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Abstract

This thesis depicts how the design and development of a DSL for the teacher assignment problem is con-
ducted in order to achieve a comprehensible interface to a performant solving backend. A hybrid solving
approach with a SAT solver for efficiency satisfaction and an iterative local search with an optimizer is
implemented. The domain specific knowledge allows for simple but effective neighborhood functions
to be implemented. The different solver characteristics allow for a flexible constraint language for the
problem specification and yield a promising performance. We test the comprehensibility of our DSL on
the target audience of teachers that usually have to be considered non-programmers. The results indi-
cate that the DSL is comprehensible enough to be used by non-programmers. Together the DSL and the
solving process offer an interesting programmer-compiler-relationship as a model for a versatile decision
support system.
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1 Introduction

Every year, schools have to plan the upcoming term’s teaching schedule. Every class has to be taught by
exactly one teacher for the specified time in each subject assigned by the german education authorities.
Teachers differ in qualification concerning subjects and class levels. They should not work more than
their regular teaching capacity. Finding a solution complying with all these constraints at hand falls into
the complexity class of NP-hard problems. Insights and tools from Operations Research and Constraint
Programming theoretically offer methods for problem domains such as this allocation problem. Already
implemented search and optimization algorithms can be reused from commercial or non-commercial
libraries. Compared to manually searching for a solution, they offer an efficient and automated way
of solving a complex problem. But the usage of these libraries depends on a representation of the
problem that is understandable by a computer. In many situations the person in charge of solving a
problem is not able to formulate a mathematical model of the faced problem. With a mathematical
representation as presented in [22] and [3], a planner might achieve a solution by entering the problem
data of his individual problem instance. But as it is an individual problem instance, there are also
individual problem characteristics which were not anticipated in the formulation of the model. As a
result a technically valid solution might be achieved, but the individual demands of the planner are
ignored. Therefore we propose a domain specific language that addresses these two difficulties. The
DSL shall facilitate (1) the entering of the problem data and (2) expressing constraints in terms of
preferences for specific solutions like “Teacher X must teach Class Y in subject Z” or “The class teacher of
a class should teach as many courses in his class as possible”.

Contributions

The contributions of this thesis can be summarized as in figure 1.1:
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Figure 1.1.: Contributions

1. A DSL for the problem of teacher assignments and an interpreter that translates problem declara-
tions into constraint satisfaction and optimization problems. Its constraint language concept allows
very flexible problem formulations.

2. A hybrid solving process based on efficiency satisfaction and preference optimization by local
search.




3. The proposal of a programmer-compiler-relationship as a flexible implementation model for a de-
cision support system (DSS).

Structure

We introduce the specific problem domain at hand and the terminology of the scientific fields that address
it in chapter 2. The design of our DSL is depicted in chapter 3 and its interpretation in chapter 4. The
solving process is explained in chapter 5. An analysis of its performance can be found in chapter 6. We
evaluate the comprehensibility of the DSL with a survey in chapter 7. We briefly discuss related and
possible future work in chapter 8 and conclude in chapter 9.




2 Preliminaries

Speaking in economical terms lent from production theory, resource allocation deals with the combina-
tion of different input factors, which yield a specific output. The possible output is limited by the pro-
duction technology that dictates which combinations are valid and what a specific combination yields.
This simple model allows to state different decision problems.

1. Cost minimizing: Search for the least expensive combination of input factors yielding a specific
output.

2. Maximization: Search for the most valuable output that can be created with a specific endowment
of input factors.

3. Satisfaction: Search for any possibility to achieve a specific product with a specific endowment of
input factors.

The scientific fields that address these combinatoric problems are Constraint Programming (CP) and
Mathematical Programming (MP). CP’s roots are in Logic Programming and Artificial Intelligence and
therefore attributed to Computer Science. MP is commonly attributed to the fields of Operations Re-
search (OR) and Applied Mathematics. Facing the same problems, they are overlapping in many areas.
MP covers mainly optimization problems segregated into many problem classes. In CP the most common
definition of a problem is the one of a Constraint Satisfaction Problem (CSP). It can be supplemented
by an evaluation function and then very much resembles the general form of an optimization problem
formulation in MP. For further distinction we refer the reader to [13]. We continue with considering
MP to be more on a micro level, developing specific solutions/algorithms for specific problem classes,
whereas CP covers a more holistic approach or as Rossi, Beek, and Walsh put it:

“Constraint programming is ‘programming’ partly in the sense of programming in mathe-
matical programming. The user declaratively states the constraints on the feasible solutions
for a set of decision variables. However, constraint programming is also ‘programming’ in the
sense of computer programming. The user additionally needs to program a search strategy.”
[20, p.3]

In the following sections we introduce the concrete problem domain (2.1) and deconstruct it into sub-
problems in order to be addressable with different search strategies on the macro level (2.2). Section
2.3 depicts the different tools and techniques we use in the implementation.

2.1 Problem Domain Teacher-Course-Assignment

The executives at a German public school know how many classes have to be taught and the state
educational authority (Kultusministerium) dictates how many hours of which subject have to be taught
in classes of a specific grade. The executive responsible for the task must search for an allocation of
teachers to lessons that conforms with the educational requirements based on the employed teachers.
The “production” of lessons has to be satisfied and the constraintness of the resource teacher results
from labour regulations. The common target workload or capacity of a teacher is about 26 hours. An
acceptable deviation of that amount is usually one to three hours, depending on former accumulated
overtime or work reduction. When the planner cannot find a solution that lies within an acceptable
area of deviation, the planner has an interest to assign teachers in a way that the deviation is as little
as possible. The constraint satisfaction problem becomes a problem of optimization, meaning a search
for a solution that is breaking the stated constraints, but only as few as possible. In addition to juridical




or contractual based constraints, the planner wants to assign specific teachers to specific classes. She
also tries to follow rules such as assigning the class teacher to as many lessons possible in the specific
class. These solution preferences can be used to evaluate the quality of the staff’s assignments. When
no acceptable solution can be found, the school faces a much more complex problem: In that case,
the school may request funding for additional staff members with the necessary subject training. This
introduces the possibility to optimize staffing regarding budget aspects. However, this possibility is out
of scope for this thesis.

2.2 Problem Formulations

Depending on the current priorities and situation the planner finds herself in, either the CP approach
with a CSP or the MP approach with an optimization problem might be more suitable. In the next
sections we introduce the constituting components of both problem types and how they differ.

Constraint Satisfaction problem

A constraint satisfaction problem consists of a set of decision variables and a set of constraints. Decision
variables can take values defined in their domain consisting of two or more values. Commonly the de-
cision variables are Boolean variables with the domain [true, false]. Constraints state that some
subsets of decision variables cannot be selected at the same time. They also can be seen as functions that
map a set of decision variables to a Boolean value, meaning the constraint is satisfied or not. A solution
to this problem is an assignment of t rue or false to all the decision variables while all constraints are
satisfied. The problem is called satisfiable when such a solution can be found and otherwise unsatisfiable
(see [2]).

Optimization problem

In optimization problems the domains of decision variables differ for different problem classes, the most
common ones are continuous and discrete domain intervals. In addition to decision variables an opti-
mization problem generally consists of an objective or target function f : Q — R that shall be minimized
or maximized. Minimization (maximization) means the search for a solution x € Q so that for every
y € Q the relation f (x) < f(y) (respectively f (x) = f(y)) holds. The target function is subject to a con-
straint set as in the satisfaction problem. Again, the set of constraints dictates which decision variables
can have which values in a solution. In addition to the validity of a solution candidate, the target func-
tion evaluates its quality, by including specific subsets of decision variables in the function (see [13]). In
a minimizing problem a preferable decision variable x; would be included with f(x) =...—Xx;, meaning
that the selection makes the target function value smaller. These contributions to the target function refer
to soft constraints in contrast to hard constraints. Soft constraints generally make the same statements
about a specific subset of decision variables as hard constraints with the difference, that they are not
mandatory during the search for a solution. Only their representation in the target function influences
the solving process. Besides the inclusion of a penalty term into the objective function soft constraints
can be implemented e.g. by stating that at least a specific amount of a subset of hard constraints must
hold [16].

2.3 Solving Technology

For either optimization or satisfaction problems there are a number of solvers to choose from. Depending
on what kind of a solution we want, a different formulation and therefore a different solving technology
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has to be used. In the following section we will compare the problem formulations that are given to
SAT solvers, Pseudo-Boolean solvers and solvers targeted at the different problem classes attributed to
MP In section 2.3 we compare the CP tool MiniZinc [19] to the common tools for MP that are used for
optimization problems. Section 2.3 introduces SAT solvers and propositional formula that address a very
strict form of a CSP A compromise regarding expressiveness and efficiency seem to be Pseudo-Boolean
solvers that are introduced in section 2.3.

Mathematical Programming

For optimization problems there are many problem classes e.g. Linear Programming (LP), Integer Linear
Programming (ILP), Mixed Integer Linear Programming (MILP) and Mixed Integer Nonlinear Program-
ming (MINLP) in ascending order of complexity. They have different demands on the form of the con-
straints and the target function and therefore every class has often similar variants of solving approaches
but also with unique specialities. Due to these different problem classes in mathematical programming
a variety of solvers exist. Algebraic Modeling Languages (AML) are domain specific languages that act
as a common interface for different solvers. D’Ambrosio and Lodi mention AMPL [1] and GAMS [11] as
the most widely used AML. In AMPL an optimization problem might look like shown in listing 2.1:

# Variables:

var x1 integer;
var x2 integer;

# Target function:
maximize z: 400xx1 + 50%xx2;

# Constraints:

subject to Domain_x1: 0 <= x1 <= 70;

subject to Domain_x2: 0 <= x2 <= 500;

subject to Resourcel: 25xx1 + 10*xx2 <= 5000;
subject to Resource2: 100xx1 + 20%x2 <= 8000;

Listing 2.1: AMPL Example

In this example two integer decision variables are introduced and the target function z shall be maxi-
mized. The domains of x1 and x2 are limited by constraints in lines 9 and 10. Resource constraints in
lines 11 and 12 introduce interdependency between the variables, e.g. that assigning a higher value to
x1 limits the maximum value one can assign to x2.

In contrast to AMPL or GAMS, MiniZinc is not an AML but described as a standard modelling language
for CP [18]. Its features encompass algebraic modelling as well as the whole feature set of constraint
programming, e.g. conditional constraints. This supports our understanding of CP being a broader
field including MP. For the modelling of a problem in AMPL the programmer has to know about the
solver that should be fed with the problem, due to solver specifics that influence how a problem can
or should be formulated. For MiniZinc, solver independence is an explicit goal that is achieved with
two problem formulation stages. In the first stage the modelling language MiniZinc is used by the
programmer to formulate the model. In the second stage the MiniZinc formulation is translated into the
low-level language FlatZinc !. FlatZinc is the interface language that a solver has to adopt in order to
be accessible via MiniZinc. The translation of different model formulations for the same problem to a
canonical form in FlatZinc leaves great freedom to the programmer. The solver will be fed with what
was meant (canonical FlatZinc) rather than how it was formulated (flexible MiniZinc). For example one
can use either Boolean decision variables or integer decision variables with the domain [0, 1] to model
the assignments of teachers to lessons. In case of Boolean decision variables the MiniZinc pipeline will
translate them in a way that a solver only has to deal with the integer synonyms of the Boolean decision
variables.

1

http://www.minizinc.org/downloads/doc-1.6/mzn2fzn.pdf




SAT Solvers

Input for SAT solvers is propositional logic in conjunctive normal form (CNF). CNF propositions are of
the following form [2]:

. /\: a conjunction of clauses
. \/: a clause as a disjunction of literals
* v,—w: aliteral being either a Boolean variable v or its negation —v

Literals correspond to decision variables with the domain [true, false]. Clauses are constraints on
sets of literals. The conjunction expresses the set of constraints, i.e. every clause (single constraint) must
hold. A SAT solver finds such a problem satisfiable when every literal can be assigned to either t rue or
false so that all clauses and conjunctions evaluate to true. When such a combination of assignments
cannot be found, the problem is found unsatisfiable. For most SAT solvers the CNF DIMACS text format
is used. A small CSP in CNF DIMACS is shown in listing 2.2:

p cnf 5 3

1 -540

-1 5340

-3 -4 0

Listing 2.2: CNF DIMACS Example

The first line introduces the problem as in CNF format with five decision variables and three clauses.
Every following line is a single clause in which a positive integer refers to a t rue literal, a negative
integer to a false literal, and O signals the end of the clause. The first clause in line 2 means x; V
—X5 V x4. In contrast to AML the general expressiveness is considered to be higher, but problems arise
for certain kinds of constraints such as a XOR constraint like x; ® ... ® x,. In an AML we could simply
state the arithmetic expression Zle x; = 1. For a representation in propositional logic a translation has
to be done that results in the following propositions:

X1 Vxy V...V ox, (2.1)
=X, VX, V... Vx, (2.2)
X, VX, V.. VX, (2.3)

Every single clause is needed to state that only one of the decision variables can be assigned to t rue at
a time. Different SAT solvers implement such translations for different concepts implicitly. A cardinality
constraint may be used for equation 2.1. It is of the form x, + x; + ...+ x, = C where x; is a literal that
evaluates to 1 if it is a true literal or O if it is a false literal and C € [1, co].

Pseudo-Boolean Solvers

Pseudo-Boolean solvers (PB solvers) are generally considered a distinct technology for the distinct class
of Pseudo-Boolean optimization problems. Opposed to the satisfiability problem a target function is
stated. A Pseudo-Boolean constraint is similar to cardinality constraints. They describe constraints where
decision variables should contribute to a different extent to the left-hand side of a cardinality constraint.
With w; being the weight of a decision variable, a Pseudo-Boolean constraint is written analoguously to
the cardinality constraint as Zit:1 x; *w; = C. A Pseudo-Boolean constraint is satisfied, when the sum
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of its left-hand side is greater or equal to the right-hand side. Though the general form is very close to
the problem formulations in AML, a great part of research and development of PB solvers is targeted
at the links to SAT solvers. In [9] Eén and Sorensson suggest a translation of PB constraints into SAT
constraints and a native use of a SAT solver. This is the opposite approach to the alteration of SAT solvers
to natively support PB constraints that is used in several solvers like Sat4j [15], which we use in our
solving process.

2.4 Solving Strategies

Although the different solvers differ in specific algorithmic implementation there are activities that are
common to all of them. The two main activities during the solving of the forementioned problems are
search and inference. Every solver implements them on a micro level and we implement them on a macro
level with our solving process design.

Search

Search refers to the traversion of the search space that contains all the solution candidates and elim-
inating subspaces with trial and error. When a solution has been explored and found invalid, other
solution candidates with the same characteristics leading to invalidity will not be explored (see [10]).

Local Search

Applying local search means to take an arbitrary solution candidate that may even be infeasible or
incomplete and try to enhance it by iteratively modifying it. Local in this context means that only a small
neighborhood of solution candidates will be explored. This neighborhood is calculated by application
of a neighborhood function (see [14]). A simple neighborhood function might be given a subset of
decision variables and return all solution candidates that result from the permutations of the possible
values for the subset. Depending on the number of generated solution candidates, a complete search on
this neighborhood is feasible and a local optimum can be found.

Inference
Inference refers to the reasoning about the constraints, resulting in a smaller search space. In CP a key
feature in terms of inference is constraint propagation through consistency. Consistency between two
or more constraints is achieved by examination of the effects of one constraint onto the domains of the
decision variable relevant to other constraints (see [10]). As an example take the following two clauses:
X1
XV Xy

The clause in line 1 requires the decision variable x; to be assigned t rue. The clause in line 2 constitutes
an implication meaning if x; is assigned t rue, also x, has to be assigned t rue. Both clauses combined
let us infer that because the domain of x; is reduced to [true], the domain of x, is also reduced
to [true]. Propagation then means to “inform” other constraints of this domain limitation which
again can induce further propagation or even result in a conflict when a domain becomes empty. With
this reasoning large subspaces of the complete search space can be identified as not containing a valid
solution.
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3 Specification Language

Our programming language is a DSL for school executives hence usually non-programmers. Therefore
our design should reflect a healthy balance between comprehensibility for non-programmers and expres-
siveness in terms of functionality. The implementation of the DSL is done with the language workbench
Spoofax in the Syntax Definition Formalism SDF3 (see [17]). In this chapter we depict the implemen-
tation of the language. In section 3.1 we show the different DSL expressions by example and thereby
introduce the underlying object model of our DSL and the constraint language. In section 3.2 we show
the design of non-trivial concepts of our DSL.

3.1 Problem Specification Syntax

A problem specification is segregated into different sections. For every section we show what can be
expressed and what its semantics are.

Subjects

The subjects section contains all subjects of the specific school. They have to be explicitly listed in the
problem specification. This allows us to implement a reference check anywhere where subjects have to
be referenced in order to avoid misspellings. Teachers usually have to have gained a specific qualification
for each subject in order to teach it. There are some lessons that teachers can also give without a specific
qualification e.g. a special coordination lesson that are of an administrative nature. Other lessons don’t
need one specific subject qualification but one of a set of subject qualifications.

