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Abstract

Every year a school’s administration has to assign the school’s teachers to classes and lessons. In Germany
this process is, compared to many other countries, very complex. Constraints for teacher allocation
include official regulations, the teachers’ and administration’s wishes, and established best practices.
However, there is no program or specific language available that can be used to compute a fair and
suitable assignment.

In this thesis we therefore designed and implemented a domain specific language (DSL) that can
model and solve the teacher allocation problem as a case study in language development for constrained
resource allocation.

We gathered all relevant constraints that an assignment is subject to from domain experts of a local
school. The language TCAL (teacher class assignment language) was developed with the Spoofax lan-
guage workbench and utilizes the Choco solver. TCAL can represent all relevant data in a concise way
and its syntax is easily readable and understandable. Using TCAL increases productivity compared to
solving the problem with a general purpose language, as all required constraints and data constructs
are already built in. With the data from a local school we can show that our language finds a feasible
solution within approximately 30 seconds.
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1 Introduction

Assigning tasks to workers, meetings to rooms, equipment to work sites or allocating channels in a
wireless network are all examples of resource allocation problems. In this thesis we will focus on a
specific resource allocation problem: the assignment of teachers to classes and lessons. To achieve an
effective automatic assignment we designed and implemented a language that can describe a specific
problem instance and solve it with the help of a constraint solver.

Assigning a school’s teachers to lessons and creating timetables by hand is a rather tedious endeavor.
Changing one small part of an assignment can trigger a chain reaction of inconsistencies that have to be
fixed. In the past, a great number of hours had to be spent during the summer break to find a solution
that seems as suitable and fair as possible.

While there are numerous programs that calculate the best possible timetable, we could not find any
programs that automatically do the same for the assignment of teachers to lessons. One of the reasons
might be that timetabling, unlike teacher assignment, is a more common problem around the world.
Even though constraints might differ, the problem is largely the same. There are a number of lessons,
that already have a teacher assigned, a number of time slots and a number of rooms. The goal is to assign
every lesson to a time slot and room. Additional constraints must or should be met by the assignment.
These constraints could be for example, that physics must be held in a physics room, or that Mrs. Schmidt
should not have to teach before 9 am if possible, because her way to school takes over an hour.

The assignment of teachers to lessons is a far more diverse problem. Regulations are different in every
country and even region, and depending on the people involved, the procedure may vary severely. In
this thesis we focused on a problem definition that is common in Germany.

Students are grouped into classes and divided by grade and type of school (Hauptschule, Realschule
and Gymnasium). The subjects that are taught in a class are fixed by the Ministry of Education in
the form of hour boards. Teachers are usually trained to teach two subjects in either Gymnasium or
Hauptschule and Realschule.

The school system in other countries, however, can deviate greatly from this scenario. In the United
States and many other countries, students are not grouped into classes during high school, as they are
in many European and Asian countries. For some lessons, students from different grades can even be
mixed and there is no division into different school types, like Hauptschule, Realschule and Gymnasium.
Students can choose a lot of their subjects, while the choice is very limited in Germany. Furthermore,
teachers are usually assigned to courses before students are distributed to them. This is just one example
to show how diverse this problem is and it could be the reason for the lack of software and research in
this area that is applicable to a German school.

During the process of assigning teachers, many constraints must be considered. Of course a teacher
must be qualified to teach a class and they must work a certain amount of hours per week. However,
there are constraints that are more based on experience and intuition. Some Gymnasium teachers may
be allowed to teach at Realschule and even though it is desired that some teachers keep their classes
from the previous year, in other cases it may be imperative that the assigned teacher changes.

Herr Poprawa, who is one of the people responsible for the teacher allocation at the Otto-Hahn-
Schule in Hanau, drew our attention to this issue. From him and the vice principal of the school Dr.
Wolf we gathered all necessary requirements for the teacher allocation process. With these in mind
we designed and implemented a language that can be used to model all relevant data in an expressive
and unambiguous fashion, and specify what makes an assignment valid and what makes it better. The
problem is then solved using constraint programming techniques.
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1.1 Contribution

Within this thesis the domain-specific textual language TCAL (teacher class assignment language) is
designed and implemented. As part of the realization, an intuitive grammar is introduced and with the
help of the Spoofax language workbench the source code is parsed, desugared, analyzed and basic editor
services are provided. As an intermediate step a Scala strategy is implemented to transform the resulting
abstract syntax tree into custom Scala objects. To solve the underlying resource allocation problem, a
model of the optimization problem is built and solved with the help of the Choco solver.

With exemplary data from a local school, we can successfully solve the teacher assignment problem.
The language is extensible and the constraint solver can be easily replaced to improve the language in
the future.

1.2 Outline

In Chapter 2 all relevant preliminaries are introduced. We explain what domain specific languages
are and that language workbenches can greatly facilitate their design and implementation. We then
introduce the language workbench Spoofax that was used to create TCAL. Subsequently we discuss the
algorithmic problem that has to be solved in order to obtain a satisfactory assignment and we introduce
the Choco library and solver that is used to solve the teacher assignment problem.

The requirements and the concept of the language implementation are presented in Chapter 3 of this
thesis. By formulating the real world problems that teachers and principals have to solve, requirements
and constraints for the language can be derived. With these in mind, the concept of TCAL is designed.

Chapter 4 depicts and describes TCAL’s grammar. We explain the language constructs that are used to
represent data, constraints and configurations in TCAL and explain their syntax.

To formalize the constraints that are relevant for the teacher assignment problem we give a mathe-
matical representation of them in Chapter 5.

In Chapter 6 we discuss the implementation of TCAL. The syntax definition in SDF3, the name binding
in NaBL and the definition of editor services are explained. We then discuss the Scala strategy that was
designed to convert the abstract syntax tree of a TCAL program into Scala objects and then into a format
appropriate for modeling with the Choco library.

We evaluate our language and its results in Chapter 7 by giving an overview of the language develop-
ment process, the problems that we encountered on the way and the assignments that are created using
our language.

In Chapter 8 related research is presented. This includes languages, data formats and frameworks that
were created for similar problems and algorithms to solve the problem of teacher assignment or resource
allocation.

Possible extensions and improvements of TCAL are listed in Chapter 9.
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2 Preliminaries

In this chapter we will introduce the concept of domain specific languages (DSL) and language work-
benches. We give an overview of the language workbench Spoofax and explain why we chose it to design
and implement TCAL.

The underlying algorithmic problem of assigning teachers to classes and lessons is discussed in Section
2.2 and the Choco library and solver that is used for TCAL is introduced.

2.1 Domain Specific Languages and Language Workbenches

2.1.1 DSLs

The copious number of available programming languages can be divided based on their intended domain
of use into general purpose languages (GPLs) and domain specific languages (DSLs). While GPLs, such
as Java, Scala or C, are applicable in many different use cases, a domain specific language is a language
that was developed with a specific application in mind. In contrast to GPLs, DSLs are primarily used to
describe parts of a bigger software system [13]. Because the application of the language is known in
advance, features and tasks that are commonly used in the domain can already be built-in features in
DSLs. This can highly increase productivity. Furthermore the syntax can be more expressive and easier
to understand and use for users that are less experienced in programming [26]. Because the notation in
the language is usually at the same level as a domain expert’s terminology, it can also greatly simplify
communication with domain experts [13].

Some widely used DSLs are HTML for web development, SQL for managing data in a relational
database, and shell scripts.

DSLs can either introduce their own grammar or they can be based on an already existing host lan-
guage. The former is also called an external DSL [13]. Its grammar can be designed to accurately
represent the domain’s requirements. Depending on the application scenario the language must then
be compiled or transformed. The latter, an internal DSL, reuses its host language’s infrastructure and
extends its syntax, but is thereby dependent on the host language’s syntax and programming model [13].

One alternative to using or creating a DSL is to add a library to a GPL. The boundary between an
internal DSL and a library or API is quite fuzzy. They can be best distinguished by the language nature.
While for a library vocabulary is added for abstractions, internal DSLs add a whole grammar, where
single constructs may only make sense in the context of a larger expression [13]. Even though libraries
increase the expressiveness of a program written in a GPL and eliminate the amount of boilerplate code,
they do not offer the advantages that a grammar designed specifically for the domain brings. In DSLs,
domain-specific notations and expressive constructs are the basis when designing the language, in a
library they have to be made fit into the GPL’s syntax [26]. The programmer has to have basic knowledge
of the GPL in order to use the library or an internal DSL.

DSLs vary in their degree of executability. DSLs can be executable and completely independent pro-
gramming languages. Other DSLs are executable, but as input languages for other tools, like an applica-
tion or parser generator, they have a more declarative nature. Still others are not meant to be executed
and instead represent for example domain-specific data structures [26].

2.1.2 Language Workbenches

To support a programmer in the creation of a new language, a vast variety of tools are available. They
include parser generators, meta-programming languages, frameworks, tools and frameworks for IDE
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development or even tools that use the new language’s specification to generate an entire integrated
development environment (IDE) [18].

Language Workbenches combine these tools, that can support the developer in every step of the lan-
guage development process, into one environment. They are tools that ease the creation and use of new
languages and thereby increase a programmers productivity, as Fowler coined the term 2005 [12].

2.1.3 Spoofax

Spoofax is a language workbench for the development of textual software languages. The platform
is available as a plug-in for the integrated development environment (IDE) Eclipse and as an Eclipse
installation with Spoofax already preinstalled [11].

The Spoofax environment offers editor support for the meta DSLs that are used for language devel-
opment and simultaneously for the developed language [18]. This way the developer can develop a
language and use it within the same Eclipse instance. It is also possible to generate a stand-alone plug-in
of the developed language for later use of the language.

While the developer is typing, syntax highlighting is added, errors and warnings are indicated, syntax
and content completion is offered and the outline view is updated, to name just a few editor services.
Error recovery is another important feature of Spoofax, that allows for editor services to work even in
the presence of syntactic errors in the program [18].

SDF3 is a modular and declarative DSL that is used within Spoofax to define the syntax of a language.
A language’s grammar specifies its concrete and abstract syntax. Rules for basic editor services are
automatically derived based on the language’s grammar and saved as separate generated ESV files (editor
descriptor language) [18]. They can be modified and extended by handwritten ESV files as needed.

Within a program, names can be used to reference program elements, such as variables, methods or
objects. With the Name Binding Language NaBL the developer can specify name bindings and scoping
rules to correctly bind a name’s use site to its declaration during name analysis [25]. Semantic analysis,
which includes name analysis and type analysis, is used for semantic editor services, code generation
and consistency checking [18].

The Stratego transformation language is the default language for analysis, transformation and code
generation in Spoofax.

From a user’s language definition, Spoofax automatically derives a parser that runs in a background
thread, desugares the parsed source file and analyzes it while the user is typing [18]. The result is an
abstract syntax tree (AST) with various semantic information.

Spoofax enables a language development process without many of the difficulties that can come with
developing a new language from scratch. It bans compatibility issues between different tools, and instead
provides a single environment that automatically assists with or even takes over various tasks for the
developer. Changes to one part of a language’s definition take effect on all parts of the language and
help the developer to maintain a consistent language definition. With these arguments in mind we chose
to use Spoofax for the development of TCAL.

