Conference
on Computer Aided Verification (CAV), pages 1–35. Springer,
2013.

[21] K. Rustan M. Leino. Automating induction with an SMT
solver. In Proceedings of Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 7148
of LNCS, pages 315–331. Springer, 2012.

[22] Xavier Leroy. Java bytecode verification: Algorithms and
formalizations. Automated Reasoning, 30(3-4):235–269, 2003.

[23] Xavier Leroy. A locally nameless solution to the POPLMARK

challenge. Technical Report 6098, INRIA, 2007.

[24] Florian Lorenzen and Sebastian Erdweg. Modular and auto-
mated type-soundness verification for language extensions. In
Proceedings of International Conference on Functional Pro-
gramming (ICFP), pages 331–342. ACM, 2013.

[25] Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini,
and Guido Salvaneschi. i3QL: Language-integrated live data
views. In Proceedings of Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
pages 417–432. ACM, 2014.

[26] Francisco Ortin, Daniel Zapico, Jose Quiroga, and Miguel
Garcia. Automatic generation of object-oriented type checkers.
Lecture Notes on Software Engineering, 2(4), 2014.

[27] Frank Pfenning and Conal Elliott. Higher-order abstract syntax.
In Proceedings of Conference on Programming Language
Design and Implementation (PLDI), pages 199–208. ACM,
1988.

[28] Benjamin C Pierce. Types and programming languages. MIT
press, 2002.

[29] Andrew M. Pitts. Nominal logic, a first order theory of names
and binding. Information and Computation, 186(2):165–193,
2003.

[30] Andrew Reynolds and Viktor Kuncak. On induction for SMT
solvers. Technical Report 201755, EPFL, 2014.

[31] Michael Roberson, Melanie Harries, Paul T. Darga, and Chan-
drasekhar Boyapati. Efficient software model checking of

soundness of type systems. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 493–504. ACM, 2008.

[32] Carsten Schürmann and Frank Pfenning. Automated theorem
proving in a simple meta-logic for LF. In Proceedings of
International Conference on Automated Deduction (CADE),
volume 1421 of LNCS, pages 286–300. Springer, 1998.

[33] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles
Peskine, Thomas Ridge, Susmit Sarkar, and Rok Strniša. Ott:
Effective tool support for the working semanticist. Functional
Programming, 20(1):71–122, 2010.

[34] Geoff Sutcliffe. The TPTP problem library and associated
infrastructure: The FOF and CNF parts, v3.5.0. Automated
Reasoning, 43(4):337–362, 2009.

[35] Don Syme and Andrew D. Gordon. Automating type sound-
ness proofs via decision procedures and guided reductions. In
Proceedings of Logic for Programming, Artificial Intelligence,
and Reasoning, pages 418–434. Springer, 2002.

[36] Aaron Tomb and Cormac Flanagan. Automatic type inference
via partial evaluation. In Proceedings of Conference on
Principles and Practice of Declarative Programming (PPDP),
pages 106–116. ACM, 2005.

[37] Jeroen van den Bos and Tijs van der Storm. Bringing domain-
specific languages to digital forensics. In Proceedings of
International Conference on Software Engineering (ICSE),
pages 671–680. ACM, 2011.

[38] Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre
Neron, Vlad A. Vergu, Augusto Passalaqua, and Gabrieël
Konat. A language designer’s workbench: A one-stop-shop
for implementation and verification of language designs. In
Proceedings of Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (ONWARD), pages
95–111. ACM, 2014.

[39] Jérôme Vouillon. A solution to the POPLMARK challenge
based on de Bruijn indices. Automated Reasoning, 49(3):327–
362, 2012.

150

	Introduction
	The Veritas Approach
	Specification of Type Systems
	Automated Metatheory
	Deriving Efficient Type Checkers
	Language and Proof Composition

	Prototypical Implementation
	Case Study 1: Simply-typed -calculus
	Case Study 2: Typed SQL
	Discussion
	Metatheory for DSL Developers
	Proof Automation and Proof Guidance
	Detecting Specification Flaws
	Optimizing a Specification for First-order Proving

	Prior Work
	Conclusion