Subjects
Subject english
Subject mathematics
Subject german
Lesson dyslexiasupport with possible subject qualifications: deutsch,english
Lesson without subject qualification coordination

Listing 3.1: Subject Declaration

In 3.1 the unique subjects english, mathematics and german are declared to require a later
declared lesson to be taught by a teacher with the corresponding subject qualification. A special lesson
is dyslexiasupport, which does not require a specific subject qualification but can be taught by
teachers with german or english qualification. The subject coordination can be referenced for
lessons where the individual qualification of a teacher doesn’t matter.

Teachers

The teachers section contains every employed teacher. A teacher is declared with a unique ID and the
relevant information regarding the staffing decision: the target workload and the subject qualifications.

Teachers
Teacher One
Career : GYM
Subject qualifications :
Gymnasium: german,ethics,economics
Target workload : 26
Teacher Two
Career : HR
Subject qualifications :
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Haupt-/Realschule: english, pe
Target workload : 25,5

Listing 3.2: Teacher Declaration

In listing 3.2 teacher One can teach the subjects german, ethics and politics all on Gymnasium
level and should have a workload of 26 hours. Teacher Two teaches english and pe on Haupt-
/Realschule level and should work 25.5 hours.

Lessonplan

In the lessonplan section the lessons that are common to classes of an equal grade are declared. The
lessonplans are implicitly referenced by class declarations.

Lessonplans
Lessonplan Realschule grade 8 :
german —> 4
english -> 3
mathematics -> 4
classteacher -> 0

Listing 3.3: Lessonplan Declaration

In listing 3.3 the lessonplan for every class in grade 8 in the school path Realschule is declared. All of the
concerned classes each have 3 hours of english lessons, 4 hours of german and mathemat ics lessons
and are assigned a teacher as classteacher that does not result in actual workload (0 hours).

Workload

There are four categories of workload. There is a category for each different level (Haupt-, Realschule,
Gymnasium and Oberstufe) and a category for special assignments that are not lessons like the principal’s
workload or library service. Special assignments are usually preset by the planner, so each of them is
declared with a unique ID, its workload and the ID of the assigned teacher. In the other three categories
classes and courses are declared.

Special assignments
Principal : 22 : teacherX
Library : 3 : teacherY

Realschule
Class 8a
Class 8b with deviation from lessonplan:
deutsch -> 5
mathematik -> 5
englisch -> 3 with 2 teachers
Class 8c
Common course for classes 8a,8b,8c:
ethics -> 2
religion —-> 2
french -> 1
Oberstufe
Grade 12 :
Basic course: german —>
Basic course: german —>
Basic course: german —>
Advanced course: german —> 5

N NN

Listing 3.4: Workload Declaration

In 3.4 teacherX is assigned to special assignment Principal and teacherY is assigned to special as-
signment Library. In category Realschule classes 8a, 8b and 8c implicitly refer to the declaration
of workload from their respective lessonplan (Realschule Grade 8) depicted in listing 3.3. Instead of four
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hours of german and mathematics class 8b requires five hours. Class 8b also requires an additional
teacher for the three hours of english. The three classes 8a, 8b and 8c all share courses in ethics
and religion with two hours and one course with one hour of french. In the section Oberstufe
the single courses are listed individually as either basic or advanced course, as shown for three basic
courses with 2 hours of german and one intensive course in german with 5 hours.

Constraints

In the constraints section the planner can declare preferences that a solution to the declared problem
must or should fulfill. We distinguish between hard constraints and weak constraints. Hard constraints
must be fulfilled by a solution in order for the solution to be considered valid. Weak constraints only
influence the solving backend to a certain extent, meaning that we encourage the solving backend to
adhere to a weak constraint. As the solving backend includes all weak constraints at once into its
decision making, we provide each weak constraint with a weight in order to weigh constraints against
each other.

Constraints
Weak constraint with weight 4:
Forbid: teacher A teaches classes in grade 9

Weak constraint with weight 5:
Count of assignments where teacher A teaches subject french >= 2

Hard constraint:
Assign: teacher C teaches class Gymnasium 7b in subject history

Hard constraint:
Overtime of teacher D = 0

Hard constraint:
For each teacher X in teachers with qualification pe:
Workreduction of teacher X <= 3

Hard constraint:
For each teacher X in teachers with qualification history-bilingual
and each class Y in classes with subject history-bilingual:
If teacher X teaches class Y in subject history-bilingual,
then teacher X teaches class Y in subject english

Listing 3.5: Constraint Declaration

In 3.5 the weak constraint at line 2 has weight 4 and says that teacher A should not teach classes in grade
9. The weak constraint at line 5 has weight 5 and says that teacher A should teach french in at least
two courses. Given the case that the subject french is only taught in 9th grade, the solving backend
should assign teacher A to those classes, as the french-teaching-constraint is declared with a higher
weight. The hard constraint in line 8 presets the assignment of teacher C to class 7b at the Gymnasium
level in subject history, given this assignment is a valid one, meaning class 7b needs history
lessons and teacher C has a qualification for history at level Gymnasium. The hard constraint at
line 11 requires to find a solution where teacher D is assigned lessons amounting to exactly his target
workload. The hard constraint at line 14 requires to find a solution where teacher X is assigned a
workload at least equal to her target workload reduced by 3. At this point teacher X is an iterator over
the set of teachers with a pe qualification. Hence the reduction constraint applies to all pe teachers.
The hard constraint at line 18 is introducing a teacher iterator over the set of all teachers with a history-
bilingual qualification and a class iterator over the set of classes that need history-bilingual lessons. The
If-then constraint in line 21 forces the solver to assign teacher X to class Y in subject engl1ish, if teacher
X is assigned to class Y in subject history-bilingual.

10
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Deputations

Deputations describe effects of solutions on target workloads of teachers. For example some lessons are
considered to require more engagement than others. When a certain amount of such lessons is assigned
to a teacher, the actual workload caused by these lessons should count more, e.g. reduce the target
workload of the teacher.

Deputations
Deputation Oberstufe for teacher X when Workload of assignments where teacher X teaches classes
in grade 12,13 >= 7

Listing 3.6: Deputation Declaration

The deputation at line 2 in listing 3.6 is named Oberstufe. It is assigned to each teacher whose
assignments contain seven or more hours of lessons in courses in grade 12 and 13.

3.2 Spoofax Design

In this section we describe the Spoofax implementation of our DSL. It is best understood in a top-down
explanation. Therefore we begin with the architecture and reason about implementational details where
they are non-trivial or where there are implications between architecture and implementational details.
As Spoofax allows separation of different parts of a language into different modules, we made use of
it and separated our DSL into four modules. The module Common ships with a fresh Spoofax example
project and defines low-level productions like character classes. The module Data defines the basic object
model that encompasses subjects, teachers and classes. As its implementation is very straightforward and
exemplified in section 3.1, we will not discuss it in detail. The module Constraints holds the concepts
for declaring constraints and rules for the solving backend to follow by. The central module TeachAlloc
imports the modules Common, Data and Constraints.

TeachAlloc

The module TeachAlloc defines the structure of a problem as follows in listing 3.7:

Problem ::= "problem" (ID)
(Subjects)

(Teachers)

(Lessonplans)

(SpecialAssignments)?

(Haupt)?

(Real)?

(Gymnasium)?

(Oberstufe)?

(Constraints)?

(Deputations)?

Listing 3.7: Problem Production

There are the three mandatory sections for subjects, teachers and lessonplans and six optional sections for
special assignments, the four different school paths and the constraints. The contents of each section are
already exemplified in chapter 3.1, therefore we will not discuss them in detail. Except for the Constraints
and Deputations sections in all optional sections the actual workload to be distributed among teachers
is declared. Every school path section defines its own scope in terms of class identifiers since the naming
conventions are the same for every school path except for the section Oberstufe. Naming conventions
are enforced with a special sort that limits class identifiers to be constructed according to the character
classes in listing 3.8.
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CLASSNAME ::= (GRADE) (SHORT)

GRADE ::= [1-9]

| [1]110]
= [a—-z]

Listing 3.8: Class Naming Convention Production

Section SpecialAssignments and Oberstufe contain different productions from the ones in Haupt, Real
and Gymnasium for the declaration of workload as depicted in section 3.1. In the Oberstufe path there
are no classes anymore, students are assigned only to courses according to individual schedules. Here
we only differentiate basic and advanced courses and they correspond to a single subject.

Constraints

In the Constraints module we implement the varieties of constraints we have shown in section 3.1. Their
design is guided by the goal to be as closely to natural language as possible. At the same time we
want to achieve an efficient design, following design principles like low redundancy and re-use. We
identified two central concepts necessary for such an efficient implementation of a constraint language.
First we need to express the different varieties of constraints as closely to the users domain language
that is his natural language. Secondly we need to reflect their semantics in terms of which relationship
between decision variables they should express. This leads us to the implementation of a query language
component that is aimed at retrieving the different sets of decision variables that need to be referenced
by the different constraint varieties. An abstraction for these sets is the ConstraintDomain.

ConstraintDomain

ConstraintDomain ::=

(TeacherSelector) "teaches" (ClassSelector) "in" (SubjectSelector)
| (TeacherSelector) "teaches" (SubjectSelector)

| (TeacherSelector) "teaches" (ClassSelector)

Listing 3.9: ConstraintDomain Production

Listing 3.9 shows different productions for a ConstraintDomain. A ConstraintDomain refers directly to
decision variables. It targets all the decision variables that match the corresponding TeacherSelector,
ClassSelector and SubjectSelector with all three properties (teacher, class, subject). The most general
constructor (line 2) takes one selector for each decision variable property and the other two are ab-
stractions for not applying a filter on the class property (line 3) or the subject property (line 4). The
selectors are implemented to express the desired segregation of teachers, classes and subjects. For
teachers we want to be able to select individual teachers by name, all teachers, teachers with a cer-
tain subject qualification and the teachers on a specific career path. Listing 3.10 shows the constructors
for a TeacherSelector in this order.

TeacherSelector ::= "teacher" (ID)

| "all teachers"

| "teachers with qualification" (ID)
| "teachers with career" (ID)

Listing 3.10: TeacherSelector Productions

For classes we want a similar segregation. But since the naming conventions in schools are the same for
every school path and the name of a class is only unique in its schoolpath, every selector referring to a
specific class needs to include the information about the specific school path as shown in listing 3.11.
ClassSelector ::= "class Gymnasium" (CLASSNAME)+

| "class Realschule" (CLASSNAME)+
| "class Hauptschule" (CLASSNAME)+
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| "all classes"
| "classes with subject" (ID)
| "classes in grade" (INT)+

Listing 3.11: ClassSelector Productions

Constraints
Most of the several kinds of constraints were presented in section 3.1. In listing 3.12 we show how
the concept of a ConstraintDomain fits to different constraint productions.

SetTrue ::= "Assign:" (ConstraintDomain)
SetFalse ::= "Forbid:" (ConstraintDomain)

Listing 3.12: SetTrue and SetFalse Productions

These varieties of a constraint express assignments and the prohibition of assignments. The Constraint-
Domain with its different selector varieties allows to refer to single decision variables or sets of decision
variables. The single components of a ConstraintDomain also contribute to the creation of rules as
exemplified in listing 3.13:

TeacherForeach ::=

"For each" (TeacherIterator) "in" (TeacherSelector) (TeacherLimiter)? ":"
(Constraint)+

Listing 3.13: TeacherForeach Production

Here the TeacherSelector can refer to a set of teachers and the Teacherlterator will refer to the single
teachers in the set and can be referenced in the constraints of this for-each-loop. The same concept
applies to the iteration over a set of classes.
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4 Problem Interpretation

Spoofax automatically creates an abstract syntax tree (AST) of a problem specification and passes it to
our interpreter. The design of our DSL is purely declarative, meaning that there are no side effects. The
compilation and interpretation of a problem declaration is therefore a mere translation from the AST
to an object model implemented in Scala'. Our interpreter abstracts from the different varieties like
classes, courses and special assignments, and encapsulates the information necessary to formulate the
user’s problem declaration as CSP and optimization problem. Only the declared constraints might be
considered as having side effects. But these interactions only occur during solving, e.g. when two weak
constraints conflict. The initial interpretation of a constraint is without side effects, too.

4.1 Domain Object odel

The object model is implemented in the abstract class TEACHALLOC, subclassed by the classes that
implement the central concepts of the problem domain.

Problem

A succesful traversion of the AST results in an object of type Problem, holding all problem specification
data. The entities are stored efficiently in Scala Maps if they need to be individually identified throughout
the solving process. Hard constraints and deputations are stored in a Seq, and weak constraints in a Seq
of pairs that hold the weak constraint and its weight as shown in listing 4.1.

case class Problem(val teachers: Map[String, Teacher], val lessonplans: Map[String, Lessonplan],
val classes: Map[String, Schoolclass], val subjects: Map[String, Subject], val
hardConstraints: Seqg[Constraint], val weakConstraints: Seq[ (Constraint, Int)], wval

deputations: Seqg[Deputat]) extends TEACHALLOC

Listing 4.1: Problem Implementation

The traversion of the AST is implemented in the function from, depicted in listing 4.2. It first tries
to match the AST as a “Problem” production and then matches every child node. The child nodes
correspond to the different sections we allow to declare, like the Subject section and Teacher section.
Every section should contain only a certain kind of production as child nodes. Therefore we call the
from functions of the classes we want to translate the expected child nodes to.
def from(term: StrategoTerm, output: Any => Unit): Problem = ({

/x .. ox/

term match {

case StrategoRppl ("Problem", StrategoString(name), children@_x) =>

children.foreach { x => x match {
case StrategoBAppl ("Subjects", subjects @ _x) => subjectList = subjects match ({

case Seqg(StrategoList (subs)) => subs.map { x => Subject.from(x).id -> Subject.from(x)
} .toMap
}
case StrategoAppl ("Teachers", teachers @ _x) => teacherMap = teachers match {
case Seqg(StrategolList(ts)) => ts.map { x => Teacher.from(x).id -> Teacher.from(x) }.toMap
}
case StrategoAppl ("None") => // Do nothing
case StrategoAppl ("Some", optionalSegments@_x) => optionalSegments.foreach { segment =>
segment match {
/x ...
x/

! Scala is chosen due to its convenient features such as pattern matching, which facilitates the implementation of an

interpreter.
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case StrategoAppl ("SectionGymnasium", classes @ _x) =>

var courselist = (classes match ({

case Seqg(StrategolList(cs)) => cs.map { x => (Schoolclass.from(x, GYMNASIUM, output) .name ->
Schoolclass.from(x, GYMNASIUM, output)) }

})

/x
ceox/
case StrategoAppl ("Constraints", hards @ _x) => hards match {
case Seq(Strategolist (constraints)) => constraints.foreach { x =>

x match {
case StrategoAppl ("Weak", StrategolInt (weight), const) => weakConstraintList =
weakConstraintList ++ Constraint.from(const, output).map { x => (x, weight) }
case StrategoAppl ("Hard", const @ _x) => hardConstraintList = hardConstraintList ++
const.foldLeft (Seg[Constraint] ()) ((acc, elem) => acc ++ Constraint.from(elem, output))
P}
case StrategoAppl ("Deputate", deputations@_x) => deputations match {

case Seq(StrategolList (deputate)) => deputationsList = deputate.map{ x => Deputat.from(x,
output) }}}}
case StrategoBAppl ("Lessonplans", lessonplans @ _x) => lessonplanMap = lessonplans match {
case Seqg(StrategoList (lps)) => lps.map { x => (Lessonplan.from(x).id ->
Lessonplan.from(x)) }.toMap
P}
[x oo %/

new Problem(teacherMap, lessonplanMap, classMap, subjectList, hardConstraintList,
weakConstraintList, deputationsList)

}
Listing 4.2: AST Traversion

The pattern matching collects the problem entities in mutable collections in order to allow postprocess-
ing. Postprocessing is necessary to ensure unique identifiability of classes. The collections are then used
to instantiate the Problem instance.

WorkloadUnit

Objects of the class WorkloadUnit encapsulate the qualities of lessons and special assignments.

case class WorkloadUnit (subject: String, hours: Double, assignedTeacher: Option[String],
numberOfTeachers: Int)

Listing 4.3: WorkloadUnit Implementation

In listing 4.3 the String subject denotes the subject qualification that is necessary to be assigned
to this WorkloadUnit. The Double hours denotes the resulting workload for the assigned teacher.
When a WorkloadUnit is already assigned per user declaration, the Option[String] assignedTeacher
contains the assigned teacher. The Int numberOfTeachers denotes how many teachers shall be
assigned to this WorkloadUnit.

Schoolclass

Objects of the class Schoolclass are an abstraction for the different groupings of students in the school.
Every Schoolclass represents an unique group of students and contains the information about the work-
load units this specific group causes.

case class Schoolclass(val name: String, val schoolpath: String, val lessonplan: Option[String],

val extralessons: Option[Seqg[WorkloadUnit]], val grade: Int, wval category: String, val teacher:
Option[String], val affectedClasses: Option[Seq[String]]) extends TEACHALLOC

Listing 4.4: Schoolclass Implementation

All workload declaration productions result in such an object. In listing 4.4 the String schoolpath
denotes to which school path the Schoolclass is attributed. The Option[String] 1essonplan contains
either a String that refers to a Lessonplan or None to reflect that this Schoolclass has a fully individual
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schedule. In addition to the Lessonplan the Option[Seq[WorkloadUnit]] extraLessons may con-
tain additional workload on top of the lessonplan, or when the subject is listed in the lessonplan, it
will be overwritten. The Int grade denotes the grade the Schoolclass is attributed to. In the Op-
tion[Seq[String]] af fectedClasses the classes of all the students corresponding to this Schoolclass
are listed. The function getAl1SubjectsRequired returns the consolidated workload, e.g. the
lessonplan combined with the extra lessons.