2.2 Constraint Optimization Problems and Solvers

The task of assigning teachers to classes and lessons is an algorithmic problem that can be formulated as
a Constraint Optimization Problem. In this section, we explain the underlying algorithmic problem and
give information about the strategy and the tool that we used to solve it.
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2.2.1 General Problem Description

Resource Allocation
Resource allocation describes a very broad area of algorithmic problems. A limited resource must be

assigned to competing activities, usually by optimizing an objective function that represents the quality
of the assignment. Examples include:

• Allocation of channels in a wireless network

• Assigning flight crew members to flights

• Distribution of resources (manpower, tools etc.) to projects

• The nurse rostering problem (assignment of nurses to shifts)

• Construction of timetables for a school, university or examinations

Timetabling Problems
The creation of a timetable is a special case of the resource allocation problem. A general definition of

the problem is the assignment of lessons to time slots in a week without overusing available resources.
However, the problem can be specialized and adapted in many different ways. Schaerf [35] divided
timetabling into three categories:

• School timetabling: creating a weekly school schedule, where teachers and classes can only be
assigned once to the same time slot

• Course timetabling: creating a weekly university schedule, where lecturers can only be assigned
once to a time slot while minimizing the amount of overlapping lectures for the student

• Examination timetabling: scheduling exams for courses to avoid overlap and spreading the exams
over the examination time as much as possible for students

Specific problems can fall into one category or combine aspects of more than one.
Carter and Laporte [7] also include teacher assignment and classroom assignment as categories of the

timetabling problem.
The creation of a satisfactory timetable is a problem that is encountered around the world at least

once a year. Solving the timetabling problem by hand can take many days and the quality of the solution
greatly depends on the person’s experience. To improve the costs related to the creation of timetables
and the quality of the result, automated timetabling has been subject to much research in the past
decades. It is also an interesting research area for algorithmics, because the construction of timetables is
NP-complete [10][9].

Teacher Assignment
The allocation of teachers to classes and lessons is a special case of the resource allocation problem,

and depending on the definition, also of the timetabling problem.
Because the timetabling process is very different around the world, the starting situation for the as-

signment of teacher differs greatly. In the problem definition that we will focus on, the assignment of
students to classes and lessons has already been fixed and the assignment to time slots and rooms will
be done subsequently.

The objective of the teacher allocation is to assign a teacher to every lesson, while satisfying a number
of constraints. Some constraints are compulsory (e.g. a teacher must be qualified to teach a subject),
while others describe what makes an assignment better than another assignment (e.g. teachers have less
overtime).
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2.2.2 Constraint Satisfaction and Constraint Optimization Problems

Constraint Satisfaction Problems (CSP) can be modeled as a triple < X , D, C >, where X is a set of
variables, D is a function mapping each variable in X to its domain (usually finite), and C a set of
constraints [39]. A feasible solution to a CSP is found when a value within a variable’s domain is
assigned to every variable and all constraints are satisfied. Scheduling problems, where tasks have to be
assigned to time slots, or the graph coloring problem, where in its simplest version no adjacent nodes
can be assigned the same color, are examples for CSPs.

The eight queens puzzle is another popular example to explain CSPs. Eight queens have to be placed
on a chessboard in a way that no queen threatens another. The problem has been extended to the general
n-queens problem, where n queens have to be placed on a n× n chessboard.

One extension of the CSP is the Constraint Optimization Problem (CSOP). Tsang [39] defines a
CSOP as a CSP with an additional optimization function. A CSOP can therefore be represented by
< X , D, C , f >. The optimization function f maps every feasible solution of the CSP < X , D, C > to a
numerical value that has to be optimized.

When formulating constraints for a CSOP, they are either specified as hard or soft constraints. A
solution is only feasible if no hard constraints are violated. A soft constraint should be obeyed, but may
be broken if necessary. This will be penalized in the optimization function and decreases the quality of a
solution.

Constraints can take several forms [34]. A constraint can be unary, which means that only one variable
is effected by that one constraint by restricting its domain set. An example for a unary constraint is
when planning a round trip through several cities, the last city can not be Darmstadt. The variable
that represents the last stop of the round trip can not be assigned the value for Darmstadt. Binary
constraints involve two variables. Constraints for the eight queens puzzle are usually binary, as they
restrict the relation of the locations of any two queens. For binary constraints, the cross-product of the
variable’s domains is restricted. Higher-order constraints involve three or more variables. The alldifferent
constraint is a common example. It enforces that no two values that are assigned to the effected variables
can be the same.

CSPs and especially CSOPs are usually NP-complete [39].

2.2.3 Constraint Programming

Constraint Satisfaction Problems can be found not only in computer science, but in a vast variety of
disciplines. To solve CSPs a new programming paradigm evolved from the artificial intelligence world
in the sixties and seventies [33]. Instead of specifying a sequence of steps to solve the problem, as it
would be done using imperative programming languages, a problem is modeled in a declarative manner
and solved by a combination of constraint propagation and search strategies. This paradigm is called
constraint programming (CP).

Modeling
When modeling a CSP or a CSOP it has to be identified what variables are necessary to cover the whole

problem and what constraints have to be enforced to find a solution to the problem. The same problem
may be modeled in different ways, where each model requires a different set of variables and constraints
[34].

To model the eight queens puzzle the variables can be defined as the location of each queen. The
domain of a variable represents all squares on the chessboard. The constraints can then be chosen to be
binary constraints prohibiting that two queens are placed in the same row, column or diagonal.

Because we know that no two queens are allowed to be placed in the same row, there is another
way to model the eight queens puzzle. There is one variable for each row and the value that must be
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assigned represents the column in which a queen is placed within this row. The domain lies therefore in
the number of columns. This model significantly decreases the search space.

Once the model is chosen, there are a number of languages available to define all decision variables,
their associated domains, and declare the constraints on these variables. Some of the most common ones
are logic programming languages (e.g. Prolog), modeling languages (e.g. MiniZinc or OPL) or a library
within an imperative language (e.g. Choco or Gecode).

Solving
To solve a problem using the constraint programming paradigm, a CP solver is usually used. A CP

solver is a constraint programming tool that often comes with its own language to model the problem
and already has a variety of search strategies available. After defining the model and specifying the
search strategy, a solver can take over the rest.

The runtime of solving a problem is highly dependent on the chosen strategy. The strategy can specify
several aspects of the solving process. It usually specifies the search algorithm, constraint propagation,
the heuristic used for selecting which variable to assign next, and which value of the domain to assign.
Many search strategies include a combination of the following techniques [34]:

• Backtracking Search A decision variable is chosen and a value is assigned (depending on the
specified heuristic). If the assignment does not violate any constraints, the next variable is chosen
and assigned. If a constraint is violated the algorithm backtracks to a new instantiation. Figure
2.1 shows backtracking search for the four queens puzzle. A queen is placed in a row from left to
right. If a constraint is violated, which is indicated by a red line, the algorithm backtracks.

• Forward Checking If a value is assigned to a variable, forward checking eliminates all values that
become inconsistent from the domains of those variables that have not been assigned yet. However,
only those variables are checked that are effected by a mutual constraint with the current variable.

• Constraint propagation By decreasing the size of a variable’s domain (e.g. through forward check-
ing or constraint propagation itself) other values can become inconsistent. These values are then
also removed from the set of possible values. This step is repeated until there are no more changes.
Unlike forward checking, not only constraints that involve the current variable are considered.

Using backtracking search alone is not always efficient. Figure 2.2 shows a situation in which it
is clear that no solution can be found with the variables assigned as seen in the picture. No matter in
which square the queen is placed in the last row, she is always threatened. When using only backtracking
search, the algorithm will try to place the last queen in all four squares of the last row before relocating
the third queen. In combination with forward checking, the domain of the last queen’s position will be
empty in the given situation and the algorithm can prune the search tree.

There are problems in which constraint propagation is enough to find a solution. Easy Sudoku puzzles
are examples for this, when by progressively eliminating inconsistent numbers all squares are left with
only one possibility.
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Figure 2.1: Solving the n-Queens Problem using backtracking

Figure 2.2: Example situation of inefficient backtracking search
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Heuristics are valuable for effectively choosing the next variable and value to assign. They aim to keep
the branching factor of the search tree as small as possible. The following are some general purpose
heuristics regularly used [34]:

• most-constrained-variable: choosing the variable with the fewest possible values

• most-constraining-variable: choosing the variable that is involved in the most constraints

• least-constraining-value: assigning the value that eliminates the least values from other variables’
domains

2.2.4 Choco

In order to solve the underlying resource allocation problem, the Java library Choco [30] is utilized.
The first version of the Choco solver was created by a French national initiative with the purpose of

providing an open constraint solver, that can be used for both teaching and research [17]. It was initially
written in the language CLAIRE and was later translated into Java. Choco is open source and distributed
under BSD license. Because the source code can be found on GitHub, Choco is often used for teaching
and research purposes. With its open API, users can implement their own algorithms and concepts.
Choco is still being developed further. Its newest version 3.3.3 was released in December 2015.

To model problems in Choco, several types of variables are available: Integer variables, boolean vari-
ables, set variables consisting of integer values, real variables and expressions. The domain of values
that a variable can attain must be defined beforehand. Additionally a wide variety of constraints can
be used to model the problem at hand. Besides the usual arithmetical constraints, such as equality and
inequality, logical constraints can be used to combine other constraints and global constraints simplify
the programmer’s work.

Choco’s architecture is clearly separated into model and solver. After the user has modeled his problem,
it is translated into a more CP-like model by the pre-processor and then automatically solved by the solver
[17]. However, the user can also command the pre-processor to process constraints a certain way or use
specific implementations. Advanced users can also change the solver’s behavior through its API.

A variety of search strategies and heuristics are available in Choco to increase the resolution perfor-
mance [30]. They mostly combine backtracking and constraint propagation.

A feasible solution to a modeled problem is found when the solver is able to assign a value to every
variable from its domain while respecting all constraints over them.

Depending on the desired result of the solver’s execution, the problem can be solved as a simple
constraint satisfaction problem where the solver stops when the first feasible solution is found. The solver
can also find all solutions or enumerate them. Furthermore, Choco can solve optimization problems.
Here a objective variable must be declared and whether the variable is to be minimized or maximized.
The solver can then find one or all optimal solutions.

There are several reasons why Choco was chosen for the implementation of TCAL. The Choco solver
is still being actively developed further and it has an active community.

It is open source and as a Java library it can easily be integrated into the TCAL project.
Modeling problems with the Choco library is intuitive for Java developers with the help of the docu-

mentation and it enables expressive constraint modeling. Documentation and examples for standard use
are available and good. Furthermore, Choco has won several medals at the MiniZinc challenge [37] and
is among the fastest CP solvers on the market.

The biggest drawback that has been encountered during the implementation of TCAL with the Choco
solver was the scarce documentation of how to best optimize a model and modify the solver’s behavior.
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3 Concept

To gather domain knowledge about the task of assigning teachers to lessons and classes, domain ex-
perts, namely Dr. Wolf and Herr Poprawa from the Otto-Hahn-Schule in Hanau, were consulted. They
explained to us the regulations they have to follow during the process and the conventions they apply
based on longtime experience. With this information the requirements were specified and a concept
developed.

In Section 3.1 the problem at hand is described in natural language, with all the information that was
given to us from the domain experts.

The choice of creating a DSL to describe and solve the teacher assignment problem is explained in
Section 3.2. Here we define non-functional requirements for the language.

One of the main advantages of DSLs is the domain specific use of terminology and notations that
make the language more expressive. In Section 3.3 the terminology that is used in TCAL is defined for
a consistent understanding of its meaning. It is also shown what attributes for each data structure are
necessary in order to express all relevant information for the task at hand.

3.1 Real World Problem Description

To design TCAL, the requirements of an exemplary school were used as a guideline. It has to be possible
to express the following constraints in TCAL:

Hard Constraints
• For every class and subject there must be the necessary amount of teachers, in our case one teacher

per lesson.

• A teacher must be qualified to teach the subject.

• A teacher can only teach in a class of his type (H,R or G), with the exception that a few teachers
are allowed to teach all types.

• A teacher should teach the stipulated amount of periods per week. If positive or negative overtime
is necessary, it can not exceed a specified amount.

• [Optional] If two subjects that are closely related are taught in the same class, the same teacher
must be assigned to both (e.g. science course about biology and the subject biology).

• [Optional] The class teacher of a class should teach at least one subject in the class.

Soft Constraints
• Some teachers can teach lessons of another type, but it is less desirable.

• Overtime should be minimized.

• A specific assignment can be specified beforehand and should be met if possible. An assignment
can be marked as desired or unwanted. Reasons for pre-assignments are:

– Teacher taught the subject in the same class last year

– The class teacher should teach as much as possible in the class

– a teacher’s wish

– administrative decision
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Additional conditions
• If a teacher teaches eight periods or more in grades 10 to 13, an additional period is credited due

to more elaborate preparations. If a part time teacher teaches four periods or more in grades 10
to 13, an additional half period is credited. For partial positions, the credited periods must be
calculated.

3.2 A DSL for Teacher Allocation

The assignment of teachers to classes is a complex process. Following regulations while keeping the
teachers’ and administration’s wishes in mind and optimizing an assignment manually is a challenge.

We could not find a tool or language that was designed to help in the task of teacher allocation.
We therefore decided to design and implement a DSL to support the school’s administration with this
endeavor.

As described in Section 2.1, by using the domain’s terminology and an intuitive syntax, the DSL must
be designed to be used by the school’s administration, who may not have extensive programming expe-
rience. Even if the language is not used by the domain experts themselves, communication with them
would benefit from an easily understandable notation when modeling the assignment problem.

Compared to modeling and solving the problem with an existing GPL, handling common constraints
can be built-in to the DSL and a layer of abstraction simplifies its use and can increase productivity in
the future.

For the design and implementation of the teacher class assignment language (TCAL) we set ourselves
the following requirements:

• Readable and understandable without programming experience
Domain terminology in combination with an intuitive syntax must be used for the implementation.
This enables people with domain knowledge but without programming experience to read and
understand a program written in TCAL with little or no instruction.

• Unambiguous and expressive data representation
As we found out, the storage of the relevant data at a school can be unclear to anyone who is not
directly involved in the teacher allocation process of the school. A precise and clear representation
of the data will make maintenance easier and will be useful when communicating about it.

• Minimize the amount of coding effort
Common tasks of the teacher allocation problem must be built-in. Constraints can be customized
and added if required, but the realization must not be the duty of the user. The representation of
the data and constraints must be concise.

• Purely declarative modeling
Because the language must be usable for users with little programming knowledge, algorithmic
details and the implementation of complex constraints and constructs must be hidden behind a
layer of abstraction. For that reason the problem must be modeled in a declarative manner.

• Language easily extensible
To achieve the goal of minimizing the amount of coding effort, a compromise has to be made with
the power of expression. To introduce new constraints they have to be added to the language
itself rather then giving the user the possibility to express arbitrary constraints. The language
development project must facilitate easy extension of the language.

• Efficient implementation
When describing a specific problem of realistic proportions and complexity with TCAL, the compiler
and solver of TCAL should be able to solve it within a reasonable time with the capacities of a
personal computer.

14



• Problem solving tool effortlessly replaceable
To improve the efficiency of the implementation, it can be advantageous to try out and use differ-
ent problem solving tools in the future. The structure of the language must enable an effortless
replacement of the tool.

3.3 Definitions and Explanations of Terms

For a consistent use and understanding of important terms, we will explain in this section the terminology
that is used in TCAL.

While the concept of a teacher is unambiguous, a class may have different meanings in different
regions. We define a class to be a specific subgroup of students within one grade, for example class 5a.

In Germany schools are usually divided into types, namely Hauptschule, Realschule and Gymnasium.
Every class is of one type. Teachers are trained to teach either Gymnasium or Hauptschule and Re-
alschule, which is why we combined Hauptschule and Realschule into one type.

Classes can be combined into couplings, for instance if all students in one grade have Spanish together.
To every class and coupling one or more hour boards are assigned. Usually all classes in the same grade
with the same type are assigned the same hour board. An hour board contains information about how
many hours in a week a subject (e.g. mathematics) is supposed to be taught. From this information a
list of lessons can be constructed. Every lesson contains a list of classes, a subject and how many hours
this subject should be taught. By running a program in TCAL the result is an assignment of teachers
to lessons. Therefore an assignment is a result type and contains a teacher, a lesson and thereby a class
and subject. Because certain assignments are specifically desired or unwanted, a preassignment can
be formulated with a priority as part of the problem definition. To facilitate an incremental search,
incremental preassignments can be specified. They are used to keep assignments from a prior execution
of the program consistent in the next execution.

The following constructs are used to describe the data that is relevant for finding a satisfactory assign-
ment of teachers to classes and lessons. If an attribute is enclosed in brackets it is optional. Objects that
can be referenced from other program elements have a name (ID) to identify them.

Subject

Attribute Description
ID e.g. "mathematics"
[extended subject] the subject this subject extends (e.g. advanced English extends

English)

Type

Attribute Description
ID e.g. "HR" or "G" (representing Hauptschule/Realschule and

Gymnasium)
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Teacher

Attribute Description
ID e.g. "SmiA" for Adam Smith
name the teacher’s name
subjects list of subjects that the teacher is qualified to teach
type e.g. "HR", "G" or "all" type and whether teacher may teach

another type if necessary
desired hours/week number of periods that a teacher is supposed to work per week
[balance] positive or negative amount of overtime from previous years
[extracurricular periods] number of periods that the teacher needs for activities other

than teaching, e.g. as a vice principal, administration

Class

Attribute Description
ID e.g. "G5a"
grade e.g. "5"
type e.g. "HR" or "G" type (representing Hauptschule/Realschule

and Gymnasium)
hour boards the class’s subjects and the number of periods every subject is

taught
class teacher the class’s class teacher, e.g. teacher "SmiA"

Coupling

Attribute Description
ID e.g. "G5abc"
classes list of classes that are part of this coupling
hour boards the coupling’s subjects and the number of periods every subject

is taught

Hour Board

Attribute Description
ID e.g. "G5"
(subject, hours/week) a list of pairs containing the taught subjects and the mandatory

number of periods that subject is taught, e.g. subjects that
must be taught in all classes of grade 5 in Gymnasium

Preassignment

Attribute Description
teacher e.g. teacher "SmiA"
class or coupling e.g. class "G5a"
subject e.g. subject "mathematics"
wanted or unwanted whether this assignment is desired or not e.g. if a teacher does

not want to keep a class
priority how important compliance with this preassignment is
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Incremental Preassignment
Attribute Description
teacher one or more teachers e.g. teacher "SmiA"
class one or more classes e.g. "G5a"
coupling one or more couplings e.g. "G5abc"
subject one or more subjects e.g. "mathematics"

For the incremental preassignment all attributes are optional, but at least one must be specified.

3.4 Data Basis and Output

To test our language with realistic data we received the hour boards and teacher data from the Otto-
Hahn-Schule in the form of an Excel spreadsheet. To automatically convert the data into TCAL format
we built a parser. However, we can not assume that data is stored in the same fashion at other schools.
We therefore did not plan to add a built-in import option.

The resulting assignment should be saved in separate files:

Prettyprint
A nicely formatted output file must be created with two sections, yielding to two important points of

view. The first section lists every teacher with their assigned lessons and further information. The second
section is partitioned by classes and lists all lessons of that class with the assigned teachers.

Statistics
To help find errors in the model or to see the solver’s statistics, an extra file must be printed. It shows

the teachers’ and lessons’ intermediate data representation during compilation.

Raw Assignment
We want to offer the possibility for the user to keep parts of a previously computed assignment consis-

tent in a new execution of the program. An assignment must therefore be saved in a format that can be
parsed by the program in the next execution.
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4 Language Syntax

TCAL is a domain-specific, declarative programming language for the task of assigning teachers to lessons
and classes. The requirements we set for TCAL included the following:

a) readable and understandable without programming experience

b) unambiguous and expressive data representation

c) minimize the amount of coding effort

d) purely declarative modeling

To achieve those objectives, TCAL’s keywords are domain specific terms and taken from the natural
language that is used when talking about teacher allocation. Constructs for important elements, as
described in Section 3.3, are available from the start and do not have to be defined by the user, as would
be the case in a general purpose language. Algorithmic details are hidden behind a layer of abstraction
and constraints can only be activated or customized, but do not have to be implemented.

A program in TCAL is an instance that is divided into three parts. The first part is made up of all the
data elements. This includes preassignments and incremental preassignments.

In the second part of the program, constraints can be specified. The overtime constraint, specifying
how much overtime is acceptable, is mandatory. Other constraints, like the type constraints, that allow
some teachers of one type to teach another type, are optional.

The last part of a program contains the configuration specifications. A time limit can be set here and
several output files can be generated after an assignment was computed.

4.1 Common Language Elements

Comments
We follow a common style for comments. A double slash // starts a comment until the end of the line

and /* starts a multi-line comment, while */ closes it.

Identifiers
Identifiers are used to reference other program elements, such as teachers, subject, hour boards or

classes. An identifier must start with a letter and can contain letters, numbers, underscores and hyphens.

4.2 Data

The definition of a data object always begins with a keyword referring to the data type, namely instance,
type, subject, teacher, hourboard, class, coupling, preassignment or incremental. If the data object can
be referenced from another object, an ID follows. Most data objects (type and subject are the exception)
have several attributes that the user must specify. They are defined within curly brackets by stating the
attribute, followed by a colon : and the user’s value.

Except for the instance declaration, the order in which data objects are defined can be decided by the
user. Having the declaration of the hour board for all classes in one grade close to those classes will
simplify maintenance for later years. Hour boards that are assigned to different grades and types can be
specified in a separate section for instance.

Many objects in TCAL reference other objects. The order in which objects are referenced is important
for compilation (more details in Chapter 6 and Figure 6.3), but when writing a program in TCAL the
order of the data objects can be chosen by the user. Nevertheless we will introduce the data constructs
in order of compilation to introduce each before referencing it.
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Instance

At the beginning of every TCAL program, the instance has to be given a name. Names are only bound
within the current instance and several instances representing the same school but different years, can
be saved within the same project.

Type

Every class has a type, in Germany the types are Gymnasium, Realschule and Hauptschule. From an
administrative standpoint, Realschule and Hauptschule can be combined. This results in the types HR
and G for our exemplary school. Teachers are usually only qualified to teach one type.

Subject

In most cases a subject only consists of its name, that can be referenced from other objects. Two
subjects are already built in, homeroom and coordination. Homeroom is a lesson that is always taught
by the class teacher. Problems in the class can be discussed, projects and excursions planned. In the
coordination lesson some of a class’s teachers meet without students.

In some cases subjects are taught for which no teacher is specifically qualified, but they can be taught
by a teacher that is qualified in a related subject. As seen in Code Listing 4.1, teachers that are qualified
to teach English are also allowed to teach advancedEnglish. The lesson LQ (Lions-Quest) is moderated by
the class teacher and therefore extends homeroom.

When an extending and the extended subject is taught in the same class the teacher of both should be
the same.

1 instance summer16
2

3 type HR
4 type G
5

6 subject mathematics
7 subject English
8 subject advancedEnglish extends English
9 subject LQ extends homeroom

Code Listing 4.1: Definition of types and subjects in TCAL

Teacher

Every teacher has a name and an ID that he can be referenced by. In Code Listing 4.2, Adam Smith can
be referenced with SmiA. The subjects a teacher is qualified to teach are references to subject objects, the
same applies to the teacher’s type. When the type is followed by a +, the teacher is allowed to teach other
types if an applicable constraint is specified in the constraint section of the program (more in Section
4.3). Additionally the desired hours are specified and optionally the balance of previous overtimes and
the hours a teacher spends for activities other than teaching a class. If wanted, the extracurricular activity
can have a label to describe it. For multiple extracurricular activities the hours should be summed up
and the label can contain multiple activities.
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1 teacher SmiA {
2 name: "Smith, Adam"
3 subjects: mathematics, english
4 type : G+
5 hours: 25
6 balance : 1.75
7 extracurricular : 2 "library, project"
8 }

Code Listing 4.2: Definition of a teacher

Hour Board
For every grade of one type there is usually an hour board defined by the government. Instead of

copying the same subjects and hours to every class, one hour board can be assigned to them all. Addi-
tionally, subjects like religion or languages are not taken by all students and are not taught in all classes.
By combining hour boards all needed combinations can be achieved.