Teacher

Objects of the class Teacher represent the central resource of our decision problem.

case class Teacher(val id: String, val career: Int, val subjectQualifications: Map[String, Int],
val targetWorkload: Double) extends TEACHALLOC

Listing 4.5: Teacher Implementation

As shown in listing 4.5, a teacher can be uniquely identified by the String id and has the general
education for the career of a specific school path denoted by Int career. She has a target workload
value equal to the Double targetWorkload and is allowed to teach the subjects contained in the Map
subjectQualifications whose values denote the school level at which the subject can be taught.

Subject

Objects of the class Subject reflect the central quality of a workload unit.

case class Subject (val id: String, val needQualification: Boolean, val synonyms: Seq[String])
extends TEACHALLOC

Listing 4.6: Subject Implementation

As shown in listing 4.6, a subject is uniquely identified by the String id, it corresponds to other subjects
listed in the Seq synonyms and requires the teacher that is a assigned to a workload unit with this
subject to have an explicit qualification denoted by the Boolean requiresQualification.

Lessonplan

Objects of the class Lessonplan reflect that classes in one grade usually share the same types of Work-
loadUnits.

case class Lessonplan(val id: String, val plan: Map[String, WorkloadUnit]) extends TEACHALLOC

Listing 4.7: Lessonplan Implementation

The Map[String, WorkloadUnit] holds the subjects and their corresponding WorkloadUnit as key-value-
pair. This implies that every subject can exist only once in a Lessonplan.

DecisionVariable

Central to the Problem object are the generated DecisionVariable objects that represent possible assign-
ments of teachers to workload units.

case class DecisionVariable (val id: Int, val isSet: Boolean, val weight: Double, val teacher:
String, val classes: Seqg[String], val subject: String, val zincAddition: Option[String])

Listing 4.8: DecisionVariable Implementation
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In listing 4.8 the Int id identifies the DecisionVariable by its (positive) DIMACS representation. It can
either be t rue or false denoted by i sSet. The weight denotes the hours the assignment would
cause. The String teacher identifies the teacher the assignment refers to, the Seq[String] classes
identifies all classes this assignment refers to and the String sub ject identifies the subject this assign-
ment refers to. The naming conventions for the variables in the optimization formulation of our problem
might result in multiple variables with the same identifier. The optional String zincAddition is
appended to the identifier to preserve uniqueness.

Solution

Objects of the class Solution refer to a specific Problem instance problem and hold the assignments
reflected by this solution in a Map[Int,DecisionVariable] values that corresponds to the one of the
Problem instance as shown in listing 4.9.

1 case class Solution(val values: Map[Int, DecisionVariable], val problem: Problem)

Listing 4.9: Solution Implementation

There are several implemented functions that give information on the quality of the specific solution
in terms of efficiency, e.g. the deviation from the target workload or the total overtime caused by this
solution.

4.2 Problem Formulation

To exploit the advantages of the different problem formulations and respective solving technology, a
Problem object can be approached either as a CSP or an optimization problem. We choose Sat4j as
the solving library for the CSP formulation of a Problem instance. It is rather widely used, e.g. in the
Eclipse IDE that is already a host for our DSL implementation with Spoofax. In addition, its feature
set contains a good expressiveness due to implicit translations like implications and logical gates. The
library offers Pseudo-Boolean capabilities and multiple solving strategies to experiment with. Although
its performance compared to other SAT solvers is at best average [15], the PB solver performs at a good
level. With MiniZinc we choose the framework that offers a very expressive modelling language for both
CSP and optimization. The many solvers that can be used with it include GeCode, a very versatile and
performant solver according to different competitions. For both technologies we use the same problem
formulation that is based upon the decision variables we generate from the problem entities.

Sat4j Setup

With the instantiation of a Problem, we create an instance of a PB solver based on the SAT core of
Sat4j and a DependencyHelper as shown in listing 4.10. Henceforth we will use PB solver and SAT
solver synonymously. The DependencyHelper wraps around the solver and is used to programmatically
formulate the problem. Interaction with a native solver of the Sat4;j library is done by using the DIMACS
format, e.g. referring to decision variables is done by positive and negative integer values. Therefore the
mapping of a DecisionVariable to the DIMACS representation has to be handled explicitly, as we do by
identifying DecisionVariable instances with a unique integer. The DependencyHelper would allow us to
make the same statements with an arbitrary class of objects and internally map them to DIMACS.

1 val solver = SolverFactory.newDefault ()
2 val depHelper = new DependencyHelper|[Int, String] (solver)

Listing 4.10: Sat4j Setup
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The SolverFactory allows for different solvers to be instantiated, resulting in different solving behaviour
and hence performance. The DependencyHelper translates constraints like implications into a simplistic
form and imposes them onto the solver instance. Every constraint that is added via the Dependency-
Helper has to be given a name. That is because the DependencyHelper also offers to ask for reasons in
case a solving run returned unsatisfiability.

MiniZinc Setup

MiniZinc is not accessible as a native Java or Scala library, but can be used by writing a problem dec-
laration to a file. Therefore the setup to address our problem as optimization problem is the process
of creating a String in the MiniZinc format, writing it to a file and invoking the MiniZinc binaries on
it. We first call the mzn2fzn binary on the MiniZinc file which transforms it into the FlatZinc format
and writes it to a separate file. This file can be handed to every FlatZinc interface of a solver. We use
the binary fzn—gecode that ships with the MiniZinc installation. The different options available are
discussed in chapter 5.

Problem Initialization

To prepare a Problem instance for both solving approaches, the preprocess function has to be called
on it. It traverses the problem entities teachers, classes and lessonplans as shown as pseudo-code in
listing 4.11 in order to generate the decision variables.
FOREACH WorkloadUnit X

FOREACH Teacher Y

IF Y.isQualifiedToTeach (X)
THEN createDecisionVariable

Listing 4.11: Decision Variable Generation

In the first step the individual demands are identified. By combination of classes, lessonplans and extra
courses, we derive every workload unit. In the second step we search for all teachers that are qualified
to be assigned to this workload unit. For every qualified teacher we create a decision variable that is
uniquely identified by an integer ID. This ID is the DIMACS representation and is used to build constraints
with the Pseudo-Boolean solver. There is one special case that has to be considered: In case the user
has already assigned a teacher to a specific workload unit in the problem declaration we don’t have to
generate the decision variables for all teachers that are qualified to be assigned. By creating only the
one decision variable that represents the assignment of the teacher declared by the user, we imply the
assignment by reducing the search space for the solver. In the third step, we prepare the SAT solver
by adding the problem domain’s elementary constraints: how many teachers should be assigned to a
specific workload unit. The number of teachers n, is either user defined in the problem specification or
by standard 1. Therefore we add two constraints with the DependencyHelper object to the solver:

depHelper.atLeast ("Require at least " + n + " teacher(s) for assignment " + key, n,
variables.toArray: _x)

depHelper.atMost ("Require at most " + n + " teacher(s) for assignment " + key, n,
variables.toArray: _x)

Listing 4.12: Imposition of Inherent Constraints

Listing 4.12 shows how the solver is instructed to find a solution that selects exactly n decision variables
of the sequence variables.

In a next step shown in listing 4.13 the user defined constraints that are declared as hard constraints are
added to the solver by the apply function of the Constraint trait that is introduced in section 4.3.

hardConstraints.foreach { constraint =>
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constraint.apply(this, Map[String, String] ())
}

Listing 4.13: Imposition of User Declared Constraints

Now the PB solver is provided with the complete search space and all the necessary hard constraints that
have to be fulfilled. In case some of the hard constraints are contradicting each other, e.g. the solver
finds a conflict, an exception is thrown and the user is advised to resolve the conflict.

4.3 Constraint architecture

The different types of constraints we want to use throughout the solving process implement the trait
Constraint. It reflects the different forms a constraint can take in the different problem formulations
(hard, weak, CSB Optimization) and provides information on whether this constraint is fulfilled in a
specific solution and gives information on which decision variables may be relevant for the fulfilling of
this constraint:

trait Constraint {
def apply(problem: Problem, substitutionEnv: Map|[String,String], output: Any => Unit)

def getOptimizationConstraint (problem: Problem, substitutionEnv: Map[String,String]) : String

def getTargetFunctionTerm(problem: Problem, substitutionEnv: Map[String, String], weight: Int)
String

def getFreeVars (solution: Solution, substitutionEnv: Map[String,String]) : Seq[Seql[Int]]

def isFulfilled(solution: Solution, substitutionEnv: Map[String,String]) : Boolean

Listing 4.14: Constraint Trait

* apply imposes the constraint as hard onto the PB solver instance of the Problem instance
problem. This is done by selecting the relevant decision variables of problem and formu-
lating them as a constraint. The environment substitutionEnv allows static scoping of class
and teacher identifiers that will be explained in the next section.

* getOptimizationConstraint returns a String representation of the hard constraint in the
MiniZinc language. Again the relevant decision variables of problem are retrieved and arranged
as a String that enforces the MiniZinc pipeline to adhere to this constraint.

* getTargetFunctionTerm returns a String that contributes to the target function of an opti-
mization problem in MiniZinc, by weighing adherence positively or breakage negatively.

* getFreeVars is called for a local neighborhood search based on the Solution solution where
the target is to optimize with one specific constraint in mind. The result is a selection of the
DIMACS representation of decision variables that are likely to allow an optimization in terms of
this specific constraint. When multiple neighborhood functions should be tried out by the optimizer,
multiple sets of decision variable identifiers can be returned, as the return type is a Seq[Seq[Int]]
and every Seq[Int] will be used for a single local search.

Constraint Domain

Constraints formulate statements about single or several decision variables. But because the decision
variables are generated at runtime, we have to find the relevant decision variables also at runtime. The
class ConstraintDomain is the mean to that end and shown in listing 4.15.

class ConstraintDomain(val filter: (DecisionVariable, Map[String, String]) => Boolean, output: Any
=> Unit) {
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def getVars (decVariables: Map[Int,DecisionVariable], substitutionEnv: Map[String, Stringl):
Map[Int, DecisionVariable] = {
decVariables.filter (pair => filter (pair._2, substitutionEnv)).toMap
}
def getTeachers (decVariables: Map[Int,DecisionVariable], substitutionEnv: Map[String, String]):
Seqg[String]l = {
getVars (decVariables, substitutionEnv).foldLeft (Seg[String] ()) ((a, b) => a ++
Seqg(b._2.teacher)) .distinct
}
def getClasses (decVariables: Map[Int,DecisionVariable], substitutionEnv: Map[String, String]):
Seg[String] = {
getVars (decVariables, substitutionEnv).foldLeft (Seqg[String] ()) ((a, b) => a ++
b._2.clazz) .distinct
}
def getSubjects (decVariables: Map[Int,DecisionVariable]) : Seqg[String] = {
getVars (decVariables, Map[String,String] ()) .foldLeft (Seq[String] ()) ((a,b) => a ++
Seg(b._2.subject)) .distinct

Listing 4.15: ConstraintDomain Implementation

An object of type ConstraintDomain is created with a filter function, that returns whether a DecisionVa-
riable is in this domain, e.g. fulfilling certain qualities and therefore being relevant for a constraint. The
filter function also takes a Map[String,String] for static scoping of variables. It can be used in loop con-
straint, that imposes the same constraint on an iterator variable, that should be assigned to a different
entity in each iteration. Generally a DecisionVariable is filtered concerning three qualities: the teacher,
the affectedClasses and the subject. For every one of these three properties of a DecisionVariable, there
are several productions that create different filter functions. In cases when a union between multiple
selectors is required, a new ConstraintDomain is created from the conjunction of all the filter functions
of the single ConstraintDomain objects. An example can be seen in listing 4.16:

case StrategoAppl ("Assignment", teacherSelector, classSelector, subjectSelector) => new
ConstraintDomain((x, env) => ConstraintDomain.from(teacherSelector, output).filter(x, env) &&
ConstraintDomain.from(classSelector, output).filter(x, env) &&
ConstraintDomain.from(subjectSelector, output).filter(x, env), output)
case StrategoAppl ("TeacherIndividual", namelList) => namelList match {
case StrategoList (names) =>
val list = names.map { x =>
x match {
case StrategoString(name) => name
case _ => "»
}
}
new ConstraintDomain((x, env) => list.map { y => if (env.contains(y)) env(y) else y
} .contains (x.teacher), output)
case StrategoString(name) =>
new ConstraintDomain((x, env) => if (env.contains(name)) env(name).equals (x.teacher) else
name.equals (x.teacher), output)

Listing 4.16: ConstraintDomain Interpretation Example

A ConstraintDomain that results from a production “Assignment” (line 1) filters on all three qualities and
we build a filter function from the conjunction of the single ConstraintDomain’s filter functions resulting
from the interpretation of teacherSelector, classSelector and subjectSelector. The
production “TeacherIndividual” selects either a single or multiple teachers by id. As the id could be
bound in the static scope, we have to look it up first.

Constraint Implementations

In this section we introduce the specific constraints that can be imposed onto the solvers so far. Different
constraint types can easily be added by implementing the trait Constraint.
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Assignment

The simplest constraints are the ones that select one or more decision variables to be true or false. In
listing 4.17 it is shown how an Assignment refers to a ConstraintDomain doma in whose filter functions
select the decision variables to be set true or false. The Boolean assign determines whether the
decision variables shall or shall not be selected.

class Assignment (val domain: ConstraintDomain, val assign: Boolean) extends Constraint {
def apply (problem: Problem, substitutionEnv: Map[String,String], output: Any => Unit) {

val vars = domain.getVars (problem.decVariables.toMap, substitutionEnv)
vars.foreach { x => assign match {
case true => problem.depHelper.setTrue(x._1, "Assign " + x._2.teacher + " to " + x._2.clazz + "
in " + x._2.subject )
case false => problem.depHelper.setFalse(x._1, "Forbid Assignment of " + x._2.teacher + " to "

+ x._2.clazz + " in " + x._2.subject )

b))
Listing 4.17: Assignment Constraint

Imposing such a constraint as hard onto the SAT solver is achieved with a call of set True or setFalse
on the DependencyHelper object for each decision variable in the ConstraintDomain object. During
feedback interpretation of the solver this constraint could come up as source of a conflict. The constraint
is therefore named to allow the interpretation “There is a conflict because you ...” either “Assign teacherX
to Gymnasium 5b in english” or “Forbid Assignment of teacherX to Gymnasium 5b in english”.

def getOptimizationConstraint (problem: Problem, substitutionEnv: Map[String, String]) : String = {
val vars = domain.getVars (problem.decVariables.toMap, substitutionEnv)
vars.foldLeft ("") ((acc, decVar) => acc + "constraint " + decVar._2.toZincVariable() + " = " +

(assign match {
case true =>" true;\n"
case false => " false;\n"}

1))
Listing 4.18: Assignment Optimization Constraint

In MiniZinc the behaviour as hard constraint is achieved in a similar fashion and we generate the neces-
sary String for each decision variable separately. Listing 4.18 shows how every decision variable x will

result in a line “constraint x = true” (or false respectively).
def getTargetFunctionTerm(problem: Problem, substitutionEnv: Map[String,String], weight: Int)
String = {
val vars = domain.getVars (problem.decVariables.toMap, substitutionEnv)
vars.foldLeft ("") ((acc, decVar) => acc + (assign match {
case true =>" - "
case false => " + "}) + weight + " % " + decVar._2.toZincVariable ()

Listing 4.19: Assignment Target Function Term

When such a constraint is declared as weak, the term expressing the preference for or against an as-
signment is created by subtraction or addition of the multiplication of the decision variable with the
weight this constraint is assigned. A decision variable x that should be assigned would result in the term
“— x * weight”and in “+ x * weight” when it should not be selected as shown in listing 4.19.
Thereby, the target function value decreases or increases by the weight of this constraint, if any of the
decision variables in the ConstraintDomain is selected by the solver.

def getFreeVars (solution: Solution, substitutionEnv: Map([String,String]) : Seql[Seq[Int]] = {
val Assign = assign
domain.getVars (solution.values, substitutionEnv) .foldLeft (Seq[Seq[Int]]()) ((acc, elem) =>

solution.values (elem._1) .isSet match {
case Assign => acc
case _ => acc ++ Seqg(elem._2.getSimilarSwapTeacher (solution.values).map { x => x.id })})

Listing 4.20: Assignment Neighborhoods
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We have not conducted further research on comparing metrical selection of decision variables to be
released in optimizing runs. So as of now, we simply generate one collection of decision variables to
be released that should allow a simple swap between teachers. As the goal of optimizing regarding this
specific constraint should be to assign the teacher to the specific workload unit, a simple swap should
suffice in this case. So if the desired selection is not found, the function get SimilarSwapTeacher
returns the possible swap candidates as shown in listing 4.20.

def isFulfilled(solution: Solution, substitutionEnv: Map[String, String]) : Boolean = ({
val Assign = assign
val vars = domain.getVars (solution.values, substitutionEnv)
vars.foldLeft (true) ((acc, elem) => solution.values(elem._1).isSet match {
case Assign => acc
case _ => return false

1)}
Listing 4.21: Assignment Fulfilled

The constraint is fulfilled by a specific solution, when every decision variable in the ConstraintDomain
is selected or not selected according to assign. If the selection of one single decision variable in
the ConstraintDomain does not correspond to assign, there is a possibility for a better solution and
optimizing may reveal this better solution and false is returned as shown in listing 4.21.

Implication

An Implication constraint establishes IF-THEN relationships between decision variables. It is primarily
used for rules like “If teacher X teaches bilingual history in class Gymnasium 6b, then teacher X teaches
english in class Gymnasium 6b”.
case class Implication(val lhs: ConstraintDomain, val rhs: ConstraintDomain) extends Constraint {
def apply(problem: Problem, substitutionEnv: Map[String, String], output: Any => Unit) {
lhs.getVars (problem.decVariables.toMap, substitutionEnv) .foreach( lh =>
rhs.getVars (problem.decVariables.toMap, substitutionEnv) .keys.foreach { x =>

problem.depHelper.implication(lh._1).implies(x) .named(lhs.toString() + rhs.toString()) }
)}

Listing 4.22: Implication Constraint

The constructor takes two ConstraintDomain objects 1hs and rhs. The decision variables in the Con-
straintDomain 1hs (left-hand side) should imply the decision variables in the ConstraintDomain rhs
(right-hand side). For lack of a more advanced Boolean interpretation in our current design, we simply
establish one-to-one implications between the decision variables in 1hs and rhs. Thus, if any decision
variable on the left-hand side is selected by the solver, all decision variables on the right-hand side must
be selected as well. Listing 4.22 shows how the constraint is established by calling implication with
the left-hand-side decision variable, which returns an ImplicationRHS object that completes the implica-
tion by setting the right-hand-side decision variable with implies. The call of named is necessary as
all constraints need to be named in order to give information on conflicts later on.

def getOptimizationConstraint (problem: Problem, substitutionEnv: Map[String, String]l): String = {
lhs.getVars (problem.decVariables.toMap, substitutionEnv).foldLeft ("") ( (accLHS, lh) => accLHS +
rhs.getVars (problem.decVariables.toMap, substitutionEnv).foldLeft ("") ((accRHS, rh) =>
accRHS + "constraint " + lh._2.toZincVariable() + " -> " + rh._2.toZincVariable() + ";\n")

)}
Listing 4.23: Implication Optimization Constraint

In MiniZinc an implication can be stated in the form “constraint lhs —-> rhs;”, so we build the
String representation of this constraint as depicted in listing 4.23 analogue to the apply function.
def getTargetFunctionTerm(problem: Problem, substitutionEnv: Map[String, String], weight: Int):

String = {
lhs.getVars (problem.decVariables.toMap, substitutionEnv).foldLeft ("") ( (accLHS, 1lh) => accLHS +
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rhs.getVars (problem.decVariables.toMap, substitutionEnv).foldLeft ("") ((accRHS, rh) =>
accRHS + " + " + weight + " % (" 4+ rh._2.toZincVariable() + " - " + lh._2.toZincVariable() + ")")
)}

Listing 4.24: Implication Target Function Term

The representation as weak constraint can be formulated as “~ weight % lhs * (rhs - 1lhs)”.
So again, for every one-to-one implication we add such a term to the target function representation as
shown in listing 4.24. It acts as a penalty term adding the weight of the constraint to the target function
in case the 1hs is selected but the rhs is not.

def getFreeVars (solution: Solution, substitutionEnv: Map[String, String]l): Seqg[Seql[Int]] = {
val rh = rhs.getVars(solution.values, substitutionEnv) .values.toSeq
lhs.getVars (solution.values, substitutionEnv) .foldLeft (Seq[Seqg[Int]]()) { (result, 1lh) =>
result ++ rh.foldLeft (Seq[Seq[Int]] ()) ((acc, id) => acc ++

Seqg(lh._2.getSimilarSwapTeacher (solution.values) .map { x => x.id } ++ Seqg(lh._1) ++
id.getSimilarSwapTeacher (solution.values) .map { x => x.id }))

Listing 4.25: Implication Neighborhoods

In listing 4.25 we reflect that in case a single one-to-one implication is not fulfilled, there are two ways
the penalty term in the target function can be influenced to evaluate to zero. First, the 1hs can be set to
false. We therefore release it as well as the decision variables of other teachers that might be assigned
to the workload unit. Second, the rhs can be set to t rue and we again try to establish a simple swap.

WorkloadConstraint

A WorkloadConstraint is a constraint that limits the workload of a specific teacher to be lower equal,
greater equal or equal to a specific value.

case class WorkloadConstraint (val domain: ConstraintDomain, targetValueGenerator: Int => Int,
relationMode: Int) extends Constraint {
def apply(problem: Problem, substitutionEnv: Map[String,String], output: Any => Unit) {
val originVariables = domain.getVars (problem, substitutionEnv).map { x => x._2.id }.toArray

val weightedVariables : Seq[WO[Int]]= originVariables.map { x => WeightedObject.newWO[Int] (x,
problem.decVariables (x) .weight.toLong) }.toSeq

val overtimeAcc = domain.getTeachers (problem, substitutionEnv) .foldLeft (0.0) ((acc, string) =>
acc + problem.teachers(string) .targetWorkload)

val teachers = domain.getTeachers (problem, substitutionEnv).foldLeft ("") ((acc, elem) => acc +
elem + ", ").dropRight (2)

relationMode match {
case AggregationConstraint.GREATEREQUAL => problem.depHelper.atLeast ("Workload of teachers " +
teachers + " should be at least " + targetValueGenerator (overtimeAcc.tolnt),
BigInteger.valueOf (targetValueGenerator (overtimeAcc.toInt)), weightedVariables:_x)
case AggregationConstraint.LOWEREQUAL => problem.depHelper.atMost ("Workload of teachers " +
teachers + " should be at most " + targetValueGenerator (overtimeAcc.tolnt),
BigInteger.valueOf (targetValueGenerator (overtimeAcc.toInt)), weightedvVariables:_x)
case AggregationConstraint.EQUAL =>
problem.depHelper.atLeast ("Workload of teacher " + teachers + " should be at least " +
targetValueGenerator (overtimeAcc.toInt),
BigInteger.valueOf (targetValueGenerator (overtimeAcc.toInt)), weightedVariables:_x)
problem.depHelper.atMost ("Workload of teacher " + teachers + " should be at most " +
targetValueGenerator (overtimeAcc.toInt),
BigInteger.valueOf (targetValueGenerator (overtimeAcc.toInt)), weightedVariables:_x)

Listing 4.26: WorkloadConstraint

Listing 4.26 shows how a WorkloadConstraint is established by retrieving the teacher from the Con-
straintDomain teacher. Because the syntactical constructs in our DSL formulate these constraints
as relative to the target workload (“Overtime/Workreduction should be ...”), the value that the work-
load should be limited to is calculated at runtime relative to the target workload of the teacher. The
function targetValueGenerator is applied to the target workload to retrieve this value. The Int
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relationMode is matched against the static values that symbolize >, < and == relationships. This
constraint is imposed as a Pseudo-Boolean constraint: Every decision variable that reflects an assign-
ment of the teacher has to be weighted with the corresponding workload. The solver uses objects of the
class WeightedObject, that encapsulate the decision variable and its weight. The DependencyHelper’s
functions at Least and atMost take a collection of WeightedObject and the cardinality. Because the
target workload is not necessarily an integer, we have to implement some inaccuracy concerning these
constraints: the target workload is rounded to be an integer.
def getOptimizationConstraint (problem: Problem, substitutionEnv: Map[String, String]) : String = {
val vars = domain.getVars (problem.decisionVariables.toMap, substitutionEnv)
val overtimeAcc = domain.getTeachers (problem.decisionVariables.toMap,
substitutionEnv) .foldLeft (0.0) ((acc, string) => acc +

problem.teachers (string) .targetWorkload)
relationMode match {

case AggregationConstraint.GREATEREQUAL => vars.foldLeft ("constraint ") ((acc, decVar) => acc +
decVar._2.toZincVariable() + " x " + decVar._2.weight + " + ").dropRight (2) + ">= " +
(targetValueGenerator (overtimeAcc)) + ";\n"

case AggregationConstraint.LOWEREQUAL => vars.foldLeft ("constraint ") ((acc, decVar) => acc +
decVar._2.toZincVariable() + " x " + decVar._2.weight + " + ").dropRight (2) + "<= " +
(targetValueGenerator (overtimeAcc)) + ";\n"

case AggregationConstraint.EQUAL => vars.foldLeft ("constraint ") ((acc, decVar) => acc +
decVar._2.toZincVariable() + " x " + decVar._2.weight + " +").dropRight (1) + " == " +
targetValueGenerator (overtimeAcc) + ";\n"

Listing 4.27: WorkloadConstraint Optimization Constraint

In MiniZinc a WorkloadConstraint can be stated as an inequality or equality where we multiply the
decision variables with their weight on the left-hand side and state the target value on the right-hand
side as shown in listing 4.27. To reflect this constraint in the target function we have to construct a rather
complex term that penalizes any deviation in case of an equality constraint and for greater or equal and
lower or equal the penalty has to reflect only one direction of deviation. The adherence or breakage of a
constraint should always be evaluated equally, e.g. the penalty term should evaluate to the same value
when a teacher’s workload is one hour less than it should be and also when it is two hours less than it
should be. We therefore need terms that evaluate only to 1 and 0 or to -1 and 0.

Otmod(CH-Oa) —1 (41)

Equation 4.1 evaluates to -1 whenever an actual value a is lower than the target value t and to 0
otherwise.

Otmod(a+0“) (4.2)

Equation 4.2 evaluates to 1 whenever an actual value a is greater than the target value t and to O
otherwise.

Oabdt—a) (4.3)

Equation 4.3 evalutes to 1 only when an actual value a is equal to the target value t and to O otherwise. In
listing 4.28 we construct the MiniZinc terms that correspond to these equations. A constraint stating that
the workload w should be lower than t for example would be formulated as “+ weight % pow (0,
t mod (w + pow(0,w))”.

def getTargetFunctionTerm(problem: Problem, substitutionEnv: Map[String, String], weight: Int)

String = {
val vars = domain.getVars (problem.decisionVariables.toMap, substitutionEnv)
val overtimeAcc = domain.getTeachers (problem.decisionVariables.toMap,

substitutionEnv) .foldLeft (0.0) ((acc, string) => acc +
problem.teachers (string) .targetWorkload)
relationMode match {
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case AggregationConstraint.EQUAL => " - " + weight + " * pow(0,abs ("+

targetValueGenerator (overtimeAcc) + " - " + vars.foldLeft ("") ((acc, elem) => acc +
elem._2.toZincVariable() + " = " + elem._2.weight + " + ") .dropRight (3) + ")" + ™)"

case AggregationConstraint.GREATEREQUAL => " + " + weight + " % (pow (0, "+
targetValueGenerator (overtimeAcc) .toInt + " mod " + "(pow(0," + vars.foldLeft("") ((acc,
elem) => acc + elem._2.toZincVariable() + " » " + elem._2.weight.toInt + " +
") .dropRight (3) + ") + " + vars.foldLeft("") ((acc, elem) => acc + elem._2.toZincVariable()
+ " % " 4+ elem._2.weight.toInt + " + ").dropRight (3) + "))-1)"

case AggregationConstraint.LOWEREQUAL => " + " + weight + " x pow(0,"+
targetValueGenerator (overtimeAcc) .toInt + " mod " + " (pow(0," + vars.foldLeft ("") ((acc,
elem) => acc + elem._2.toZincVariable() + " » " + elem._2.weight.toInt + " +
") .dropRight (3) + ") + " + vars.foldLeft("") ((acc, elem) => acc + elem._2.toZincVariable()
+ " % " + elem._2.weight.toInt + " + ").dropRight (3) + "))"

Listing 4.28: WorkloadConstraint Target Function Term

To optimize in the sense of a WorkloadConstraint we relax all the decision variables that concern an as-
signment that is included in the ConstraintDomain doma in and the decision variables that are potential
swap candidates. This allows for all possible permutations of assignments to be evaluated as solution
candidate as shown in listing 4.29.

def getFreeVars (solution: Solution, substitutionEnv: Map[String,String]) : SeqglSeqg[Int]] = {
val vars = domain.getVars (solution.values, substitutionEnv)
if (isFulfilled(solution, substitutionEnv))
Seq ()
else
Seqg(vars.filter (decVar => decVar._2.weight > 0).foldLeft (Seq[Int] ()) ((acc, decVar) => acc ++

decVar._2.getSimilarSwapTeacher (solution.values) .map { x => x.id }))

Listing 4.29: WorkloadConstraint Neighborhoods

AggregationConstraint

The implementation of AggregationConstraint is equal to the one of WorkloadConstraint except for:

1. The decision variables are not weighted, so only the number of assignments respectively selected
decision variables is constrained.

2. No inaccuracy occurs, since decision variables are either 1 or 0 in MiniZinc.

ForEachTeacher

A ForEachTeacher constraint allows to iterate over a set of teachers referred to by the ConstraintDomain
teachers. The teachers referred to by the ConstraintDomain excludedTeachers will not be
considered in the iteration. The String substitute denotes the identifier that will be bound to the
respective teacher in each iteration step. The Seq[Constraint] constraints contains all the Constraint
that should be imposed in every iteration step.

case class ForEachTeacher (val teachers: ConstraintDomain, val excludedTeachers: ConstraintDomain,
val substitute: String, val constraints: Seqg[Constraint]) extends Constraint

def apply (problem: Problem, substitutionEnv: Map[String,String], output: Any => Unit) {

teachers.getTeachers (problem.decisionVariables.toMap, substitutionEnv).filter { x =>
lexcludedTeachers.getTeachers (problem.decisionVariables.toMap, substitutionEnv) .contains (x)
}.foreach { x => constraint.foreach( ¢ => try { c.apply(problem, substitutionEnv +
(substitute -> x), output)} catch {
case e: org.sat4j.specs.ContradictionException => output ("Not solvable: " + x)
throw e

IO
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Listing 4.30: ForEachTeacher Constraint

To impose the constraint as hard onto the PB solver the set of teachers is retrieved. Listing 4.30 shows
how for every teacher in the set we build a static scope that binds substitute to the identifier of
the teacher. For every Constraint in constraints the function apply is called by passing problem
and the modified static scope. The functions concerning the formulation of the optimization problem are
implemented analoguously. The single String representations or target function terms of the constraints
are simply concatenated as shown in listing 4.31:
def getOptimizationConstraint (problem: Problem, substitutionEnv: Map[String, String]) : String = {
teachers.getTeachers (problem.decisionVariables.toMap, substitutionEnv).filter { x =>
!'limitingScope.getTeachers (problem.decisionVariables.toMap, substitutionEnv).contains (x)
}.foldLeft ("") ((acc, teacher) => acc + constraint.foldLeft ("") ((ac, cons) => ac +

cons.getOptimizationConstraint (problem, substitutionEnv + (substitute -> teacher))))

}
def getTargetFunctionTerm(problem: Problem, substitutionEnv: Map[String,String], weight: Int)

String = {
teachers.getTeachers (problem.decisionVariables.toMap, substitutionEnv).filter { x =>
!'limitingScope.getTeachers (problem.decisionVariables.toMap, substitutionEnv).contains (x)
}.foldLeft ("") ((acc, teacher) => acc + constraint.foldLeft ("") ((ac, cons) => ac +

cons.getTargetFunctionTerm(problem, substitutionEnv + (substitute —-> teacher),weight)))
}
def getFreeVars (solution: Solution, substitutionEnv: Map[String,String]) : Seqg[Seq[Int]] = {
teachers.getTeachers (solution.values, substitutionEnv).filter { x =>
!'limitingScope.getTeachers (solution.values, substitutionEnv) .contains (x)
}.foldLeft (Seg[Seg[Int]] ()) ((acc, teacher) => acc ++
constraint.foldLeft (Seq[Seqg[Int]]()) ((accl,const) => accl ++ const.getFreeVars (solution,
substitutionEnv + (substitute —-> teacher))))

Listing 4.31: ForEachTeacher Optimization Implementation

ForEachClass

The meaning and implementation for the ForEachClass constraint is equal to the one of ForEachTeacher,
except that the iteration steps bind substitute to the class identifiers.

Deputations

Deputations are virtual workload units that are assigned to teachers who are assigned to a specific
amount of specific workload units. Its implementation is shown in listing 4.32.
class Deputation(val name: String, val teacherIterator: String, val constraints: Seqg[Constraint]) {
def appliesToTeacher (teacher: String, solution: Solution) : Boolean = {
constraints.foldLeft (true) ((acc, elem) => elem.isFulfilled(solution,
Map[String, String] (teacherIterator -> teacher)) match {
case true => acc

case false => return false

33!
Listing 4.32: Deputation Implementation

A Deputation has a name and is assigned to a teacher, when the Constraint constraint holds. When
a Deputation applies to a teacher, the planner recalculates the target workload of the teacher. Usually
an applied Deputation should lower the target workload of a teacher to leave less worklod capacity for
other assignments. For now there is no mechanism to easily introduce the concept of a Deputation to
either the CSP nor the optimization problem. This is due to the conditional behaviour that would be
needed. Sat4j offers logical gates that could consider that an additional constraint should be imposed
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when certain other constraints are fulfilled or some decision variables are selected. But this is only
available in the native SAT solvers of the library and not for the PB solvers. In case logical gates would
be provided for PB solvers, every WorkloadConstraint for a specific teacher would have to be replicated
with the recalculated limits. MiniZinc allows conditional value assignments via an if-then-else construct.
But the Boolean expression that is evaluated in order to select either the then- or the else-branch must
not contain decision variables. Therefore deputations are checked against solutions found in our solving
process and are then assigned to the relevant teachers, as we depict in chapter 5.
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5 Solving Process Design

In this chapter we show the solving process of the DSL backend. An overview of the single steps is given
below:

1. Find inconsistencies in problem declaration (PB solver).
2. Find an efficient solution (PB solver).
3. Generate and optimize subproblems (MiniZinc).