Every hour board has an ID that can be referenced from other objects. It contains a variable number
of subject references with the amount of hours this subject must be taught.

One exceptional case is the coordination lesson. The number of teachers is variable here, only the class
teacher is always involved. In Code Listing 4.3 the teachers that are assigned to teach mathematics and
German in the same class must also be assigned to the coordination lesson.

1 hourboard G5 {
2 mathematics : 4
3 German : 5
4 history : 2
5 coordination mathematics, German : 2
6 homeroom : 2
7 }
8

9 hourboard G5Languages {
10 Spanish : 2
11 French : 2
12 }

Code Listing 4.3: Definition of hour boards

Class
Every class has an ID, a type, a grade and a reference to its class teacher. The class teacher is au-

tomatically assigned to possible homeroom lessons and lessons that extend homeroom, as well as the
coordination hour. One or more hour boards are assigned to every class. With this information, a list of
lessons can be constructed for further computations (more in Section 6.4).

1 class G5a {
2 type : G
3 grade : 5
4 classteacher : SmiA
5 hourboard : G5, G5Sport
6 }

Code Listing 4.4: Definition of a class
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Coupling
In some cases not all students of one class take the same subject and as a result students of different

classes are combined. Students can for instance choose to attend protestant religion, catholic religion or
ethics. The same applies for languages. A coupling contains references to all classes that are combined
for the subjects in the referenced hour boards.

1 coupling G7abc {
2 classes : G7a, G7b, G7c
3 hourboard : G5Languages
4 }

Code Listing 4.5: Definition of a coupling

Preassignment
In the description of the soft constraints in Section 3.1 we gave a number of reasons why certain

assignments are wanted or unwanted prior to executing the program. These can be specified in a pre-
assignment object, containing references to the teacher, the class and the subject. It must also be stated
if the assignment is wanted or unwanted. The priority is added as penalty to the optimization function
in case the preassignment is not obeyed in the resulting assignment. Satisfying a preassignment with a
higher priority value is therefore more important and increases the quality of a solution. The priority can
also be set to must if the preassignment should be treated as a hard constraint.

1 preassignment {
2 teacher : SmiA
3 class : G5a
4 subject : mathematics
5 wanted
6 priority : 10
7 }

Code Listing 4.6: Definition of a preassignment

Incremental Preassignment
If the output file of a previous execution of the program is set as input for incremental preassignment

in the program’s configuration section (see Section 4.4), incremental preassignment objects are used
to create mandatory preassignments. An incremental preassignment can contain references to subjects,
classes, couplings and teachers. All lessons are then filtered for those that contain any combination of
the specified references. A mandatory preassignment is created for all filtered lessons.

Code Listing 4.7 specifies that all mathematics lessons that were assigned to teachers SmiA or LarK in
the previous solution get assigned to the same teachers in the next execution of the program.

1 incremental {
2 subjects : mathematics
3 teacher : SmiA, LarK
4 }

Code Listing 4.7: Definition of an incremental preassignment
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4.3 Constraints

Some constraints are already built-in, but there are a few that have to be explicitly specified.

The optimization function in TCAL minimizes the score of a solution. When a soft constraint is not
obeyed, a penalty is added to the score. The maximum penalty that can currently be specified is 100. As
mentioned before, not effectuating a preassignment adds a penalty to the score. The violation of other
soft constraints can also add penalties. In this section of the program, the user can specify them.

The overtime constraint must be specified in a TCAL program. The specified range in Code Listing 4.8
line 2 declares that a teacher’s hours per week can be at most 4 less than the desired hours and at most
2 more.

Because it is most desirable for teachers to have no overtime, every deviating hour is penalized. The
default penalty is 1, but with the optional specification => 2, the penalty for every hour of overtime is
set to 2.

The constraint of adding the teachers’ balance to the overtime constraint, as in line 3, is only relevant
for teachers that have overtime from the previous year. With the teacher’s balance added to his desired
hours, the scheduled hours can not exceed the boundaries set in this second range. This can be best
explained with an example:

A teacher’s desired hours are 26. He has a balance of -5 from the previous year. Without adding the
balance constraint, the teacher would be able to work 22 to 28 hours, which could very well result in
increasing the teacher’s overtime. Adding the teacher’s balance would result in an allowed span of 27
to 33 hours. This is not reasonable, as the desired hours are not even within the range anymore. When
taking the second range ([-5,3]) into account, the hours can not exceed 26+3=29 and therefore stay
in a more reasonable realm with 23 to 29 hours.

At the end of an overtime constraint, an option can be specified. One possible option is soft. As a result
the given overtime bounds are not used to create hard constraints. Instead, for teachers that exceed
these bounds, the overtime penalty is computed and multiplied by 5. If no solution can be found with
hard constraints, this option gives the possibility to find out which assignments, subjects or teacher are
causing the problem. However, this has a very negative effect on the resolution performance.

The second available option is quadratic. The amount of hours that the scheduled hours deviate from
the desired hours are squared before multiplying them with the overtime penalty. This way a uniform
distribution of overtime over all teachers is more advantageous.

Another kind of constraint that can be set in this section is the type constraint (lines 4 and 5). Usually
a teacher’s type must match the class’s that he is assigned to teach. A teacher can however have a "plus
type". In this case a teacher with type G+ can for instance teach classes of type HR, as seen in Code
Listing 4.8 line 4. If this constraint should only be applied to certain grades, a range can be specified.
Line 5 therefore states that teachers of type HR+ can teach classes of type G only in grades 5 to 10 and
with a penalty of 3. If no penalty is set, a teacher teaching his "plus type" is not penalized.

If the constraint add classteacher lesson is set, as in line 6, every class teacher must be assigned to at
least one lesson in his class.

The constraint in line 7 specifies that a teacher who teaches eight or more hours in the upper classes
(grades 10 to 13), is credited one additional hour.
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1 constraints {
2 overtime [-4,2] => 2 quadratic
3 add balance [-5,3]
4 G can teach HR => 2
5 HR can teach G [5,10] => 3
6 add classteacher lesson
7 add 1 hour when 8 hours in upper
8 }

Code Listing 4.8: Constraints in TCAL

4.4 Configuration

The last part of a TCAL program is the optional configuration section.
In this section, the time limit of the solver can be set. In Code Listing 4.9 line 2 the time limit is set to

180 seconds. If no time limit is set, the solver will search until the optimal solution is found. This is not
recommended for bigger problem instances.

The next three configurations in the Code Listing 4.9 determine what files will be created if a solution
is found and what the file names will be. In the example a nicely formatted prettyprint will be written
into a file called UV_pretty.txt. It includes a table with a row for every teacher with a teacher’s hours
per week, his overtime and what lessons he will teach. Subsequently, a table for every class lists all of
the class’s lessons and the assigned teachers, including lessons of couplings that involve the class. The
file that will be created when the statistics configuration is set is more interesting for troubleshooting. It
contains the arrays for teachers and lessons that are created during compilation and are used as input
for the solver. Additionally the lists of penalties and the solver’s statistics are saved here.

A file containing a triple of class/coupling, subject and teacher for every assignment is always created
when a solution is found. If the incremental configuration is not set, this file is saved as output.txt. If a
solution is not completely satisfactory to the user, the file with the name specified after incremental can
be used in combination with incremental preassignments (see 4.2) to preserve assignments during the
next execution of the program for an incremental search.

1 configuration {
2 timelimit 180
3 output "UV_pretty"
4 statistics "UV_stats"
5 incremental "UV_output"
6 }

Code Listing 4.9: Configurations in TCAL
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5 Encoding as constraints

To formalize and disambiguate the constraints listed in Section 3.1, mathematical representations of all
constraints are given in this chapter. These constraints are thereafter used to implement the constraint
model with Choco in Section 6.5.

Input
P the set of all types (e.g. "G" or "HR")

S the set of all subjects

T the set of all teachers, ∀t ∈ T :

• s[t] ⊆ S is the set of subjects the teacher can teach

• h[t] ∈ R is the amount of hours the teacher should teach per week

• t[t] ∈ P is the type the teacher can teach

L the set of all lessons, ∀l ∈ L :

• s[l] ∈ S is the subject of the lesson

• h[l] ∈ R is the amount of hours this lesson is taught per week

• c[l] ∈ T is the class teacher of lesson’s class

• g[l] ∈ N0 is the grade of the lesson’s class

• t[l] ∈ P is the type of the lesson’s class

• i[l] ⊆ L is the set of linked lessons

C the set of all classes

Y the set of all type constraints of form (t1, t2, g1, g2, p) representing that a teacher of type t1 ∈ P can
teach in a class of type t2 ∈ P in grade g1 ∈ N0 to g2 ∈ N0 with g1 < g2 and penalty p ∈ N0 (for the
mathematical representation we will ignore the option where no bounds are specified)

A the set of all preassignments of form (t, l, w, p) representing that teacher t ∈ T teaching lesson l ∈ L
is wanted if w is 1 and unwanted otherwise with penalty p ∈ N0 if preassignment is not realized or
a mandatory assignment if p = 9999 ("must")

Decision variables
• for each teacher t ∈ T and each lesson l ∈ L a variable x[t, l] is introduced with domain 0,1

• x[t, l] = 1 means that teacher t is assigned to lesson l

Penalties
for all t ∈ T there is p′t ∈ N0, the penalty for this teacher’s overtime

P ′T the set of all overtime penalties
for all a ∈ A there is p′′a ∈ N0, the penalty for this preassignment

P ′′A the set of all preassignment penalties
for all l ∈ L there is p′′′l ∈ N0, the penalty if the type of the assigned teacher is not the type of the lesson’s
class

P ′′′A the set of all type penalties
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Objective
Minimize the score of the assignment (the sum of all penalties).

Hard Constraints
Every lesson is assigned to exactly one teacher (except for coordination hour)

∀l ∈ L :
∑

t∈T

x[t, l] = 1

A teacher must be qualified to teach the lesson’s subject

∀t ∈ T,∀l ∈ L : x[t, l] = 1 =⇒ s[l] ∈ s[t]

Home room must be taught by the class teacher

∀t ∈ T,∀l ∈ L : s[l] = homeroom∧ c[l] = t =⇒ x[t, l] = 1

The class teacher teaches at least one lesson in his class (optional constraint)

L′t,c ⊂ L the set of lessons that the class teacher t of class c is qualified to teach

∀c ∈ C :
∑

l∈L′c[l],c

x[c[l], l]> 0

If a link to other lessons exists the same teacher has to be assigned to all

∀t ∈ T,∀l ∈ L : |i[l]|> 0∧ x[t, l] = 1 =⇒ ∀l ′ ∈ i[l] : x[t, l ′] = 1

Mixture of Hard and Soft Constraints
A teacher can only teach in a class of his type (HR or G). If he has type "all" he can teach all types.

∀t ∈ T,∀l ∈ L : x[t, l] = 1 =⇒ (t[t] = t[l]∨ t[t] = all ∨
∃g1, g2, p ∈ N0(g1 ≤ g[l]∧ g[l]≤ g2 ∧ p′′′l = p ∧ (t[t], t[l], g1, g2, p) ∈ Y )

A teacher should teach the stipulated amount of periods per week. Depending on the teacher’s overtime
balance from last year, his extracurricular hours and the allowed range that is specified, a lower and
upper bound is calculated. The overtime is used as penalty.

∀t ∈ T :
∑

l∈L

(x[t, l] ∗ h[l])≤ h[t] + upper ∧
∑

l∈L

(x[t, l] ∗ h[l])≥ h[t]− lower ∧ pt
′ =

|h[t]−
∑

l∈L

(x[t, l] ∗ h[l])|

Soft Constraints
A preassignment should be realised if possible, otherwise a penalty is added.

∀(t, l, w, p) ∈ A : (w = 1 =⇒ (x[t, l] = 1 ⊕ (p(t,l,w,p)
′′ = p ∧ p 6= 9999)) ∨ (w = 0 =⇒ (x[t, l] =

0⊕ (p(t,l,w,p)
′′ = p ∧ p 6= 9999)))

Objective Function
The goal of the assignment is to find a feasible solution with the following objective function:

minimize(
∑

t∈T

pt
′ +
∑

a∈A

pa
′′ +
∑

l∈L

pl
′′′)

25



6 Language implementation

During the implementation of a DSL, it is good practice to incrementally add new features to the language
and refine its characteristics as needed [40].

When introducing a new feature, it has to be considered what additions or modifications of the lan-
guage have to be made. Figure 6.1 shows all aspects of TCAL that have to be considered.

Within the Spoofax framework the syntax is defined using the syntax definition formalism SDF3. In
Section 6.1 the realization of the syntax definition is further discussed.

When trying to refer to elements within a program, such as variables or methods, name resolution
algorithms are necessary to establish the appropriate name binding. To link use sites of an element to its
definition, name binding and scoping rules are used. When adding a new feature to TCAL, we therefore
have to make sure that we add the appropriate name binding and scoping rules to the language or
modify the existing ones. They are defined in Spoofax with the Name Binding Language NaBL. NaBL is a
declarative domain-specific language, from which an efficient name resolution algorithm is then derived
[25]. In Section 6.2 we discuss the name binding of TCAL further.

Basic editor services are automatically derived based on the language’s grammar by Spoofax. We
added minor changes to the syntax highlighting and outline view, which is discussed in Section 6.3.

Within Spoofax’s architecture the input of a TCAL file is parsed, desugared and analyzed, which results
in an abstract syntax tree (AST) of Stratego terms [18]. Instead of using Spoofax’s transformation
language Stratego, we use Scala and pattern matching in a custom Scala strategy to transform the AST
into Scala objects (Section 6.4.1).

We chose to use the Choco solver library to solve our underlying constraint optimization problem. In
Section 6.4.2 we discuss the conversion of the Scala objects into data structures that are used by the
Choco solver.

In Section 6.5 we give an overview of how we modeled our constraints with the Choco library and
describe the search strategy that we use.

After the execution of the solver, a printer object is then used to create output files if a feasible solution
was found.

The complete source code can be found in the GitHub repository
https://github.com/AlinaDev/TCAL
Since the project contains personal information about the teachers of the Otto-Hahn-Schule, the repos-

itory is kept private. The project is also available on the CD accompanying this thesis.
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TCAL source file

AST

SDF3 syntax definition NaBL name binding

scala objects

matrices for Choco

Choco model

result files

Figure 6.1: Diagram of conversion in TCAL

6.1 Syntax definition

In this section of the thesis the syntax definition of TCAL is explained. The syntax definition formalism
SDF3 is used to create TCAL’s specification by combining several module declarations. The modules
are divided into the overall syntax of a TCAL program, data, constraints, configuration, and a common
module that contains the basic language constructs.

A syntax definition of a module in SDF3 can import other modules, as seen in Code Listing 6.1, and
use their definitions. This enables separation of concerns and the reuse of modules [11]. The parser
uses the symbols defined in context-free start-symbols as start symbols and they are the root node of the
resulting AST.

The Common module contains lexical syntax definitions for low level language elements. These include
definitions for identifiers, numbers, comments, layout and whitespace.

We use context-free syntax to define the rest of TCAL. Compared to lexical definitions, context-free
syntax definitions are higher-level and can include layout.

A program’s grammar is mostly made up of productions, both for lexical as well as context-free syntax.
A productive rule has one of the following forms [11]:

<Sort> = <Symbol>*
<Sort>.<Constructor> = <Symbol>*

The Symbols on the right of the = define the sort on the left-hand side of the production. The sort can
be followed by a dot and a constructor name. A symbol’s alternatives are comprised of all productions
that define its sort [11].

In Code Listing 6.1 the production for a program instance can be seen. An instance has to be intro-
duced by the instance keyword and an identification. One or more Data elements follow, that have been
imported with the Data module. The + represents here, just as in regular expressions, one or more
occurrences. The constraints section is mandatory. A configuration section is optional, which is indicated
by the ?.
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1 module TCAL
2

3 imports
4

5 Common
6 Data
7 Constraints
8 Configurations
9

10 context-free start-symbols
11

12 Start
13

14 context-free syntax
15

16 Start.Instance = <
17 instance <ID>
18 <{Data "\n\n"}+>
19

20 <Constraints>
21

22 <Configurations?>
23 >

Code Listing 6.1: TCAL module syntax definition

Within the Data module, productions for the different data elements of TCAL are defined as construc-
tors of the Data sort. In Code Listing 6.2 the productions for teachers and classes are shown. The teacher
or class keywords must be followed by an ID for referencing an instance of this object. The body of a
data object is comprised of several attributes of the form x : y, where the left-hand side x is the name
of the attribute and the y on the right of the : separator is a low level language element, like strings or
numbers, or the attribute is defined by references to other objects (lines 9, 11, 21, 23 and 24).

Line 9 shows the production that is used to declare the subjects a teacher can teach. In line 26 the
used SubjectRef sort is defined. References are defined as IDs and are bound to the definition site of the
element with the same ID with name binding rules (further explained in Section 6.2).

1 context-free syntax
2 Data.Teacher = <
3 teacher <ID> {
4 <{TeacherAttr "\n"}+>
5 }
6 >
7

8 TeacherAttr.Name = <name : <STRING>>
9 TeacherAttr.Subjects = <subjects : <{SubjectRef ", "}+>>

10 TeacherAttr.Hours = <hours : <NUM>>
11 TeacherAttr.AttrType = <type : <Type>>
12 TeacherAttr.Extra = <extracurricular : <NUM> <STRING?>>
13 TeacherAttr.Balance = <balance : <NUM>>
14

15 Data.Class = <
16 class <ID> {
17 <{ClassAttr "\n"}+>
18 }
19 >
20
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21 ClassAttr.Board = <hourboard : <{BoardRef ", "}+>>
22 ClassAttr.Grade = <grade : <INT>>
23 ClassAttr.AttrType = <type : <TypeRef>>
24 ClassAttr.AttrTeacher = <classteacher : <TeacherRef>>
25

26 SubjectRef.SubjectRef = ID

Code Listing 6.2: Syntax definition of teachers classes and teacher references

In Code Listing 6.3 the production rules for TCAL’s overtime constraint are defined. The overtime
keyword must be followed by a range of integers and can then be followed by a penalty specification and
an option. As described before, the ? indicates that an element is optional.

1 context-free syntax
2

3 Constraints.Overtime = <overtime <Range> <Penalty?> <Option?>>
4

5 Penalty.Penalty = [=> [INT]]
6 Range.Range = <[<INT>,<INT>]>
7 Option.Soft = <soft>

Code Listing 6.3: Syntax definition of constraints

6.2 Name binding

We reference subjects in the definition of a teacher instance, we reference classes when combining them
to a coupling. Correct references from definition to use sites of names are essential to identify the correct
program element that is referenced and avoid name conflicts.

Name binding and scoping rules in Spoofax are specified with the DSL NaBL. It is a declarative meta-
language where namespaces, definitions, references, scopes, and imports are used to specify a language’s
name bindings. A compiler then generates a resolution strategy representing the specified name binding
[25].

Namespaces can be seen as collections of names that identify elements in a program. The same name
in two different namespaces will not cause name conflicts. Even within one namespace name conflicts
are avoided, as long as the visibility of the definition sites do not overlap at use site. This is achieved
with scoping rules [25].

The term patterns in lines 5, 9 and 12 of Code Listing 6.4 correspond to parts of the program’s abstract
syntax tree. They are made up of constructors from the syntax definition of TCAL (Section 6.1), variables
(id) and wildcards (_). Lines 6, 7, 10 and 13 show name binding declarations for the language element
corresponding to the term pattern [24].

At the beginning of Code Listing 6.4 a namespace for every data type is introduced. The binding rule
in line 6 declares the definition site of an instance, where id represents its name.

The scoping rule in line 7 restricts the visibility of all data types within one instance from being seen
outside of the instance. Therefore several instances of assignment programs can be in one project without
causing name conflicts. As a result one program can be duplicated and used as the basis for next years
teacher assignment with only the necessary updates and a new instance name.

Lines 10 and 13 show the difference between a definition site and a use site. While line 10 indicates
the definition site and the teacher’s id is being bound to the corresponding program element, line 13
shows a reference to the definition site of a teacher.
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1 namespaces
2 Instance Data Teacher Subject Class Coupling Hourboard Type
3

4 binding rules
5 Instance(id, _, _, _) :
6 defines Instance id
7 scopes Teacher, Subject, Class, Coupling, Type, Hourboard,

Preassignment
8

9 Teacher(id, _) :
10 defines Teacher id
11

12 TeacherRef(id) :
13 refers to Teacher id

Code Listing 6.4: Name binding and scoping rules in NaBL

6.3 Editor Services

As discussed in Section 2.1.3, Spoofax parses and analyzes the source files on the fly and default editor
services are provided according to the specified syntax and name binding. To support the users of TCAL,
we improved the generated outline view and syntax highlighting.

Outline View
The data constructs in TCAL can be defined in the order that makes most sense to the user. Even

though having all hour boards in one part of the program eases maintaining them, it can be practical to
define hour boards close to a class definition if the hour board is only ever assigned to this class.

However, this individual ordering can complicate finding a specific element. Spoofax automatically
creates an outline view of the program with the elements’ IDs as labels. The identifiers we used for the
exemplary school are often very similar to each other and can even include duplicates if the type of data
element is not the same. By adding icons to those labels depending on the data construct the ID refers
to, an element can easily be found in the outline view (Figure 6.2).

Syntax Highlighting
The generated syntax highlighting did not highlight referenced program elements. We added high-

lights for all IDs (lilac), strings (blue) and numbers (green).
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Figure 6.2: Syntax highlighting and customized outline view

6.4 Compiler

As described in the requirements for TCAL, extending the language and using other tools for solving
the underlying algorithmic problem should be as easy as possible. Spoofax offers the possibility to
dynamically load a Java strategy in form of a Java archive instead of writing code transformations and
generations with the Stratego language within the Spoofax project. Taking advantage of this feature,
and the compatibility of Scala with Java, we wrote TCAL’s strategy in Scala. Within the Scala strategy
the AST that is created from a TCAL source file is converted to Scala objects. Only then is the relevant
data used to model the algorithmic problem of finding the best assignment with the help of the Choco
solver.

This compilation in several phases is useful to offer optimal structures for the user and for the solver.
While a separation of the data into hour boards, classes and couplings simplifies maintenance for the user
and gives the program a more expressive structure, the solver only needs teachers and lesson with their
individual attributes and constraints. The intermediate data representation as Scala objects is useful if
the solver tool is exchanged, as they are easily converted into the required format for any tool.

6.4.1 AST to Scala Objects

After parsing, desugaring, and analyzing the contents of a TCAL source file, an AST of the program is
used as the input for the Scala strategy. The AST is first converted into a tree of StrategoTerms (Code
Listing 6.5), namely

StrategoAppl, representing all language elements for which a constructor is defined in the lan-
guage’s context-free syntax

StrategoString, containing an ID, a string or a number

StrategoList, containing a list of StrategoTerms
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1 StrategoAppl(Instance,WrappedArray(
2 StrategoString(summer16), StrategoList(ArraySeq(
3 StrategoAppl(Teacher,WrappedArray(
4 StrategoString(SmiA), StrategoList(ArraySeq(
5 StrategoAppl(Name,WrappedArray(StrategoString("Smith, Adam"))),
6 StrategoAppl(Subjects,WrappedArray(StrategoList(ArraySeq(
7 StrategoAppl(SubjectRef,WrappedArray(StrategoString(mathematics

))),
8 StrategoAppl(SubjectRef,WrappedArray(StrategoString(english))))

))),
9 StrategoAppl(AttrType,WrappedArray(

10 StrategoAppl(TypeRefPlus,WrappedArray(
11 StrategoAppl(TypeRef,WrappedArray(StrategoString(G))))))),
12 StrategoAppl(Hours,WrappedArray(StrategoString(25))),
13 StrategoAppl(Balance,WrappedArray(StrategoString(1.75))),
14 StrategoAppl(Extra,WrappedArray(StrategoString(2),
15 StrategoAppl(Some,WrappedArray(StrategoString("library"))))))))

),
16 [...]
17 )
18 )

Code Listing 6.5: AST of StrategoTerms (syntax constructors in bold)

Within the Scala strategy, pattern matching is used to traverse the AST of StrategoTerms and convert
them into Scala objects. Code Listing 6.6 shows the beginning of this process. The Instance is always
the root of a TCAL AST. It is followed by the instance ID (StrategoString(instance_id)), a list of data
definitions (StrategoList(dataStrat)), a list of constraints (StrategoList(constraintsStrat)) and an option
for configurations (configuration) in line 2. The data, constraint and configuration elements are then
traversed in separate functions to create the respective Scala objects.