Figure 5.1 shows the process steps. In section 5.1 we depict how the first run of the PB solver is arranged
and how its run influences the further process (step 1). In section 5.2 the iterative SAT solving with
feedback interpretation is explained (step 2). Section 5.3 depicts the setup of local searches to further
optimize on basis of the solution found in the previous steps (step 3).

Feedback

1. 2.
Consistency PB iteration |d—
Check

3.

Optimization iteration

yes

Timeout or Conflict

Figure 5.1.: Solving Process

5.1 Concistency Check

As we have identified inference to be a strength of SAT solving and our PB solver makes use of this native
strength, we exploit these qualities in order to find inconsistencies in the user’s problem declaration. A
user for example might declare a constraint that forbids a specific teacher to teach a specific subject and
limit the overtime of all teachers. Then it might occur, that the capacity of the remaining teachers with
this subject does not suffice. Such an inconsistency shall and will be found in the concistency check.
Hence, we simply call the function hasASolution on the DependencyHelper object, which at this
stage only considers the constraints declared by the user.

Feedback interpretation

A run of the SAT solver will try to find a solution until one is found, unsatisfiability has been proven or
the timeout has expired.

Satisfiable
When a solution has been found we go to the next step and try to find a more efficient solution.
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Unsatisfiable

In case of unsatisfiability the DependencyHelper returns the conflicting constraints. We simply output
the list of the conflicting constraints for the user to interpret. An example for such a situation is shown
in listing 5.1.
Assign teacher X to libraryservice
Workload of teacher X should be at most 1

Listing 5.1: Feedback: Workload Conflict

Here the derived constraint that was generated from the presetting of teacher X to the special assignment
“libraryservice” results in a workload of more than one hour. The user now has to either remove the
assignment of teacher X to “libraryservice” or adapt the constraintness of her workload to allow at least
the workload that is caused by an assignment of “libraryservice”.

Timeout

In case of a timeout we have to increase the timeout value, as we are currently facing the represen-
tation of the problem that only includes the necessary constraints and not the additional ones we will
impose in section 5.2. A discussion of performance will be found in chapter 6 to give a picture of problem
sizes and the resulting performance.

5.2 Efficiency iteration

When a consistent problem specification has been proven in the consistency check, we try to find the
most efficient lower bound solution. Efficiency is expressed by a deliberate measure: In this thesis
efficiency means the least deviation from the target workload for each teacher. We interprete efficiency
as a non-discriminatory measure and evaluate every deviation from the target workload of every teacher
equally. Other possible efficiency measures could also be realized: As few teachers with deviation as
possible (non-discriminatory), high/low diversity in terms of teachers per class or discriminatory version
that limit these efficiency measures on specific set of teachers.

Efficiency Constraint Generation

To achieve an efficient lower bound solution, we impose additional constraints onto the PB solver. In case
of the chosen efficiency measure we calculate the most strict bounds by equally distributing the difference
of needed workload and target workload between all teachers. In case of 100 hours of overcapacity, e.g.
needed workload equals 200 hours and the target workload is 300 hours for ten teachers, at least ten
hours of work reduction result from the optimal solution. In this case the optimal overtime would be 0.
With this calculation we generate additional hard constraints for the user declared problem specification
for every teacher as depicted in listing 5.2.

new WorkloadConstraint (teacherScope, x => x + upperBound, AggregationConstraint.LOWEREQUAL)
new WorkloadConstraint (teacherScope, x => x - lowerBound, AggregationConstraint.GREATEREQUAL)

Listing 5.2: Efficiency Constraint Generation

If the problem specification already contains a hard constraint on the workload of a teacher, we do not
generate those constraints. In case of an equality constraint the preset value might not be in the range
given by the lower and upper bound. In case of a user defined inequality for the workload of the teacher,
they are either stricter than the newly generated ones and the generated ones would do no harm aside
from redundancy. Or they are less strict and the newly generated one may result in more efficiency for
this teacher. But there could also be a conflict in case the user declares that the overtime of a teacher
should be greater or equal to a specific value that lies outside of the range defined by the current lower
and upper bound.
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Feedback interpretation

As in section 5.1 we have the three possible outcomes. If a solution is found, we can stop and continue
with local optimizing which is described in section 5.3. In case of a timeout we generally have two
options: to increase the timeout value and try again or to relax the constraints and try again. For now
the user interaction with the solving process is limited to the iterative specification, e.g. once a problem
specification is compiled, the user can’t influence the process aside from its termination. We therefore
did not implement an automatic timeout increase, as an appropriate value depends too much on the
user’s hardware.

Unsatisfiable

In case the solver proves unsatisfiability we look at the collection of conflicting constraints. With the
knowledge from the steps in section 5.1, that there is a possible solution given the current problem
specification, and that there are only new bound constraints on the workload of possibly all teachers, the
interpretation is rather simple. That is because there are two ways the newly added constraints can lead
to unsatisfiability:

1. The workload of the teachers of a specific subject is constrained in the way that the allowed work-
load sum of all those teachers doesn’t suffice for the required lessons.

2. The actual needed lessons in some subjects do not amount to a value that allows a distribution
among teachers so that all lower bound workload constraints can be fulfilled.

In the first case we search for a WorkloadConstraint that is a LOWEREQUAL constraint, meaning limiting
the workload with an upper bound, in the collection of conflicting constraints. When such a constraint
is found, we increase the upper bound and try to solve again. In listing 5.3 the output of such a situation
is shown. The “Require at least...” constraints show that there are too many german lessons, e.g. a
satisfaction could be achieved by removing the german lessons or lowering the resulting workload of
german lessons. The “Workload of teacher...” constraints signal that the listed teachers could be the
key to achieve satisfiability by increasing their individual upper bound or their target workload.
Require at least one teacher for class hauptba in subject german

Require at least one teacher for class hauptbb in subject german

Require at least one teacher for class haupt5c in subject german

Workload of teacher L should be at most 21 hours

Workload of teacher M should be at most 21 hours
Workload of teacher N should be at most 21 hours

Listing 5.3: Feedback: Too Many German Lessons

In the second case we search for a WorkloadConstraint that is a GREATEREQUAL constraint limiting the
workload with a lower bound. Respectively the lower bound is decreased and a new run is started. In
listing 5.4 the output of such a situation is shown. The “Require at most...” constraints show that there
are too few english lessons, i.e. a satisfaction could be achieved by adding english lessons or
increasing the resulting workload of english lessons. The “Workload of teacher...” constraints signal
that the listed teachers could be the key to achieve satisfiability by decreasing their individual lower
bound or their target workload.

Require at most one teacher for class hauptba in subject english

Require at most one teacher for class hauptb5b in subject english

Require at most one teacher for class hauptb5c in subject english

Workload of teacher X should be at least 17

Workload of teacher Y should be at least 26
Workload of teacher Z should be at least 26

Listing 5.4: Feedback: Not Enough English Lessons
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In every iteration of PB solving exactly one set of constraints leading to a conflict is shown. A new
iteration might bring the same set of constraints as the bounds have not been relaxed enough. If a new
set of constraints is shown, the formerly shown set of constraints is not leading to a conflict anymore.
The new set of conflicting constraints is a result from relaxation of the bounds. In terms of efficiency
this set of constraints has to be regarded as causing more inefficiency compared to the ones from the
iterations before. Therefore the iterative approach appears very reasonable:

* More iterations yield more insights about the weak points of the problem declaration.

¢ The last iteration before a solution is found shows the constraints that should be “treated” first in
order to achieve more efficiency.

This iterative approach might also be used for further exploration. The iteration we depicted in this
section searches for a minimum of total deviation from target workload. Another efficiency measure
could be the total amount of teachers that have a deviation of target workload at all. In this case
we would state WorkloadConstraints of type EQUAL and relax them according to the solver feedback.
However, this lies outside of the scope of this thesis.

At some point the iterative approach should yield a solution that is at least as efficient as the first solution
we found in section 5.1. We exploited the performance capabilities of the PB solver and now proceed
with the more flexible optimizer.

5.3 Optimization with Local Search

So far only hard constraints have been considered in the solving process. This is due to the limited
capabilities of the PB solver in terms of stating complex target function terms but primarily because
we use its performance advantage to fastly retrieve a lower bound solution. We now use the optimizer’s
expressiveness to also apply weak constraints by stating a target function and by alteration of the current
solution we found in the step before.

Problem formulation

To formulate an optimizing problem we need the decision variables, the workload weights that corre-
spond to the decision variables, hard constraints and a target function that evaluates a solution. Stating
the optimization problems relative to the solution we found with the PB solver, we also need to relax a
set of decision variables in order for the optimizer to explore different solution candidates.

Workload weights
During PB solving the weights were added everytime a Pseudo-Boolean constraint was added. For
debugging purposes we declare them centrally as float variables like shown in listing 5.5:

float: Creal6bSdeutsch0 = 5.0;
Listing 5.5: MiniZinc Weight Declaration

Translation of decision variables

The decision variables already have been generated for PB solving and can simply be translated into
decision variables for the optimizer. With MiniZinc we are not bound to a specific format like DIMACS
for the PB solver and can choose unique identifiers freely. Especially for debugging purposes we found
it most reasonable to name decision variables according to their properties and chose the format that is
implemented in the function toZincVariable. If we add them to the optimizer model as decision variable
an example would look like shown in listing 5.6:
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var bool: TschmidtCgym5cSenglishO :: output_var;
Listing 5.6: MiniZinc Decision Variable

It declares the decision variable TschmidtCgym5cSenglish0 € [true, false]. The annota-
tion “:: output var” instructs the optimizer to print the chosen value for this variable in the found
solutions.

This translation of a decision variable again creates the problem in its initial state, leaving the whole
search space for exploration. But the greatest part of decision variables should be fixed in order to
explore only a small neighborhood with a local search. We therefore state only the decision variables re-
turned by the neighborhood functions of the weak constraint as MiniZinc variable. The rest remains fixed
according to the solution from the efficiency iteration. The decision variable from listing 5.6 translated
as a fixed parameter is shown as selected (line 1) and unselected (line 3) in listing 5.7:

bool: TschmidtCgym5cSenglishQ = true;

bool: TschmidtCgym5cSenglishO = false;
Listing 5.7: MiniZinc Fixed Variable

Hard constraints

The model’s underlying hard constraints that require a workload unit to be assigned to a specific
number of teachers are added as hard constraints in the MiniZinc model in an equal way. Listing 5.8
shows the constraint that states that class 5a needs one teacher in its english lesson. Note that an
addition of Boolean variables takes place. This is valid due to type coercion in MiniZinc (t rue is coerced
toland false to 0).

constraint TxCgymbaSenglish + TyCgymbSaSenglish + TzCgymbaSenglish = 1;
Listing 5.8: MiniZinc Inherent Constraint

Every hard constraint declared by the user provides its own representation as a hard constraint in a
MiniZinc model. A hard constraint that assigns teacher x to the english lesson from listing 5.8 would
be expressed as shown in listing 5.9:

constraint TxCgymbSaSenglish = true;

Listing 5.9: MiniZinc Hard Constraint

This might be redundant, if the decision variable was declared as a Boolean with value t rue. The hard
constraints we used for efficiency exploration in the SAT iteration will not be added to the model as hard
constraints for we want to allow a deviation from efficiency, if the user declared a preference for a less
efficient part of the solution. From now on they are considered weak constraints.

Target function
Weak constraints will be considered in the formulation of the target function. Every weak constraint
contributes its representation term to the target function as explained in chapter 4.

Optimization iteration

For every weak constraint we formulate a separate optimization problem instance. The individual in-
stances all share the same target function, the same hard constraints and the same workload weights.
They differ in the relaxation of the decision variables, meaning that a different set of the decision vari-
ables is relaxed relatively to the most efficient solution from PB solving.

Every instance is written to a file, converted to FlatZinc format and then run with the Gecode solver. The
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solver traverses the search space and keeps track of the solutions with the least target function value.
The solutions are written into a separate file that we parse after the solver found the optimal solution or
the timeout has expired. The possible outcomes are as follows:

* Timeout and no solution found results in an empty file, therefore we parse no solution.

* Timeout and a solution has been found or the optimizer returns and an optimal solution has been
found.

In case we can parse a solution we compare the new target function value to the former one. If the
new one is lower (we minimize) than the last one we continue the iteration with the new solution. The
parsing creates a new best solution, possibly changing selection of the relaxed decision variables relative
to the former solution. Relative to this new best solution we relax the decision variables for the next
iteration based on the metrics of the next weak constraint.

We may check for the adherence to the single weak constraints and skip otpimization in order to save
time. But the optimization for a specific weak constraint does not only optimize in order to fulfill this
constraint. Because we use a globally valid target function, we might optimize the solution regarding
weak constraints other than the current target weak constraint. This effect can result from the metrical
selection of the decision variables to be relaxed. The metric for the current constraint may relax decision
variables that would not be relaxed by the metrics of all other weak constraints. These relaxed decision
variables may lead to a better solution, that would not have been found if we skipped the iteration step.
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6 Case Study

To verify that our DSL and the solver backend meet the requirements we got from executives of a big
German school, we used a concrete problem instance as reference throughout the development. The
usual manual planning process is stretched over weeks once a year. This is either due to changes in the
staff or due to the iterational budget-planning from the governmental institution. But also when teachers
suddenly fall ill, her assignments have to be redistributed. Therefore we tested whether our prototype
is performant enough to be used repeatedly to test different constraints or as a reaction to different
problem data. In section 6.1 we outline the extent of the problem instance and in section 6.2 we show
how hard and weak constraints influence the runtime. Section 6.3 shows the performance results for a
realistic problem specification.

6.1 Problem Data

We modelled the problem instance of the second half of the 2015/2016 school year. The translation
of the planning material we got was difficult because of its quantity and its quality. In an Excel-Sheet
we could see a list of teachers with their target workload, their career path and subject qualifications
that could directly be translated into our DSL. This sheet also included a table of lessonplans and the
number of classes. But when trying to model the classes with the given lessonplan, we found that the
aggregated workload did not match the info on the sheet. With the second document, that is with
the actual assignments of teachers to classes, we could reconstruct the individual workload every class
needs. But as the classes could differ greatly from each other, we had to guess what the underlying and
most general lessonplan was. Some workload units have subjects that did not reflect a specific subject
qualification and teachers with different qualifications were assigned to it. This lead us to implement the
different notions of subject declarations depicted in chapter 3.1. For example the subject “Arbeitslehre”
is a subject that is only an explicit qualification for teachers in the Haupt-/Realschule career path. But in
the actual schedule we found an assignment of a teacher from the Gymnasium career path with subject
qualification “German” and “Politik und Wirtschaft”. A possible enhancement of our model could be
the feature of the class teacher. For now, we model class teachers by declaring a subject “classteacher”
that does not need any qualification. The specification of the reference problem without the teacher
specifications can be found in appendix A.1. Its translation resulted in:

* 115 teachers with a total target workload of 2579.68 hours
* 929 workload units with a total amount of 2436.5 hours of workload

This means that there are around 143 hours of overcapacity, target workload that cannot be distributed.
With the one teacher that appears in the staff info but is not assigned, probably due to some illness or
parental leave, the overcapacity is at 116 hours. Consequently, a solution to this problem will contain at
average one hour less than the target workload for each teacher. After preprocessing we found 19420
decision variables for this problem, spanning a search space of possible 2194?° solution candidates.

6.2 Hard and Weak Constraints

In our solving process hard constraints are handled by both the PB solver and the optimizer and weak
constraints are only considered by the optimizer. We compare the performance of the PB solver with the
optimizer by stating a set of constraints as hard in the first run and as weak in the second run. Assum-
ing that the PB solver is more performant than the optimizer, comparison shows the tradeoff between
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performance and flexibility. In the first run the user “buys” performance by allowing the situation that
no solution will be returned in case the set of hard constraints cannot be satisfied. In the second run
the user “pays” for the guarantee of a solution with the time the optimizer needs to search for solutions.
Generally this comparison is not able to benchmark the performance of the two tools, as they are not
involved in the same way, meaning doing the exact same thing. But the comparison can validate that by
arranging the two tools, we picked up the strengths and mitigated the weaknesses of the two tools.

In the first run we declare the set of constraints depicted in listing 6.1:

Hard Constraint:
Workreduction of teacher One = 27
Hard Constraint:
Workreduction of teacher Two = 0
Hard Constraint:
Workreduction of teacher Three = 0
Hard Constraint:
For each teacher X in teachers with qualification german :
Overtime of teacher X = 0

Listing 6.1: Hard Constraint Set

In the second run we declare the same constraints as weak with priority 4. In the third run we declare all
constraints as weak with priority 4 except for the constraint imposed on all the german teachers. Note
that these are all declarations that result in a WorkloadConstraint. In a WorkloadConstraint the currently
implemented relaxation is very generous, i.e. all decision variables of a teacher and corresponding swap
candidates are set free. Therefore the optimization runs for each weak constraint in this section loosely
represent an upper bound for the runtime performance of a local search with the optimizer. In table
6.1a we present the performance benchmarks for all runs at every checkpoint. In the preprocessing step
the first run takes the longest. This is due to the user declared hard constraints that are added to the
PB solver in addition to the domain constraints. In run 2 there is only one user declared constraint and
in the third run there are two. For the first PB solving step the same reasoning applies. In the first
run, where all constraints are declared as hard, the PB solver has to comply with more constraints and
takes the longest time. Respectively the second run takes the shortest time. The same applies to the PB
iteration. This result is also expected, as it should be harder to find a solution in specific efficient bounds
when more additional constraints are issued onto the PB solver.

In the optimizing step the first run only evaluates the solution found during the PB iteration step and
runs 788ms. The second run optimizes a total of 20 weak constraints, i.e. two single overtime constraints
and 18 resulting from the overtime constraints on all german teachers (which means that there are 18
german teachers). In total this optimization iteration takes over six minutes. In the third run only two
optimization steps take place and amount to 31 seconds of runtime. In table 6.1b the quality measures

Step All Hard All Weak Combined Measure All Hard All Weak Combined

Preprocessing 1235 465 729 Target value 144.18 143.18 143.18

Consistency check 178 17 63 Total Overtime 0.5 0 0

Efficiency iteration 7491 1795 6061 Total Reduction 143.68 143.18 143.18

Optimization 788 413076 31524  Average deviation 1.92 2.27 1.86
(a) Runtime Performance (b) Quality Performance

Table 6.1.: Constraining Approaches

for solutions of these three runs are presented. We see that performance in terms of solution quality
is very similar. In run 1 a solution is found that is almost optimal with 144.18 hours of total deviation
(143.18 would be optimal). The teachers with deviation (75) have at average 1.92 hours of deviation
from their target workload. In run 2 and 3 an optimal solution is found with 143.18 hours of deviation
with zero hours of overtime, where the deviation is at average 2.27 hours for 63 teachers in run 2 and
1.86 hours for 77 teachers in run 3.
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6.3 Realistic Problem Instance

As section 6.2 has shown, performance of our solving design is performant enough for the incremental
approach to test different constraints and to explore the problem. In this section we depict how the
solver performs when we try to achieve a solution as closely to the current assignments of the real-life
teachers. We therefore considered several characteristics we translated into constraints:

* We preset the assignment as “classteacher” as we found it in the current solution with hard con-
straints.

* We implement the rule that the “classteacher” should teach as many lessons as possible in the
corresponding class. As there are two subjects meaning that a teacher is considered “classteacher”,
we have to declare a constraint for each of these subjects, as we don’t have a possibility to express
more complex Boolean expressions.

* We implement the rule that if a class has bilingual lessons, the teacher assigned to “english” lessons
should be one of the teachers that teach a bilingual lesson. Again, as there are several bilingual
lessons we have to declare a constraint for each of them. And as they directly conflict with each
other, they should be weak constraints. Another approach could be to limit the rules to specific
grades, i.e. that the implication of “bilingual history implies english” is applied in grades 7 and 8.
For the other grades we could impose the implication “bilingual geography implies english”. In a
setup as such, we could express them also as hard constraints.

* We implement the rule that the teacher that teaches “german” in a class should also teach the
lesson “dyslexiasupport”. As “dyslexiasupport” is commonly taught as a common course for several
classes, we have to declare it as a weak constraint, since not all German teachers of the concerned
classes can be assigned to that lesson, for only one teacher is required.

* We implement a deputation that is assigned to a teacher when she is teaching seven hours or more
in grades 12 and 13. The deputation will be taken into account after a solution has been found,
and can be considered in addition to the quality measures of the solution.

As we declare several rules that affect the majority of teachers and classes as hard constraints, the total
number of constraints imposed onto the PB solver will be very high, e.g. every teacher could be assigned
as class teacher to almost all classes and for every other possible assignment in one class we will impose
a one-to-one implication. Also the total number of optimization runs will be very high, due to the rules
stated as weak constraints. The anonymized set of constraints can be found in appendix A.2.

Measure Realistic before optimization  Realistic after optimization  Actual Assignments 2015/16
Target value 297.68 272 -
Total Overtime 2.25 3.75 37.33
Total Reduction 145.43 146.93 181.01
Average deviation 1.7 1.79 1.52

Table 6.2.: Solution Quality Compared to Actual Assignments

Table 6.2 summarizes the results for the realistic problem declaration. It shows again, that the solution
without optimization is a bit less efficient in terms of total deviation from target workload. But from the
target value that is produced by applying the target function created for MiniZinc on both solutions, we
see that a bit of efficiency has been given up to minimize the target function by fulfilling constraints.
The deputation was assigned 15 times, resulting in additional workload, that to one part caused more
overtime (5.5 hours) and partly eliminated work reduction (8.5 hours). Due to its extent we did not
calculate the target function value for the actual assignments. Therefore we can only argue that either
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there are other constraints we were not communicated that resulted in allowing more inefficiency (37.33
hours of overtime) or that our solving process achieves a better solution in terms of efficiency and quality.

6.4 Summary

Figure 6.1 illustrates and emphasizes the results for runtime performance. We can see that with many
constraints, especially hard constraints, the runtime increases to over 25 minutes. This is not a fast
response time. But considering that many preferences can be expressed with the constraint language and
that the efficiency of the solution seems to be better than the current one, it seems adequate compared
to a manual process that takes at least as much time. In conclusion this case study supports our design

T
mmm Preprocessing & Consistency Check
hard | | PB iteration
combined | | | - Optimization
weak - ]
realistic |- | I
| | | | | |
0 5 10 15 20 25

minutes

Figure 6.1.: Runtime Performance

choices, as we have designed a more or less performant solving process that yields solutions of a good
quality. We summarize the main insights from the comparison of different problem declarations:

* Global optimizing is costly: The implemented neighborhood functions for a WorkloadConstraint
release sometimes thousands of decision variables. Then a single optimization run can take several
minutes. A local search with 100 decision variables takes less than a second. This further hints at
the implementation of local search heuristics that release fewer decision variables in more runs.

* Transforming weak constraints into hard constraints and vice-versa is a good measure to test out
different behaviour of the solver in terms of solution quality and runtime performance.
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7 User Evaluation

The main goal of this thesis is only achieved, when our DSL is usable by the planners at schools for
whom it was designed. We suspect our language to be highly understandable as a result of using syntax
that is of course domain specific, referring to terminology known to the user. Secondly, the constraint
syntax is very close to statements a user could have made verbally about the specific problem. To test
this assumption we conducted a survey with teachers from different schools in order to see how well
they understood the concepts of our DSL and the underlying solving process. The complete survey can
be found in appendix A.3. We identified five categories that we wanted to test:

1. Workload unit declarations: In order to enter the problem data, the planner needs to understand
the formulations used to declare a lessonplan, classes and courses.

2. Teacher qualifications: The qualifications of a teacher directly determine the creation of decision
variables. With questions asking for the possibility of an assignment of a teacher to a specific
workload unit, we verify that the user understands the search space.

3. Constraint interpretation: In order to express preferences in solutions, a user must understand
what different constraints mean and that weak constraints may overrule one another.

4. Rule interpretation: Single constraints referring to single teacher and class entities are probably
easier to understand than the ForEachTeacher and ForEachClass constraints. We test the under-
standing of the extent that such a constraint has.

5. Constraint adherence interpretation: In an incremental planning process with our DSL solutions
may reveal that contain unwanted characteristics. Then a planner should impose new constraints
forbidding characteristics as such. Therefore we want to test, whether teachers understand if
constraints are fulfilled or not.

In the survey we presented small excerpts from complete and compilable problem declarations. Note
that we translated our DSL to German in order for the syntax to really be in a domain language for
German teachers. In total 15 teachers participated. Seven teachers answered that they had already been
engaged in the planning process of teacher assignments. Five teachers declared they had programming
experience (primarily in Pascal and Basic). A descriptive statistic for our sample is shown in table 7.1a.
We calculated the total number of misinterpretations for each participant and put them into relation with
the demographic variables age, programming experience and teacher assignment planning experience.
Regression revealed only weak statistical significance on the 0.1 (*) level for programming experience
on the total number of misinterpretations as shown in table 7.1b:

Variable Obs. Mean Std. Dev. Min Max Estimate Std. Error tvalue Pr(>|t|)

# Misinterpretations 15 4.47  3.15926 1 12 5.95261 3.47401 1.713 0.1146

Programming Exp. 15 0.33 48795 0 1 -3.06816 1.68702 -1.819 0.0963 *

Planning Exp. 15 0.47 .516398 0 1 2.26867 1.60038 1.418 0.1840

Age 15 43.47 10.18 25 59 -0.03501 0.08240 -0.425 0.6791
(@) Survey Sample Description (b) Regression Results

Table 7.1.: Survey Sample Description & Regression Results

In the following sections we show the performance of the participants in each question category in
order to identify structural deficiency of our DSL in terms of comprehensibility.
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Workload Unit Declarations

The first five survey questions ask about the resulting workload units of a problem declaration. Figure
7.1 summarizes the overall scores of the participants. It shows that the majority of participants answered
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Figure 7.1.: Workload Unit Declaration Interpretation

correctly for the different concepts of workload declaration. All participants recognized the declaration of
lessons in a lessonplan correctly (Question 1). Only one participant did not link the class declaration to its
corresponding lessonplan, answering 0 hours for a subject that is declared with 2 hours in the lessonplan
(Question 2). In Question 3 we presented a class declaration with a deviation from its lessonplan. Again
one participant answered 0 hours for a subject declared with 2 hours in the lessonplan and thus did not
recognize the link of a class declaration to the corresponding lessonplan. The other wrong answer did not
recognize the deviation and answered 2 hours instead of 4. In question 4 we test whether the concept of
a common course is understood and asked for the total hours of a subject that is only referenced in such
a common course. 13 participants answered correctly (2 hours) and 1 participant answered O hours,
apparently only looking up lesson declarations in the lessonplan. Another answer was 6 hours. We
anticipated that the declaration of 2 hours for 3 classes might be interpreted as 3 courses with 2 hours
each. In question 5 we asked for the total amount of German lessons (15 hours) and two participants
answered incorrectly 20 hours.

Conclusion

In total the declaration of workload seems to be comprehensive. To expose the link between class
declarations and the corresponding lessonplans we suspect two measures to possibly increase compre-
hensibility. First, we might explicitly reference the lessonplan by an identifier. Secondly, the user could
be assisted by the IDE, showing the internally referenced lessonplan.

Teacher Qualifications

The feature that influences the creation of decision variables is teacher qualification. To test whether a
non-programmer understands the syntax of our DSL we presented different teacher and class declara-
tions and asked whether certain assignments of teachers to classes would be possible based on subject
and school path qualifications. Figure 7.2 summarizes the answers.

In question 6 we asked which subjects an individual teacher may teach. All participants selected
correctly “English” and “Mathematics”, showing that the user correctly link this teacher to her subject
qualifications. With question 7 we tested the concept that there are different levels of subject qualifica-
tions and that teachers on the Haupt-/Realschule level are not allowed to teach on Gymnasium level.
Eleven participants recognized this concept correctly and selected only the subjects taught by the teach-
ers with qualifications on the Gymnasium level, when asked for all subjects that could be taught on the
Gymnasium level. The four wrong answers included all listed subjects, suggesting that the concept was
not clear. In contrast for the individual teacher with only Haupt-/Realschule qualifications all partici-
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Figure 7.2.: Teacher Qualification Interpretation

pants correctly answered that she could not teach a class on Gymnasium level in question 9. And in
question 8 and 11 all participants correctly answered that an individual teacher with Gymnasium level
qualifications may teach a class on Haupt-/Realschule level. Four participants answered that an individ-
ual teacher with no subject qualifications in German may teach a class in German. We suspect that at this
point the participants were scanning only for the qualification levels and missed out that the specified
teacher cannot teach German.

Conclusion
In total the concept of teacher qualifications seems to be adequatly expressed in the syntax of our DSL.
The wrong answers suggest rather careless mistakes than incomprehensibility.

Constraint interpretation

The constraint language was designed to closely resemble statements that could be made verbally. We
tested the comprehensibility of different constraints by asking for their impact on possible solutions. The
results are summarized in figure 7.3.
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Figure 7.3.: Constraint Interpretation

With question 12 and 13 we tested the comprehensibility of overtime and work reduction constraints.
The presented constraints limit the possible workload of the declared teacher to the interval [23,27].
When asked for the minimum workload of the declared teacher, 13 participants answered correctly, one
participant either mistook the relation <= for < or simply miscalculated. One participant answered
26 hours, suggesting that the use of the German term “Pflichtstunden”, which was used by the school
executives we conferred with, may be misleading. This is due to its meaning being rather obligatory than
desirable. When asked for the maximum workload, only five participants answered correctly 27 hours.
This is unexpected due to the positive results from question 12. There a mix-up between “<=" and “<”
occurred only once.

We established three different constraints to influence a teacher’s possible workload. With overtime
and workreduction constraints we refer to the deviation of the target workload in two directions. In

40



question 14 we wanted to test whether a user might interpret an overtime constraint setting overtime
to 0 as only forbidding overtime or whether it was interpreted as a constraint setting the workload to
exactly the target workload. All participants answered in favour of our implementation that requires
the actual workload to equal the target workload of the teacher. 13 participants correctly identified a
hard constraint to forbid any assignment of a teacher to courses in a specific subject in question 15.
As we did not suggest to look for a constraint in the declaration, the two wrong answers might result
from only looking up the subject qualifications of the teacher. The comprehensibility of a constraint
requiring at least two assignments of a teacher in a specific subject was correctly interpreted by three
participants. Question 16 asked for the number of classes the specific teacher teaches at minimum
in the given subject. Since we presented no classes, the distinction of classes from courses is critical.
Semantically the constraint requires at least two assignments. But as one class could have two courses in
the specific subject, the correct answer would technically be 1 class. As this turned out to be kind of a trick
question, we interpret the 2 classes answer (ten participants) not as a result of incomprehensibility. The
answers with 10 and 50 classes seem rather arbitrary with no hint at what caused this misinterpretation.

Conclusion
Except for the poor score in question 13 and the rather complex question 16 the impacts of constraints
seem to be comprehensible.

Rule interpretation

An important feature of the constraint language part of our DSL is the ability to express rules that refer to
sets of teachers and/or classes. We tested whether the A constraint that should be imposed on all teachers
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Figure 7.4.: Rule Interpretation

was correctly recognized as being imposed on all teachers by eleven participants. Twelve participants
correctly recognized the constraint referred to in question 18 as being imposed on all teachers with a
subject qualification in English.

Constraint adherence interpretation

Stating constraints may result in a conflict that will be detected during compilation of the problem
declaration. When weak constraints are in conflict, the conflict will not explicitly be stated. Therefore
it seems important to test whether the concept of weighting weak constraints in order to determine
precedence of them. Figure 7.5 summarizes the results.

When asked which weak constraint would have precedence over the other, all participants correctly
selected the constraint with higher weight in question 19. When asking in question 20 for the conse-
quences of those conflicting constraints in a prospective solution, e.g. the assignment of a teacher to
a specific English lesson, only nine participants chose the correct teacher. Five participants chose the
teacher that would have been assigned if it was not for the precedent constraint. One participant chose a
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Figure 7.5.: Constraint Adherence Interpretation

teacher without a subject qualification in English. In question 21 we presented four different constraints
and parts of a solution containing the aggregated actual workload of the declared teachers. The majority

of participants identified them correctly as being fulfilled or not fulfilled.




8 Related and Future Work

Our work seems to be unique in the way we approach a very common and widely researched problem.
The majority of literature concerning the teacher assignment problem deals with different solving ap-
proaches in the algorithmic sense (e.g. [3], [23] and [22]). On the other hand DSLs for constraint
programming are rather solver specific languages and seem to be developed in order to facilitate con-
straint programming for people familiar with general programming. We briefly present an incomplete
list of scientific work that relates to this thesis.

Timetabling

After a solution has been found for the problem depicted in this thesis the planner is confronted
with the next NP-hard problem: Distribution of the single workload units over time in an optimal way:.
Optimality in this case e.g. refers to as few free time in between assignments for teachers as possible or
whole free days for some teachers. This problem also has been researched in a vast amount of varieties
(for an overview see [4] and [5]), but in this case there are also efficient and accepted commercial
solutions, e.g. Untis *. Often treated separately from the assignment problem, Gunawan, Ng, and Poh
propose a hybrid algorithm to address both problems at the same time.

s-COMMA

With s-COMMA Chenouard, Granvilliers, and Soto introduce a model-driven-development of con-
straint programming programs. They propose a meta-model to reflect the different aspects of constraint
programming such as decision variables, domains, constraints and target functions. Instances of this
meta-model can then be created with a graphical modelling tool [6]. The problem domain of teacher
assignments could be modelled as such a model instance. As in this thesis, they argue that the implicit
declaration of a problem domain that most constraint programmers use, is difficult for beginners. Even-
though we approach a single problem domain and facilitate the creation of a computer-solvable problem
with a DSL for this single problem domain, we see interesting links between the two concepts. First, the
explicit modelling of the problem domain targets the abstraction from decision variables and constraints.
Second, this abstraction seems promising in combination with a local search approach. This is due to
the important properties we identified in a constraint to allow local search: Is it fulfilled and how can
it probably be fulfilled (neighborhood function)? Combining the quick creation of model instances re-
flecting specific problem domains and a flexible constraint language based on different constraint types
could be explored.