1 input match {
2 case StrategoAppl("Instance", StrategoString(instance_id),

StrategoList(dataStrat), StrategoAppl("Constraints", StrategoList(
constraintsStrat)), configuration) => {

3 instance = instance_id
4 configuration match {
5 case StrategoAppl("Some", StrategoAppl("Configurations",

StrategoList(configs))) => convertConfigurations(configs)
6 case StrategoAppl("None") =>
7 case _ => throw new Exception("Unexpected configuration format")
8 }
9 convertData(dataStrat)

10 convertConstraints(constraintsStrat)
11 print("constraints: " + constraints + "\n")
12 }
13 case _ => throw new Exception("Unexpected AST")
14 }

Code Listing 6.6: Traversing Stratego AST

Chain of References
As mentioned before, data elements in TCAL often reference each other. Trying to convert a teacher

definition into a Scala object without having converted the teacher’s subjects beforehand would result
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Preassignment/ Incremental (5)

Teacher (2)

Class (3)Coupling (4)

Subject (1)

Type (1)

Hour Board (2)

Figure 6.3: Illustration of what object references another and resulting order of conversion

in problems. One alternative of handling this would have been to force the user to define the data in a
specific order, which would have been an unnecessary complication in our eyes. Instead we traverse the
data subtree of the AST in five rounds.

In Figure 6.3 the chain of references is illustrated and the number behind each element represents
the round in which this element is converted. The red path is a longest path within the graph from
an element that is not referenced by any other (last one to be converted) to an element that does not
reference any other (first one to be converted). This path has five edges, therefore we need at least five
rounds.

Lessons

In TCAL’s data structure lessons can be inferred by the combination of a class or coupling object and
their referenced hour boards. By this the maintenance of a grade’s hour board is simplified and copying
the same lessons to every class is avoided.

However, to model the problem for the solver, this structure does not make sense and would lead
to unnecessary complication. During the third round of the conversion, classes and couplings are con-
verted. For every entry in their referenced hour boards Lesson objects are created, referencing the taught
subject, its class(es) and the amount of hours the lesson is taught per week. Couplings are from now on
represented by a set of classes.

A lesson also has an option for a link to other lessons. This option is used when the lesson’s subject
extends another subject. If both subjects are taught in the same class they are both taught by the same
teacher. Coordination lessons are also linked to other lessons (Section 4.2) to constrain the teachers
allocated to the linked lesson to be assigned to the coordination lesson.

Incremental Preassignments

Assignments from a previous execution of a program in TCAL can be used as mandatory assignments
in the next execution. As described in Section 4.2, one or more references have to be specified in an
incremental preassignment object to determine which assignments should be retained. During the fifth
round of the conversion to Scala objects, all lessons are filtered out that are affected by this incremental
preassignment. For each one of those lessons, a mandatory preassignment is created with the teacher
from the previous assignment.
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6.4.2 Scala Objects to Matrices

After the AST of Stratego terms is converted into Scala objects, they can be used as the data basis for a
tool to solve the constraint optimization problem of the actual assignment. For this task we use the Choco
solver, described in more detail in Section 2.2.4. To build the model with the Choco library we convert
the Scala objects into matrices containing all relevant information for the solver. This way information
can be quickly looked up.

6.5 Modeling and Solving the CSOP

We use the java Choco library to solve the constraint optimization problem of assigning teachers to
classes and lessons. Choco is separated into a modeling part and the solver. In this section we will
describe how a TCAL program’s constraints are modeled with the Choco library and the search strategy
is described that is used by the solver to calculate the best teacher allocation.

6.5.1 Modeling Constraints with Choco

The first instruction to model a problem with Choco is to create a Solver object (Code Listing 6.7 line 1).
The Solver manages the variables, constraints and it guides the search loop.

In constraint programming, variables are the unknown that have to be assigned a value, obeying all
constraints, to get a feasible solution. In lines 3 and 4 a matrix and an array of variables are declared.
The as matrix contains the solution’s assignment of teachers to lessons. The rows of as correspond to all
teachers and the columns to all lessons. For every variable a domain of possible values must be defined.
The variables in as are BoolVar, a special IntVar with a fixed domain of 0 and 1. In a feasible solution the
lesson with index i is assigned to the teacher with index j if the value 1 is assigned to the vaiable as[i][j],
otherwise 0 is assigned.

For a normal IntVar the variable’s domain has to be defined. In line 4 a variable array for the overtime
penalties is created. It has an entry for every teacher and the domain of each entry is between 0 and
500.

In line 7 we iterate over all mandatory preassignments. A preassignment can be wanted or unwanted,
which is specified by assigns[a][2] being 1 or 0 respectively. We then post a constraint to the solver,
that the teacher with index assigns[a][0] is assigned to the lesson with index assigns[a][1] by constrain-
ing the entry as[assigns[a][0]][assigns[a][1]] of the assignment matrix to be equal to assigns[a][2].
This is an example of a unary hard constraint. Every created constraint only involves one variable
(as[assigns[a][0]][assigns[a][1]]) and if the constraint is not satisfied, a solution is not feasible.

1 Solver solver = new Solver("Assigner");
2

3 BoolVar[][] as = VariableFactory.boolMatrix("assignment", num_teachers,
num_lessons, solver);

4 IntVar[] pen_overtime = VariableFactory.boundedArray("penalty overtime",
num_teachers, 0, 500, solver);

5 IntVar score_overtime = VariableFactory.bounded("score overtime", 0,
100000, solver);

6

7 for(int a = 0; a < assigns.length; a++){
8 solver.post(ICF.arithm(as[assigns[a][0]][assigns[a][1]], "=", assigns

[a][2]));
9 }

Code Listing 6.7: Variable creation and mandatory preassignment constraints
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The overtime constraint showcases a variety of constraints and modeling techniques. In Code List-
ing 6.8 line 3 a variable is introduced that is constrained to contain the amount of hours a teacher is
scheduled to teach by posting the higher-order constraint in line 5. as[t] is an array of 0’s and 1’s and
hoursLessons is an array where the entry hourslessons[i] represents the amount of hours the lesson with
index i is taught in a week. The scalar product, also called the dot product, evaluates to the scheduled
hours of the teacher.

The range that is specified by the user for the allowed overtime is saved in the array overtime. A teacher
is allowed to teach at most overtime[0] less and overtime[1] more hours per week. The constraints in
lines 6 and 7 enforce these hard constraints.

Additionally, soft constraints are required to favor solutions that involve as little overtime as possible.
To represent soft constraints we introduce penalty arrays. Every entry of the penalty array pen_overtime
represents the overtime of one teacher. We use variable views in line 8 to define the entry as a function
of the absolute difference between the scheduled and desired hours, multiplied by the penalty saved in
overtime[2].

score_overtime is then constrained to be the sum of all entries in pen_overtime.
The objective function of our model is to minimize the sum of all scores.

1 for(int t = 0; t < num_teachers; t++) {
2 //every teacher works as many hours as desired, at most overtime[0]

less or overtime[1] more
3 IntVar scheduledHours = VariableFactory.bounded("scheduled hours", 0,

500, solver);
4 int desiredHours = teachers[t][num_subjects+1];
5 solver.post(IntConstraintFactory.scalar(as[t], hoursLessons,

scheduledHours));
6 solver.post(IntConstraintFactory.arithm(scheduledHours, ">",

desiredHours + overtime[0] - 1));
7 solver.post(IntConstraintFactory.arithm(scheduledHours, "<",

desiredHours + overtime[1] + 1));
8 pen_overtime[t] = VariableFactory.scale(VariableFactory.abs(

VariableFactory.offset(scheduledHours, -desiredHours)), overtime
[2]);

9 }
10 solver.post(IntConstraintFactory.sum(pen_overtime, score_overtime));

Code Listing 6.8: Model of the overtime constraint in Choco

6.5.2 Search Strategy

As described in Section 2.2.4, the Choco solver uses search strategies to find a solution or determine that
there is no feasible solution. During the search a binary search tree is constructed, adding a node for
every decision that is made. A decision is usually comprised of the assignment of a value to a variable.
Which variable is assigned next and what value is selected from its domain depends on the specified
search strategy. The decision is then propagated. If a decision causes a failure, backtracking is used
to undo the decision according to the binary search tree and a different decision is made. By doing so
the search space is explored with a depth first search. If no more free variables are available, either a
solution has been found or no feasible solution is possible [30].

The Choco solver offers a number of built-in search strategies. Using the domOverWDeg strategy
provided us with the best results.
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domOverWDeg

solver.set(IntStrategyFactory.domOverWDeg(ArrayUtils.flatten(as), System.
currentTimeMillis()));

This search strategy is based on the adaptive variable ordering heuristic introduced by Boussemart et al.
[4]. By maintaining information about previous states of the search, the heuristic can guide the search
toward hard parts of the problem. To do so, every constraint has a weight associated to it. This weight
is initialized to 1 and is increased every time the constraint is the cause of a backtrack. Every variable
is then attributed a weighted degree (wdeg), that can be constructed by the sum of the weights of all
constraints that involve the variable and at least one other uninstantiated variable. The weighted degree
is combined with the variable’s current domain size (dom) into dom

wdeg . The variable with the smallest ratio
is assigned next. At the beginning of a search, wdeg represents the number of constraints the variable is
involved in. The heuristic is therefore initially a combination of the most-constrained-variable and the
most-constraining-variable heuristic (see Section 2.2), as it chooses the variable with the fewest possible
values and that is at the same time involved in the most constraints. However, as the heuristic collects
information, variables that are involved in constraints that are hard to satisfy are assigned with a higher
probability.

With extensive experiments Boussemart et al. showed in 2004 that the approach was the "most ef-
ficient current one with respect to significant and large classes of academic, random and real-world
instances" [4].
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7 Evaluation

The goal of this thesis was to create a way to support schools during teacher allocation. There is a variety
of software available to compute the timetable of a school but none to automatically assign teachers to
classes and lessons. We therefore decided to design a DSL and implemented it in the course of this thesis.

To evaluate the result of our project, we will at first describe the process of the language development.
By explaining design decisions, the incremental addition of new language constructs and the reasons
for each, we will justify the language’s syntax. We will evaluate our solver model and compare our
language to the requirements that we set ourselves in the concept. Finally we will evaluate the resolution
performance and the resulting assignment.

7.1 Requirements Analysis, Conceptualization and Basic Language Development

To gather all relevant constraints of the problem at hand, we talked to domain experts from a local school.
They explained to us all regulations and reasonings that they have to consider when assigning teachers
to classes. With this information we created an initial concept. It contained a list of all constraints,
divided into hard and soft constraints, and an overview of the data structure we thought was needed to
implement them. The concept was then improved during the course of this project and evolved into the
concept that can be found in Chapter 5.

One question that we had to decide was how free the user should be to define constraints. We decided
to offer a limited amount of built-in constraints where the user could then specify if the constraint has
to be enforced. The user can also customize the constraint’s parameters if necessary or desired. This
enables users with little programming experience to use the language.

We started out by defining the most basic entities necessary for a teacher assignment; teachers, classes,
subjects and hour boards. Hard constraints for the number of teachers per lesson, the constraint that
a teacher must be qualified to teach a subject and minimal and maximal overtime were added. To
minimize the amount of overtime, penalties for the resulting overtime were introduced. The solver was
set to minimize the score of a solution, the sum of all penalties.

For the syntax of the language we used the domain’s terminology and went without using common
programming keywords. Attributes are defined in a way that is familiar from filling out a form in real
life.

To test our language with realistic data we then received an excel sheet with the school’s teacher
data and hour boards. This data was unfortunately not completely clear without further knowledge
of the teachers and specific regulations. This strengthened our desire to offer an unambiguous data
representation with our language.

A pastor was for instance listed to teach religion in Hauptschule and Realschule. The number of hours
that could be taught was however significantly less than the amount of hours he was supposed to teach.
No solution could be found, because the pastor could not be assigned an adequate amount of hours.

Furthermore, the distribution of lessons onto classes was not apparent from the hour boards. For
lessons like religion or languages the classes are often mixed together. This could not be deduced from
the data given to us.

With a pdf of the current teacher assignment, most questions could be answered. We could infer the
hour boards, added subjects and project groups, and corrected the teacher data.
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7.2 Process of Adding New Language Constructs

In this section we will explain the reasoning behind the language constructs that were incrementally
added to the language.

Students do not have all lessons within their usual class. For lessons like religion, languages or elective
courses students from different classes come together. At first we had planned to create fake classes for
these occasions. The disadvantage of this would be, that there would be no reference to the real classes
that partake in the lessons. Instead we added the language construct of couplings. A coupling references
the classes it unites and the hour boards that are assigned. After finding a solution we can print out the
assignment and group it by classes, with couplings’ lessons showing up in the sections of every class of
the coupling.

As mentioned before, even though teachers are trained to teach one type (HR or G), they are often
allowed to teach other types. To facilitate this in our language we added an all type. This type is built-in
and allows the teacher to be assigned to lessons of all types.

In Germany all classes have one class teacher and they usually have periods that are called home
room where problems can be discussed, projects or excursions are planned. We added a built-in subject
homeroom and the classteacher attribute for the class definition. All lessons with subject homeroom are
constrained to be assigned to the class’s class teacher.

After viewing the current teacher assignment we realized that there were a number of subjects that
differ from the usual subjects that teachers can study for at university (e.g. mathematics, German, bi-
ology or history). Therefore these subjects are not referenced when a teacher is defined. To check if
a teacher is qualified to teach a lesson, the lesson’s subject and the subjects referenced when defining
the teacher are compared. As as result an assignment of these subjects was not possible. These subjects
include special science courses and courses that practice reading, writing, and arithmetic. When asking
the domain experts they explained to us what teachers are qualified to teach each subject. Now we had
to find a way to include these subjects with their real name, but also check which teachers are qualified
to teach them. We added the possibility to extend subjects. This way a teacher that is allowed to teach
the extended subject is also allowed to teach the extending subject. For example, the subject where
reading, writing, and arithmetic are practiced extends German, hence all German teachers are allowed
to teach it, without having to reference the subject when defining the teacher.

A class teacher often teaches several subjects in his class. This can be demanded by defining preas-
signments, but we decided to add a hard constraint that at least one lesson must be taught by the class
teacher.

Some teachers take on tasks besides teaching. These extracurricular activities include library duty and
the tasks of a principal, vice principle or guidance counselor. Decreasing the teacher’s desired hours
in his definition would result in a wrong data representation. Instead we added the extracurricular
attribute to the teacher definition with an optional label. The hours specified as extracurricular are sub-
tracted from the teacher’s available hours per week when converting the Scala objects to matrices for
the Choco solver. The label can be used when printing out the solution. While listing all lessons that
are assigned to one teacher, the extracurricular activity can thereby be listed as well with the correct label.

If the solver can not find a solution, the user usually does not get any feedback as to what the reason
for it might be. We therefore added the possibility to turn the hard overtime constraints into soft con-
straints with a very high penalty. This however results in a very bad resolution performance. When the
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input size of the problem is of bigger proportion this option can not be used to find an optimal solution.
However, instead of not getting any solution and feedback, the user gets a solution, which is far from
optimal, but he sees what subject or teacher causes the problem.

A teacher’s desired hours, balance or extracurriculars are not always whole numbers. We added the
possibility to use numbers with decimal places (floats) in these cases. However, because lessons’ hours
are always whole numbers, we do not need the partial hours to have correct hard constraints for over-
time. The teachers’ hours are therefore rounded down for the solver model. The only problem is that
the penalty does not contain the partial hours, which slightly distorts the score of a solution. When we
tried changing the penalty variable from an integer into a number with decimal places, many constraints
could not be used in Choco anymore and we could not create an overall score.

We previously added the built-in type all because we realized that teachers may teach other types than
they were originally trained to. In most cases teaching in a class of their original type is preferred, which
could not be represented by using the all type. We therefore introduced the option to make a type a "plus
type" by adding a + to a teacher’s type. Teachers with "plus type" are allowed to teach other types. To
control this procedure we added a customizable type constraint, so that the user can for instance specify
that "plus teachers" of type A can teach classes of type B. Furthermore, the user can limit the grade in
which the constraint takes effect and he can specify the penalty that should be added if a "plus teacher"
teaches another type if desired.

It is obvious that not all teachers can teach exactly the designated amount of hours per week. For this
and various other reasons teachers may have overtime from previous years. This overtime can be defined
as balance in the teacher definition. If a teacher has already a positive or negative balance, it should
be preferred to decrease it and avoided to increase it. Our first intuition was to add the balance to the
desired hours and use the new number for the solving process. However, the balance can be rather large
for some teachers and it may not be viable to work it off in one school term. This being the case, we
decided that the user could specify a second range that limits the maximum deviation from the original
desired hours (details in Section 4.3).

If a teacher works many hours in the upper classes (grades 10 to 13) he is credited additional hours,
because preparations are more elaborate. Defining a syntax for this constraint was the hardest of all
constraints. There are many parameters of the constraint that a user could customize; the teacher’s
type, affected grades, hours that are credited, threshold value of hours when the additional hours are
credited. We decided to limit the customization to the credited hours and the threshold.When similar
constraints are added in the future, it could be sensible to adjust this constraint. Furthermore we did not
implement partial credit of hours for part time teachers, because partial hours are not supported in our
Choco model.

7.3 Modelling the Problem

The focus of this project was the development of a language. Unfortunately we did not have time to
optimize its resolution process completely.

Modeling simple problems with Choco is very intuitive, but it was hard to find good documentation or
examples about modeling with many soft constraints and complex constraints with many intermediate
variables.

As described before, we could not add partial hours for the teacher. Using number variables with
decimal places for the overtime penalty would have inhibited us from using necessary constraints.
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The range for the hard overtime constraint must be small to find a good solution in a reasonable time.
Even though the quality of the solutions will also increase over time with a bigger range, the resolution
performance suffers from the additional possibilities.

7.4 Results

Fulfillment of Requirements
Our goal was to design a language that could express all constraints that were given to us by the

exemplary school and solve the modeled problem. Moreover, the language should fulfill the following
requirements as stated in Section 3.2:

• Readable and understandable without programming experience
We used domain terminology and intuitive syntax to design TCAL.

• Unambiguous and expressive data representation
The prior representation of data with Excel spreadsheets was not clear without further insight, be-
cause classes were not represented individually, not all hour boards could be deduced. It was not
clear which teachers are allowed to teach special subjects. In TCAL every class is defined individ-
ually. Hour boards can be assigned to several classes or couplings, which helps with maintaining
consistency and gives a clear representation of each class’s lessons. Because special subjects must
extend another subject, it is always clear which teachers are allowed to teach it.

• Minimize the amount of coding effort
Necessary constraints for our exemplary school are built-in and only have to be customized. With
the possibility of assigning hour boards to several classes, the amount of boiler-plate code is further
decreased. Spoofax’s generated editor service of code completion also takes a lot of the coding work
out of the user’s hands if desired.

• Purely declarative modeling
All algorithmic details, constraint implementations and data conversions are hidden from the user.
Instead of defining the necessary steps to solve the problem, the user only has to define the data
elements, customize constraints or specify if a constraint must be obeyed.

• Language easily extensible
Thanks to Spoofax and the segmentation of the compiler into two phases, extending the language
can be done with little effort. When modifying the language’s grammar and after updating the
name binding rules, Spoofax will keep the rest of the language definition consistent. Adding ele-
ments to the Scala strategy with its clear structure is also straightforward.

• Efficient implementation
The Choco solver that we chose to solve the teacher allocation problem is one of the fastest on the
market. However, the resolution performance is not completely satisfactory. The solver sporadically
does not find any solution. A more specialized model or algorithm could improve TCAL.

• Problem solving tool effortlessly replaceable
Because the AST that is created by Spoofax is converted into descriptive Scala objects, they can
easily be converted into any data format suitable for other problem solving tools. Testing different
solvers could improve the resolution performance.

Resolution Performance
We tested our language with the data given to us by the Otto-Hahn-Schule. The problem is comprised

of 114 teachers and 888 lessons. With the constraints listed in Figure 7.1, 214.270 variables and 94.004
constraints are created from the Choco model.
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exemplary school
# teachers 114
# lessons 888
specified constraints overtime [-3,2]

add balance [-5, 3]
G can teach HR =>2
HR can teach G [5,10] =>3
add classteacher lesson
add 1 hour when 8 hours in upper

# variables 214.270
# constraints 94.004
first solution found ca. 30 sec
search completed -
best score found 265

Figure 7.1: Solution statistics for exemplary data

The solver was run on a computer of the following properties: Windows 8.1, Intel (R) CoreTM i7
2.50Ghz CPU with 16GB RAM.

The first feasible solution is usually found after around 30 seconds, as seen in Figure 7.2. Each graph
in this figure represents one execution of the program, where points stand for a solution that was found.
However, after the first series of solutions is found, the solver does not find another solution for long
stretches of time. Sporadically the solver does not find any solution within the time limit.

Eight hours was the longest period of time that we let the solver run. The optimal solution was not
found yet.

Choco does offer a lot of ways to customize the solver, but these possibilities are not well documented.
For a lot of more complex search strategies the parameters are not explained, therefore we had to specify
them as best as we could. We did test all build-in search strategies, but none could improve the result
presented here.
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Figure 7.2: Score depending on solution time (every graph represents one resolution round)
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8 Related Work

In literature the assignment of teachers to courses is mostly found in combination with the timetabling
problem. The creation of timetables is such an omnipresent problem that the research about it is count-
less. To share latest results and exchange ideas, the first international conference on the Practice and
Theory of Automated Timetabling (PATAT) [1] was organized in 1995 for researchers and practitioners
to meet. The conference is held every other year ever since and one topic that has been revisited from
the beginning is the creation of a standard timetabling language or format.

Because the teacher allocation problem, however, varies greatly around the world, we could not find
any research about the development of a standard language or format. The research in this area is
limited to algorithms solving problems similar to the one covered in this thesis.

In this chapter we will give an overview of the research related to the thesis’s topic. We will present
some of the most influential language designs and implementations for the timetabling problem. Subse-
quently we will discuss algorithms that were introduced to solve teacher allocation problems.

8.1 Languages, Data Formats and Frameworks

For specific problems researchers often do not focus on a general model, but instead focus mainly on
solving the problem efficiently, resulting in very specialized and optimized solutions. When using very
specialized models, small changes in the specification of a timetabling problem can result in the need
for radical changes in the data structure and the used algorithm. Furthermore, comparing results and
benchmarking becomes almost impossible. On the other hand, a standardized format for such a diverse
problem results in a more abstract and less expressive language. If the level of abstraction is too high,
the use of solution methods specialized for particular versions of timetabling may be prevented [23].

The motivation for a standard language or format is better comparability and transferability. An
archive of freely available test data could be assembled and used for comparable testing of new algo-
rithms and strategies.

Burke, Kingston and Pepper specified a list of requirements for a standard data format [6]. The format
must be general so that all possible instances can be described in the language. It must be possible
to formulate instances completely, including expressing all data constructs, constraints, optimization
criterion and the proposed solutions. Furthermore, it must be accessible so that it is easy to translate to
and from.

We have found that the only format that is still being used is an XML format introduced by the Bench-
marking Project for (High) School Timetabling (see below).

TTL1
For their computer program for high school timetabling, Cooper and Kingston introduced the language

TTL1 [8] in 1993 to specify instances of the timetabling problem. Unlike many prior proposed languages,
the assignment of teachers to lessons does not have to be fixed before computing the timetable. How-
ever, only a basic set of constraints is available from the language specification and the expression of
preferences is not possible.

RAPS
RAPS is a "Rule-Based Language for Specifying Resource Allocation and Time-Tabling Problems" [36]

that was introduced in 1994. An instance of a problem can be specified by defining its resources, activi-
ties, allocation rules and constraints. The user can also specify control and backtracking strategies. The
compiled program is then run by the "expert system for resource allocation" (ESRA) engine, a rule based
expert system.
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TTLIB
Burke, Kingston and Pepper developed 1998 [6] a data format for timetabling instances. TTLIB is

intended for comparison of results, exchanging data and using shared data for algorithm benchmarks
and evaluation. It is not intended to be a language from which programs are written. To allow every
possible constraint to be expressed, the format is based on set theory and logic to formulate all constraints
as functions. Representing complex constraints in this format is difficult, so that the creation of library
files of complex constraints is suggested.

STTL
The language, introduced by Kingston in 1999, is object-oriented and functional [19][20]. It was in-

tended for specifying and evaluating timetabling problems, their instances and solutions. Time, resource
and meeting objects define the data of a problem and functions are used to express constraints. With
some specialized features, STTL could be used to model any complex assignment problem. The author
also provided an interpreter for the language. However, it is not easy to convert existing data to STTL
[27].

UniLang
Intended to be an input language for any timetabling system, UniLang was introduced in 2001 [32].

Its representation of a timetable instance was meant to be understandable for both computer specialist
and school administrators. Unlike the majority of proposed languages or data formats, UniLang kept the
different versions of the timetabling problem (e.g. high school, university, examination) in mind during
the design and was intended to be suitable as an input language for any timetabling system.

Standard Framework and GTL
The standardized framework [14] introduced in 2002 can be used to describe many different kinds of

timetabling problems, not just school timetabling. It offers standardized input and output formats. With
the framework, the general timetabling language GTL is introduced with syntax similar to Java. While
the problem is described using GTL, the data of a specific instance must be converted into an XML input
file. Standardized timetabling algorithms are part of the framework and the result can be exported to
XML, HTML or text format.

TTML
The Timetabling Markup Language (TTML) is a XML data format based on MathML introduced in 2005

[27]. The timetabling problem is specified using set theory, where functions on those sets represent
constraints. The output and test results to a timetabling problem can also be modeled with TTML. A
multipurpose TTML processor, including parser, problem solver and a solution interpreter was a future
goal.

Architecture for Workflow Scheduling
With the 2005 introduced architecture, workflows can be modeled and scheduled, obeying resource

allocation constraints as well as temporal and causality constraints [2]. Resources are assigned to tasks
and the order of task execution is scheduled. The application area is very general, including all business
processes than can be modeled as workflows. The Workflow specification language (WSL) is introduced
to specify the resources of a problem and the resource allocation constraints on them. The architecture
also contains a scheduler module with a constraint solver to find a solution to the resource allocation
problem, using the constraint programming language OZ for the implementation.

KTS
KTS is a web-based software system, introduced in 2007 by Kingston, the author of TTL [8] and STTL

[20], that can be used to solve high school timetabling problems [21]. It includes a web server, user
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interface and a solver. The KTS data model is only used within the system. The software system is still
online.

An Extensible Modeling Framework
In 2007 Ranson and Ahmadi suggested a different approach to standardize the modeling of timetabling

problems. Instead of creating a new language they introduced a standard modeling framework [31]. The
framework can be extended and incorporates features of object-oriented programming and UML.

Benchmarking Project for (High) School Timetabling
In 2008 a group of researchers founded the Benchmarking Project for (High) School Timetabling. In the

following years they established a standard XML format and provided an archive of datasets to enable
freely available test data and comparable benchmarks.

The XML format was first introduced in 2008. The version described in 2011 [29] is the format used
for the benchmarking project today. Authors that introduced data formats and frameworks in previous
years collaborated on this project, namely Ahmadi and Ranson (extensible modelling framework [31]),
and Kingston (TTL [8], STTL [20] and KTS [21]).

An instance is described by time, resource, event, and constraint elements in the XML file. All restrictions
and requirements on the timetable are limited to the constraint part of the specification. This way the
data declarations are sufficient to represent data for various countries, while the constraints can be
extended if need be without changing the structure of the data representation.

The data format has only a declarative purpose so that instances in this format can be used as input
for timetabling systems and search strategies.

In 2010 the first archive HSTT2010 was introduced with 15 instances from 7 different countries. In
2016 the latest version of the archive XHSTT-2014 contains around 50 datasets from several countries
and varying significantly in size [28].

The XML format also models solutions. For benchmarking, the solutions can then be evaluated with
Kingston’s HSEval High School Timetable Evaluator [22]. The evaluator verifies the compliance with the
XML format, provides the infeasibility and objective values that represent how many hard constraints
are violated and how well soft constraints were satisfied, and finally it compares solutions if multiple
solutions were included.

8.2 Algorithms

An Operations Research Approach
Tillett was the first to describe an algorithm for the assignment of teachers to courses in a secondary

school [38] in 1975. His starting position was that teachers had to be assigned to courses and the
courses had to be assigned to rooms and time slots before distributing the students to the courses,
according to their requests. The algorithm was based on the operations research technique of linear
programming. In four of seven test cases the resulting solution was superior to existing schedules in
regards to their preference and effectiveness ratings. However, the resolution time with the integer
programming algorithm was too great for departments of bigger size.

A Linear Programming Solution
A program was introduced in 1976 for simultaneously solving all subparts of the timetabling problem

at a university, namely the determination of which courses should be offered and how many sections in
each, the allocation of faculty to courses, the assignment of the courses and sections into timeslots and
rooms, and lastly the distribution of students to courses and sections [5]. After an initial processing a
listing of possible assignments was produced and only after communication with the administration, was
the problem solved completely.
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A Special Case of the Fixed Charge Transportation Problem
The problem of assigning classes to professors at a university is discussed with the objective of min-

imizing the average number of distinct subjects assigned to each professor. The teacher assignment
problem is formulated as a fixed charge transportation problem [16]. In comparison to the solutions of
a general mixed integer program solver, the solutions of this specialized algorithm are superior.

Genetic Algorithm
Wang proposed 2002 a genetic algorithm to find a solution to the teacher assignment problem faster

and with a higher satisfaction rate of the teacher’s preferences [41]. To do so, the offered courses, the
teacher’s qualification and preferences, the minimum required teaching hours and the limit of overtime
hours are considered. The goal was to find a fair distribution of overtime and to fulfill the teachers’
preferences as satisfactory as possible. To find a solution, a genetic algorithm, which is based on the bio-
logical principles of selection, reproduction, and mutation, is used. Genetic algorithms are global search
algorithms that process combinations of parameters rather than single parameters. After a genetic rep-
resentation of the problem is found, genetic operators are used to find new combinations of parameters.
According to a fitness function the combination can be evaluated.

Tabu Search
To assign teachers to subjects and groups in a secondary school in Spain a constructive procedure is

firstly used to find an initial solution and with a tabu search algorithm the solution is improved [3]. The
teacher assignment is used as a first phase to the timetabling problem, and the assignment is evaluated
by the quality of the resulting timetable.

Hybrid Algorithm
A hybrid algorithm, combining an integer programming approach, a greedy heuristic and a modified

simulated annealing algorithm, is used to solve the teacher assignment problem and the course schedul-
ing problem simultaneously [15]. The results indicate that the algorithm can handle large data sets
better than previous proposals. The problem is firstly specified as a mathematical programming model
and coded in C++ for testing.
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9 Future Work

One of the requirements for our language was that it could be easily extended to fit different constraints
and regulations that may be relevant at other schools. Furthermore the implementation was designed to
effortlessly exchange the tool that is used to solve the underlying allocation problem. Following we will
describe possible improvements and additions to our language.

Constraints and Model
Partial hours are currently not reflected in the teachers’ overtime penalties. Finding a way to represent

them would be favorable in the future.
In our model all lessons are assigned to exactly one teacher. The coordination hour is the only excep-

tion. This could easily be adjusted in the future. A lesson could be assigned to more than one teacher, for
example for a project group or if an assistant teacher has to be overseen by another teacher. Even though
there was no use case for that at our exemplary school, it is nevertheless already built in to the constraint
model. Therefore only the language syntax would have to be adjusted to accommodate specifying the
number of needed teachers.

Different teachers vary in their style of teaching. Teachers could be grouped by their style of teaching
and an additional constraint could be to avoid having too many teachers of the same kind teach the same
class.

When there are not enough teachers to cover all lessons, the school can hire a new teacher. With the
current language, the user could create a new teacher and try out different subjects to see what combi-
nation would result in the best assignment. A built-in mode that would compute the best combination
of subjects a new teacher would need could be a good addition to the language.

Assignment Tool
The biggest weakness of TCAL currently is the constraint solver. The time until a satisfactory solu-

tion is found could presumably benefit from improving the model, comparing more algorithms, search
strategies and trying out different tools or implementing a customized algorithm.

Input and Output
We built a parser to convert our exemplary school’s data into TCAL format. With a more adjustable

parser, different file formats could be converted into TCAL.
We looked into creating a file that could be imported into the timetabling software that is used by our

exemplary school. However, the file would have to include information that is not part of the teacher
assignment task, like the class’s room or the date when the school year starts and ends. Finding a way
to output the assignment into file formats that are used by popular timetabling softwares would be
advantageous for integrating TCAL into the normal timetabling work flow.
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10 Summary and Conclusion

In this thesis, we designed and implemented a DSL for the assignment of teachers to classes and lessons
to support schools in the process of teacher allocation.

Our attention was drawn to this topic by the people in charge of teacher allocation at a local school.
They explained to us the difficulties of finding a fair assignment, because so many constraints have
to be considered; Regulations have to be obeyed and teachers’ or administration’s wishes have to be
factored in. We could not find a tool or language that would help schools with their teacher allocation
and therefore decided to create a language optimized to model and solve the problem. Utilizing the
language workbench Spoofax and the constraint solver Choco, we incrementally implemented TCAL
(teacher class assignment language).

Using Spoofax simplified the language development process and will facilitate future extension of the
language.

We used the domain’s terminology and an intuitive grammar to make the language readable and
understandable even without programming experience. In contrast to the school’s previous storage of
data in Excel spreadsheets, the data representation in TCAL is unambiguous and expressive. In TCAL
our school’s constraints are already built in and can be customized and set as needed. Coding effort is
therefore minimized compared to using a general purpose language, and algorithm details are hidden
behind a layer of abstraction. The user describes the problem in a declarative manner, rather than having
to specify how to solve it.

The compiler of TCAL has multiple phases and converts the AST of a program written in TCAL first into
Scala objects and then into a format convenient for the solver. This segmentation simplifies extending
the language or exchanging the Choco solver with a different tool in the future.

Real data from our exemplary school was used to test our language. A feasible solution can be found
within approximately 30 seconds.

As an alternative, a user can search for a solution that seems best to him by incremental search, which
keeps part of a previous solution and only searches for a new allocation of the remaining variables.

TCAL has the potential to help many schools in their process of teacher allocation.
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