DSLs for Constraint Programming

As we implemented the DSL interpreter and the solving process in Scala, we found Scarab [21] and
the Scala embedded DSL for constraint programming Copris?. The possibility to express arithmetic
constraints and have them automatically translated to the Sat4j solvers is a very powerful and convenient
feature, that could improve our own solving process. We did not make use of it, since its compatibility
with the current Scala version is not given and maybe hints at a discontinuation.

Teacher Quality

A topic that was not explicitly dealt with in this thesis is teacher quality. This refers to the educational
impact “good” and “bad” teachers have on students. However this quality is determined, there is an
argument for equality in terms of an equal distribution of teacher quality across districts (see [7]) and
therefore maybe classes. We find this an interesting addition to our design, that could be reflected by

1
2

http://www.school-timetabling.com/
http://bach.istc.kobe-u.ac.jp/copris/
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an additional property of a teacher. Then we could impose interval constraints on the average or total
quality that a class receives. The school executives we talked with told us that there are some teachers
that should not teach the same class at the same time. We could not properly implement this without
implementing a more complex Boolean interpreter, but the concept of teacher quality could be used as a
surrogate.
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9 Conclusion

In this thesis we showed how a DSL can abstract from the tedious modelling of constraint satisfaction
and optimization problems. Furthermore the constraint language we implemented allows for flexibility
in declaring solution goals that. The distinction between hard and weak constraints allows the user to
adequatly express her preferences and to consider them in the solving process wherever possible. Our
survey shows that the textual representation of a problem as such is generally understood, which is
promising for the acceptance by the target audience teachers.

The idea of implementing the different behaviour of individual constraint types in different problem
formulations allowed us to formulate the different notions of problems and thereby make use of
the strengths of SAT solving and optimization technology. The establishment of a uniform and non-
discriminatory efficiency measure in the formulation of the constraint satisfaction problem proved to be
a very performant way to get to an efficient solution on which we further apply a local neighborhood
search. This is due to the performance advantage SAT solvers have on uniform problems. Application
of local search enhances the efficient solution in terms of user preference and establishes an effective
trade-off between efficiency and preference.

The resulting solving process is able to quickly find optimal solutions when there are only a few user
declared constraints. This allows for an efficient way of exploring the search space by stating possibly
conflicting constraints. The generation of feedback for the user establishes a very flexible decision sup-
port system rather than only a solving algorithm. The runtime performance decreases with the number
of constraints but still seems adequate for a NP-hard problem.

In conclusion, this thesis shows a good example of how a DSL can be designed to hide complex expres-
sions and offer a convenient way to express them anyway.
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A Appendix

A.1 Problem Specification

1 problem UV
2 Subjects
3 Subject deutsch

4 Subject mathematik

5 Subject englisch

6 Subject geschichte

7 Subject physik

8 Subject biologie

9 Subject chemie

10 Subject franzoesisch

11 Subject powi

12 Subject sport

13 Subject spanisch

14 Subject arbeitslehre

15 Subject erdkunde

16 Subject kunst

17 Subject musik

18 Subject ethik

19 Subject religionkath

20 Subject religionev

21 Subject powibili

22 Subject ekbili

23 Subject gbili

24 Subject latein

25 Subject darstellendes

26 Subject informatik

27 Lesson without subject qualification klassenstunde
28 Lesson LRR with possible subject qualifications: deutsch
29 Lesson without subject qualification KO

30 Lesson without subject qualification TUT

31 Lesson without subject qualification Verbuende
32 Lesson without subject qualification REFLEXION
33 Lesson without subject qualification PRAKTIKUM
34 Lesson without subject qualification LQ

35 Lesson without subject qualification sonderdienst
36 Lessonplans

37 Lessonplan Hauptschule grade 5:

38 deutsch -> 5

39 englisch -> 5

40 kunst -> 2

41 arbeitslehre -> 2

42 erdkunde —-> 2

43 ethik -> 2

44 mathematik -> 5

45 biologie —-> 1

46 sport -> 2

47 klassenstunde —-> 1

48 Lessonplan Hauptschule grade 6

49 deutsch -> 5

50 englisch -> 5

51 kunst -> 2

52 arbeitslehre -> 2

53 erdkunde -> 2

54 geschichte -> 1

55 mathematik -> 5

56 biologie —-> 2

57 sport —-> 2

58 klassenstunde —-> 1

59 Lessonplan Hauptschule grade 7

60 deutsch —-> 4

61 englisch -> 3

62 kunst -> 2




63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

arbeitslehre -> 3
geschichte -> 2
powi —-> 2

ethik -> 2
mathematik -> 4
physik -> 2
biologie -> 2
sport -> 2

LRR —> 1
klassenstunde —> 0
Lessonplan Hauptschule grade 8
deutsch -> 4
englisch -> 3
kunst -> 1

musik -> 1
arbeitslehre —-> 5
erdkunde -> 2

powi —-> 2

ethik -> 2
mathematik -> 4
physik -> 2

chemie -> 2

sport —> 3
klassenstunde —> 0
Lessonplan Hauptschule grade 9
deutsch -> 4
englisch -> 3
kunst -> 2
arbeitslehre —-> 3
erdkunde -> 1
geschichte -> 2
ethik -> 2
mathematik -> 4
physik -> 2

chemie -> 2
biologie -> 2
sport —> 2
klassenstunde -> 0
Lessonplan Realschule grade 5
deutsch -> 5
englisch -> 5
mathematik -> 4
sport —> 3

kunst -> 2
biologie -> 2
erdkunde -> 2
arbeitslehre -> 2
klassenstunde -> 1
Lessonplan Realschule grade 6
deutsch —-> 5
englisch -> 5
mathematik -> 4
sport -> 2

musik -> 2
biologie -> 2
erdkunde -> 2
arbeitslehre -> 2
geschichte -> 2

Lo —> 1

Lessonplan Realschule grade 7
deutsch -> 4
englisch —-> 4
mathematik -> 4
sport —> 2

kunst -> 2
biologie -> 2
physik -> 2

powi —-> 2
klassenstunde —-> 0
Lessonplan Realschule grade 8
deutsch -> 3
englisch -> 4
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135 mathematik -> 4
136 sport -> 2

137 musik -> 2

138 chemie -> 2

139 physik -> 2

140 arbeitslehre -> 2
141 geschichte -> 2
142 klassenstunde —-> 0
143 Lessonplan Realschule grade 9
144 deutsch —> 4

145 englisch -> 3

146 mathematik -> 4
147 sport -> 2

148 kunst -> 2

149 chemie -> 2

150 biologie -> 2

151 powi -> 2

152 geschichte -> 2
153 arbeitslehre -> 2
154 sport -> 2

155 klassenstunde —-> 0
156 Lessonplan Realschule grade 10
157 deutsch —-> 4

158 englisch -> 3

159 mathematik -> 4
160 sport -> 2

161 musik -> 2

162 chemie —-> 2

163 erdkunde -> 2

164 powi —-> 2

165 geschichte -> 2
166 physik -> 2

167 klassenstunde -> 0
168 Lessonplan Gymnasium grade 5
169 deutsch -> 5

170 englisch -> 5

171 kunst -> 2

172 musik -> 2

173 erdkunde -> 2

174 mathematik -> 4
175 biologie -> 2

176 sport -> 3

177 klassenstunde —-> 1
178 Lessonplan Gymnasium grade 6
179 deutsch -> 5

180 englisch -> 5

181 kunst -> 2

182 musik -> 2

183 mathematik -> 4
184 biologie —-> 2

185 sport —> 2

186 Lo —> 1

187 geschichte -> 2
188 Lessonplan Gymnasium grade 7
189 deutsch -> 5

190 englisch —-> 4

191 kunst -> 2

192 mathematik -> 4
193 physik -> 2

194 biologie —-> 2

195 sport -> 2

196 klassenstunde —-> 0
197 powi —-> 2

198 Lessonplan Gymnasium grade 8
199 deutsch -> 3

200 englisch -> 4

201 musik -> 2

202 mathematik -> 4
203 physik —-> 2

204 chemie -> 2

205 sport —> 2

206 erdkunde -> 1
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klassenstunde —-> 0

geschichte -> 2

powi -> 1

Lessonplan Gymnasium grade 9
deutsch -> 4

englisch -> 3

mathematik -> 4

physik -> 1

chemie —-> 2

biologie —> 2

sport —-> 2

erdkunde -> 1

klassenstunde —-> 0

powi —-> 2

geschichte -> 2

Lessonplan Gymnasium grade 10
deutsch -> 4

englisch -> 4

biologie -> 2

chemie -> 2

physik -> 2

sport -> 2

mathematik -> 5

klassenstunde —> 0

powi —-> 2

geschichte -> 2

Special Assignments
: 2
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Class 5a with deviation from lessonplan:
KO -> 2 with 2 teachers

Class 6a with deviation from lessonplan:
KO -> 2 with 2 teachers

Class 6b with deviation from lessonplan:
KO -> 2 with 3 teachers

Common course for classes 6a,6b: ethik —-> 2

Class 7a with deviation from lessonplan:
arbeitslehre -> 2

arbeitslehre -> 2

Class 8a
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279
280
281
282
283

285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

321

Class 8b with deviation from lessonplan:
deutsch —-> 4
mathematik —-> 4
englisch -> 3
powi —-> 2
kunst -> 2
biologie -> 2
sport -> 2
REFLEXION -> 1
ethik —-> 2
KO -> 2 with 2 teachers
PRAKTIKUM -> 5
Class 9a
Class 9b with deviation from lessonplan:
englisch -> 3
mathematik -> 4
REFLEXION -> 2
Verbuende -> 8
PRAKTIKUM -> 5
deutsch -> 4
KO -> 2 with 4 teachers
Realschule
Class 5a
Class 5b
Class 5c
Common course for classes 5a,5b,5c: ethik -> 2
ethik -> 2
religionev —-> 2
religionkath -> 2
LRR —> 1
Class 6a with deviation from lessonplan: mathematik -> 5
Class 6b
Class 6c¢C
Common course for classes 6a,6b,6c: ethik —> 2
ethik —-> 2
religionev —-> 2
religionkath —> 2
deutsch -> 1
Class 7a
Common course for classes 7a: LRR —-> 1
Class 7b
Class 7c
Common course for classes 7b,7c: LRR -> 1
Common course for classes 7a, 7b,7c: ethik -> 2
ethik -> 2
religionev —-> 2
religionkath -> 2
arbeitslehre -> 3
sport -> 3
franzoesisch -> 5
kunst -> 3
kunst -> 3
Class 8a with deviation from lessonplan:
deutsch -> 3 with 2 teachers

Class 8b

Class 8c

Common course for classes 8a,8b,8c: ethik -> 2
ethik -> 2

religionev —-> 2

religionkath -> 2

franzoesisch —-> 4

kunst —-> 2

mathematik -> 2

arbeitslehre -> 2

LRR -> 1

gbili -> 3
Class 9a with deviation from lessonplan: erdkunde -> 2
Class 9b with deviation from lessonplan:
erdkunde —-> 2

Class 9c
Common course for classes 9a,9b, 9c: ethik -> 2
ethik -> 2
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351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

420
421
422

religionev -> 2
religionkath -> 2
kunst —> 2
franzoesisch -> 3
englisch -> 2

ethik -> 2
musik -> 2
LRR —> 1

gbili -> 3

Class 10a with deviation from lessonplan:
klassenstunde —> 1
Class 10b
Class 10c with deviation from lessonplan:
erdkunde -> 2 with 2 teachers
Common course for classes 10a,10b,10c: ethik -> 2
ethik —-> 2
religionev -> 2
religionkath -> 2
deutsch -> 2
kunst -> 2
powi —-> 2
chemie —-> 2
franzoesisch -> 3
gbili -> 3
Gymnasium
Class 5a with deviation from lessonplan: spanisch -> 1
Class 5b with deviation from lessonplan:
geschichte -> 0
gbili -> 2
Class 5c
Class 5d
Class 5e with deviation from lessonplan: biologie -> 4
Class 5f with deviation from lessonplan: biologie -> 4
Class 5g
Common course for classes 5a,5b,5g: ethik -> 2
religionev —-> 2
religionkath —> 2
Common course for classes 5c,5d,5e,5f: religionev -> 2
religionev —-> 2
religionkath -> 2
ethik -> 2
ethik —-> 2
Common course for classes 5a, 5b,5c,5d,5e,5f,59g: LRR -> 1
Class 6a with deviation from lessonplan:
spanisch -> 1
englisch -> 5
sport -> 2 with 2 teachers
Class 6b with deviation from lessonplan:
geschichte -> 0
gbili -> 2
Class 6¢
Class 6d with deviation from lessonplan:
biologie -> 2 with 2 teachers
Class 6e with deviation from lessonplan: biologie -> 4
Class 6f with deviation from lessonplan: biologie -> 4
Class 6g
Common course for classes 6a,6b, 6c,6d: religionev -> 2
religionev -> 2
ethik -> 2
ethik -> 2
religionkath -> 2
Common course for classes 6e,6f, 6g: religionev —-> 2
religionev —-> 2
ethik -> 2
religionkath -> 2
Common course for classes 6a, 6b, 6c,6d,6e: LRR -> 1
Common course for classes 6a,6b, 6c,6d,6e,6f,6g: LRR —> 1
Class 7a with deviation from lessonplan:
spanisch -> 5
sport —-> 2 with 2 teachers
Class 7b with deviation from lessonplan:
geschichte -> 0

53



423

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

powi -> 0
gbili -> 2
powibili -> 2

Class 7c with deviation from lessonplan:

geschichte -> 0
powi -> 0

gbili > 2
powibili -> 2
Class 7d

Class 7e with deviation from lessonplan: physik —-> 4

Class 7f
Class 7g

Common course for classes 7a,7b,7d,7g: religionev -> 2

religionev —-> 2
religionkath -> 2
ethik -> 2

Common course for classes 7c,7e,7f:

religionev —-> 2
religionkath -> 2
ethik -> 2

religionev —-> 2

Common course for classes 7a,7b,7c,7d,7e,7f,7g: LRR -> 1
Common course for classes 7b,7c,7d,7e,7f,7g: spanisch -> 5

spanisch -> 5
spanisch -> 5

franzoesisch -> 5
franzoesisch -> 5

latein -> 5

Class 8a with deviation from lessonplan: spanisch -> 5
Class 8b with deviation from lessonplan:

englisch -> 4 with 2 teachers

chemie -> 2 with 2 teachers
geschichte -> 0

gbili -> 2

powi -> 0

powibili -> 2

erdkunde -> 2

Class 8c

Class 8d

Class 8e with deviation from lessonplan: chemie -> 4
Class 8f with deviation from lessonplan: chemie -> 4

Class 8g

Common course for classes 8a,8b, 8c:

religionev —-> 2
religionkath -> 2
religionkath -> 2
ethik -> 2

religionev —> 2

Common course for classes 8d,8e,8f,8g: religionev -> 2

religionev -> 2
religionkath -> 2
religionkath —-> 2
ethik -> 2

ethik -> 2

Common course for classes 8b,8f, 8g:

spanisch -> 4
franzoesisch -> 4
latein -> 4

Common course for classes 8c, 8d, 8e:

spanisch -> 4
franzoesisch -> 4
latein -> 4

spanisch -> 4

spanisch -> 4

Common course for classes 8a,8b,8c,8d,8e,8f,8g: LRR —> 1
Common course for classes 8b, 8c,8d,8e,8f,8g: franzoesisch
Class 9a with deviation from lessonplan:

kunst -> 2
spanisch -> 4

Class 9b with deviation from lessonplan:

powi -> 0
geschichte -> 0
powibili -> 2
gbili -> 2
kunst -> 2

Class 9c with deviation from lessonplan: musik -> 2

-> 1
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495

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

531

Class 9e with deviation from lessonplan:

musik -> 2

mathematik -> 4 with 2 teachers
powi -> 2 with 2 teachers
Class 9f with deviation from lessonplan: musik -> 2

Common course for classes 9b, 9c, 9e, 9f:

spanisch -> 3
franzoesisch -> 3
franzoesisch -> 3
latein -> 3
franzoesisch -> 1
Common course for classes 9a, 9b, 9c, 9e, 9f:

religionev -> 2
religionev —-> 2
religionkath -> 2
religionkath —-> 2

ethik -> 2
ethik -> 2
sport -> 2

chemie -> 2
physik -> 2
informatik -> 2
ethik -> 2
latein -> 2

Class 10a with deviation from lessonplan:
mathematik -> 5 with 2 teachers
Class 10b with deviation from lessonplan:

powi -> 0

powibili -> 2 with 2 teachers
geschichte -> 0

gbili -> 3
Class 10c

Class 10e with deviation from lessonplan:
biologie -> 2 with 2 teachers

Common course for classes 10a,10b,10c, 10e:

Upper classes
Grade 12

religionkath -> 2
ethik —-> 2

ethik -> 2
erdkunde -> 2
erdkunde -> 2
informatik -> 2
informatik -> 2
spanisch -> 4
spanisch -> 3
spanisch -> 3
franzoesisch -> 3
franzoesisch -> 3
latein -> 3
darstellendes —-> 2
darstellendes —> 2
musik -> 2

kunst —-> 2

kunst -> 2

Grundkurs: sport -> 2
Grundkurs: sport -> 2
Grundkurs: sport -> 2
Leistungskurs: sport -> 5
Grundkurs: englisch -> 3
Grundkurs: englisch -> 3
Grundkurs: englisch -> 3
Leistungskurs: englisch -> 5
Grundkurs: chemie -> 3
Leistungskurs: chemie -> 5
Leistungskurs: informatik -> 5
Grundkurs: informatik -> 3
Grundkurs: erdkunde -> 2
Leistungskurs: deutsch -> 5
Grundkurs: deutsch —-> 4
Grundkurs: deutsch -> 4
Leistungskurs: mathematik -> 5

spanisch -> 3

religionev —-> 2

religionev —-> 2
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567 Grundkurs: mathematik -> 4

568 Grundkurs: mathematik -> 4
569 Grundkurs: mathematik —-> 4
570 Leistungskurs: geschichte -> 5
571 Leistungskurs: biologie -> 5
572 Grundkurs: ethik -> 3

573 Grundkurs: ethik -> 3

574 Grundkurs: religionev -> 3
575 Grundkurs: religionkath -> 3
576 Grundkurs: franzoesisch -> 3
577 Grundkurs: spanisch -> 3

578 Grundkurs: spanisch -> 3

579 Grundkurs: spanisch -> 4

580 Grundkurs: kunst -> 2

581 Grundkurs: musik -> 2

582 Grundkurs: darstellendes —> 2
583 Grundkurs: powi -> 3

584 Grundkurs: powi -> 3

585 Grundkurs: powi -> 3

586 Grundkurs: geschichte -> 3
587 Grundkurs: geschichte -> 3
588 Grundkurs: gbili -> 3

589 Grundkurs: biologie -> 3

590 Grundkurs: biologie -> 3

591 Grundkurs: physik -> 3

592 Sonstiges: TUT -> 1

593 Sonstiges: TUT -> 1

594 Sonstiges: TUT -> 1

595 Sonstiges: TUT -> 1

596 Sonstiges: TUT -> 1

597 Grade 13 : Grundkurs: sport -> 2
598 Grundkurs: sport -> 2

599 Grundkurs: sport -> 2

600 Leistungskurs: sport -> 5
601 Grundkurs: englisch -> 3

602 Grundkurs: englisch -> 3

603 Leistungskurs: englisch -> 5
604 Leistungskurs: englisch -> 5
605 Grundkurs: chemie -> 3

606 Leistungskurs: chemie -> 5
607 Leistungskurs: informatik -> 5
608 Grundkurs: erdkunde -> 2

609 Leistungskurs: deutsch -> 5
610 Grundkurs: deutsch -> 4

611 Grundkurs: deutsch -> 4

612 Leistungskurs: mathematik -> 5
613 Grundkurs: mathematik -> 4
614 Grundkurs: mathematik -> 4
615 Grundkurs: mathematik -> 4
616 Leistungskurs: geschichte -> 5
617 Leistungskurs: biologie -> 5
618 Grundkurs: ethik -> 3

619 Grundkurs: ethik -> 3

620 Grundkurs: religionev -> 3
621 Grundkurs: religionkath -> 3
622 Grundkurs: franzoesisch -> 3
623 Grundkurs: spanisch -> 3

624 Leistungskurs: spanisch -> 5
625 Grundkurs: kunst -> 2

626 Grundkurs: musik -> 2

627 Grundkurs: darstellendes -> 2
628 Grundkurs: powi -> 3

629 Grundkurs: powi -> 3

630 Grundkurs: powi -> 3

631 Grundkurs: geschichte -> 3
632 Grundkurs: geschichte -> 3
633 Grundkurs: gbili -> 3

634 Grundkurs: biologie -> 3

635 Grundkurs: biologie —-> 3

636 Grundkurs: physik -> 3

637 Sonstiges: TUT -> 1

638 Sonstiges: TUT -> 1




639 Sonstiges: TUT -> 1
640 Sonstiges: TUT -> 1
641 Sonstiges: TUT -> 1

Listing A.1: Reference Problem Specification

A.2 Realistic Constraints

1 Constraints

2 Hard Constraint:

3 Workreduction of teacher HEE = 27

4 Weak Constraint with weight 2:

5 For each teacher X in teachers with qualification ekbili

6 and each class Y in classes with subject ekbili:

7 If teacher X teaches class Y in subject ekbili,

8 then teacher X teaches class Y in subject englisch

9 Weak Constraint with weight 2:

10 For each teacher X in teachers with qualification powibili

11 and each class Y in classes with subject powibili:

12 If teacher X teaches class Y in subject powibili,

13 then teacher X teaches class Y in subject englisch

14 Weak Constraint with weight 2:

15 For each teacher X in teachers with qualification gbili

16 and each class Y in classes with subject gbili:

17 If teacher X teaches class Y in subject gbili,

18 then teacher X teaches class Y in subject englisch

19

20 Hard Constraint:

21 Assign: teacher HEEM teaches class Gymnasium 5a in subject klassenstunde, LQ
22 Hard Constraint:

23 Assign: teacher HEEM teaches class Gymnasium 5b in subject klassenstunde,LQ
24 Hard Constraint:

25 Assign: teacher Il teaches class Gymnasium 5c in subject klassenstunde,LQ
26 Hard Constraint:

27 Assign: teacher HEEM teaches class Gymnasium 5d in subject klassenstunde, LQ
28 Hard Constraint:

29 Assign: teacher Il teaches class Gymnasium 5e in subject klassenstunde,LQ
30 Hard Constraint:

31 Assign: teacher HEEM teaches class Gymnasium 5f in subject klassenstunde,LQ
32 Hard Constraint:

33 Assign: teacher HEEM teaches class Gymnasium 5g in subject klassenstunde, LQ
34 Hard Constraint:

35 Assign: teacher HEEM teaches class Gymnasium 6a in subject klassenstunde, LQ
36 Hard Constraint:

37 Assign: teacher Il teaches class Gymnasium 6b in subject klassenstunde,LQ
38 Hard Constraint:

39 Assign: teacher HEEM teaches class Gymnasium 6c in subject klassenstunde, LQ
40 Hard Constraint:

41 Assign: teacher HEEM teaches class Gymnasium 6d in subject klassenstunde, LQ
42 Hard Constraint:

43 Assign: teacher HEEM teaches class Gymnasium 6e in subject klassenstunde,LQ
44 Hard Constraint:

45 Assign: teacher HEEM teaches class Gymnasium 6f in subject klassenstunde,LQ
46 Hard Constraint:

47 Assign: teacher HEEM teaches class Gymnasium 6g in subject klassenstunde, LQ
48 Hard Constraint:

49 Assign: teacher M r teaches class Gymnasium 7a in subject klassenstunde,LQ
50 Hard Constraint:

51 Assign: teacher HEEM teaches class Gymnasium 7b in subject klassenstunde,LQ
52 Hard Constraint:

53 Assign: teacher HEEM teaches class Gymnasium 7c in subject klassenstunde, LQ
54 Hard Constraint:

55 Assign: teacher HEEM teaches class Gymnasium 7d in subject klassenstunde, LQ
56 Hard Constraint:

57 Assign: teacher Il teaches class Gymnasium 7f in subject klassenstunde,LQ
58 Hard Constraint:

59 Assign: teacher HEEM teaches class Gymnasium 7g in subject klassenstunde, LQ
60 Hard Constraint:

61 Assign: teacher HEEM teaches class Gymnasium 8a in subject klassenstunde, LQ

62 Hard Constraint:




63 Assign: teacher HEEM teaches class Gymnasium 8b in subject klassenstunde, LQ

64 Hard Constraint:

65 Assign: teacher HEEM teaches class Gymnasium 8c in subject klassenstunde, LQ

66 Hard Constraint:

67 Assign: teacher Il teaches class Gymnasium 8d in subject klassenstunde,LQ

68 Hard Constraint:

69 Assign: teacher HEEM teaches class Gymnasium 8e in subject klassenstunde, LQ

70 Hard Constraint:

71 Assign: teacher HEEM teaches class Gymnasium 8f in subject klassenstunde, LQ

72 Hard Constraint:

73 Assign: teacher HEEM teaches class Gymnasium 8g in subject klassenstunde,LQ

74 Hard Constraint:

75 Assign: teacher Nl teaches class Gymnasium 9a in subject klassenstunde,LQ

76 Hard Constraint:

77 Assign: teacher HEEM teaches class Gymnasium 9b in subject klassenstunde, LQ

78 Hard Constraint:

79 Assign: teacher M teaches class Gymnasium 9c in subject klassenstunde,LQ

80 Hard Constraint:

81 Assign: teacher HEEM teaches class Gymnasium 9e in subject klassenstunde,LQ

82 Hard Constraint:

83 Assign: teacher HEEM teaches class Gymnasium 9f in subject klassenstunde, LQ

84 Hard Constraint:

85 Assign: teacher HEEM teaches class Gymnasium 10a in subject klassenstunde, LQ
86 Hard Constraint:

87 Assign: teacher Il teaches class Gymnasium 10b in subject klassenstunde, LQ
88 Hard Constraint:

89 Assign: teacher HEEM teaches class Gymnasium 10c in subject klassenstunde, LQ
90 Hard Constraint:

91 Assign: teacher HEEM teaches class Gymnasium 10e in subject klassenstunde, LQ
92 Hard Constraint:

93 Assign: teacher HEEM teaches class Realschule 5a in subject klassenstunde, LQ
94

95 Weak Constraint with weight 2:

96 For each class Y in classes with subject klassenstunde

97 For each teacher X in all teachers

98 If teacher X teaches class Y in subject klassenstunde,

99 then teacher X teaches class Y in all subjects except LRR

100 Weak Constraint with weight 2:

101 For each class Y in classes with subject LQ

102 For each teacher X in all teachers

103 If teacher X teaches class Y in subject LQ,

104 then teacher X teaches class Y in all subjects except LRR

105 Weak Constraint with weight 2:

106 For each class Y in classes with subject LRR

107 For each teacher X in teachers with qualification deutsch:

108 If teacher X teaches class Y in subject deutsch,

109 then teacher X teaches class Y in subject LRR

110

111 Deputations

112 Deputation Oberstufe for teacher X when Workload of assignments where teacher X teaches classes
in grade 12,13 >= 7

Listing A.2: Realistic Constraints and Deputations




A.3 Survey

TeachAlloc Evaluierung

Wir haben eine Programmiersprache entwickelt, mit der die Personalplanung an Schulen
modelliert werden kann. In dieser Befragung zeigen wir lhnen kleine Beispielplanungen oder
Ausschnitte einer Planung und fragen Ihr Verstandnis der Formulierungen ab.

Wir danken lhnen dafir, dass Sie sich die Zeit nehmen, die folgenden Fragen zu
beantworten. Dies sollte maximal 15 Minuten in Anspruch nehmen. lhre Eingaben sind
selbstverstandlich anonym.

* Erforderlich

Stundentafel

Eine Stundentafel gibt an, in welchen Fachern und in jeweils wie vielen Stunden eine Klasse
einer bestimmten Klassenstufe unterrichtet werden soll.

Stundentafel Hauptschule Klassenstufe 5:
deutsch -> 5
englisch -> 5
mathematik -> 5
geschichte -> 2
klassenlehrerstunde -> 1

1. Wie viele Unterrichtsstunden Englisch
hat eine 5. Klasse im Hauptschulzweig?

*

Klassen und Kurse

In jedem Schulzweig kénnen Klassen definiert werden. Normalerweise wird ihnen die jeweilige
Stundentafel zugewiesen.

Stundentafeln
Stundentafel Hauptschule Klassenstufe 5:
deutsch -> 5
englisch -= 5
mathematik -> 5
geschichte -> 2
klassenlehrerstunde -> 1

Hauptschule
Klasse 5a

2. Wie viele Unterrichtsstunden hat Klasse 5a im Fach Geschichte? *
Markieren Sie nur ein Oval.

0
2
4
6
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Klassen und Kurse

Manche Klassen weichen von der Stundentafel aber ab.

Stundentafeln
Stundentafel Hauptschule Klassenstufe 5:
deutsch -> 5
englisch -> 5
mathematik -> 5
geschichte -> 2
klassenlehrerstunde -> 1

Hauptschule
Klasse 5b mit Abweichung von Stundentafel:
geschichte -> 4

3. Wie viele Unterrichtsstunden hat Klasse 5b im Fach Geschichte? *
Markieren Sie nur ein Oval.

0
2
4
6

Klassen und Kurse
Einzelne Kurse werden nicht nur fir Schuler einer bestimmten Klasse gegeben, sondern fur
Schiiler mehrerer Klassen.

Stundentafeln
2 Stundentafel Hauptschule Klassenstufe 5:
deutsch -> 5
englisch -> 5
mathematik -> 5
geschichte -> 2
klassenlehrerstunde -> 1

Hauptschule
Gemeinsame Kurse in Klassen 5a,5b,5c:
ethik -> 2

2 franzoesisch -> 2

4. Wie viele Unterrichtsstunden gibt es insgesamt im Fach Ethik? *
Markieren Sie nur ein Oval.

0
2
4
6

Klassen und Kurse

In jedem Schulzweig konnen Klassen definiert werden. Normalerweise wird ihnen die jeweilige
Stundentafel zugewiesen. Manche Klassen weichen von der Stundentafel aber ab.

Einzelne Kurse werden nicht nur fir Schuler einer bestimmten Klasse gegeben, sondern fur
Schiiler mehrerer Klassen.
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Stundentafeln
Stundentafel Hauptschule Klassenstufe 5:
deutsch -> 5
englisch -> 5
mathematik -> 5
geschichte -> 2
klassenlehrerstunde -> 1

Hauptschule
Klasse 5a

Klasse 5b mit Abweichung von Stundentafel:
geschichte -> 4

Klasse 5¢ mit Abweichung von Stundentafel:
geschichte -> @
geschichte bilingual -> 2

Kurse in Klassen 5a+5b+5c:
ethik -> 2
franzoesisch -» 2

5. Wie viele Unterrichtsstunden gibt es insgesamt im Fach Deutsch? *
Markieren Sie nur ein Oval.
10
15
20

Lehrer

Lehrer sind entweder dem Gymnasial- oder Haupt-/Realschuldienst zugeordnet. lhre
Qualifikationen besagen, welche Facher sie in welchen Schulzweigen unterrichten dirfen.
Gymnasiallehrer dirfen ihre Facher auch grundséatzlich im Zweig Haupt-/Realschule lehren.
Die zu unterrichtenden Stunden sind gesetzlich und vertraglich individuell festgelegt.

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :

Gymnasium: deutsch,ethik
Pflichtstunden : 26

Lehrer Dittrich
Dienst : HR
Fachqualifikation :
Haupt- /Realschule: geschichte,englisch,geschichte_bilingual
) Pflichtstunden : 20

Lehrer Genscher
Dienst : HR
Fachqualifikation :
Haupt- /Realschule: mathematik,englisch
Pflichtstunden : 25

Lehrer Tauber
2 Dienst : GYM
22 Fachqualifikation :
Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26
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6. Welche Facher unterrichtet Lehrer Genscher? *
Wéhlen Sie alle zutreffenden Antworten aus.
Deutsch
Englisch
Geschichte

Mathematik

7. Welche Facher kdnnen im Gymnasialzweig liberhaupt unterrichtet werden? *
Waéhlen Sie alle zutreffenden Antworten aus.

Deutsch
Englisch
Mathematik
Franzoésisch

Ethik

Lehrer und Klassen

Lehrer sind entweder dem Gymnasial- oder Haupt-/Realschuldienst zugeordnet. |hre
Qualifikationen besagen, welche Facher sie in welchen Schulzweigen unterrichten dirfen.
Gymnasiallehrer dirfen ihre Facher auch grundséatzlich im Zweig Haupt-/Realschule lehren.
Die zu unterrichtenden Stunden sind gesetzlich und vertraglich individuell festgelegt.

Hauptschule
Klasse 5a

Klasse 5b mit Abweichung von Stundentafel:
geschichte -> 4

Gymnasium
Klasse 7a

Klasse 7b

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :
Gymnasium: deutsch,ethik
Pflichtstunden : 26

8. Kann Lehrer Ackermann Klasse 5a in Deutsch unterrichten? *
Markieren Sie nur ein Oval.

ja

nein

Lehrer und Klassen

Lehrer sind entweder dem Gymnasial- oder Haupt-/Realschuldienst zugeordnet. lhre
Qualifikationen besagen, welche Facher sie in welchen Schulzweigen unterrichten durfen.

Gymnasiallehrer dirfen ihre Facher auch grundsatzlich im Zweig Haupt-/Realschule lehren.

Die zu unterrichtenden Stunden sind gesetzlich und vertraglich individuell festgelegt.
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Hauptschule
Klasse 5a

Klasse 5b mit Abweichung von Stundentafel:
geschichte -> 4

Gymnasium
Klasse 7a

Klasse 7b

Lehrer
Lehrer Dittrich
Dienst : HR
Fachqualifikation :
Haupt- /Realschule: geschichte,englisch,geschichte_bilingual

Pflichtstunden : 20

9. Kann Lehrer Dittrich Klasse 7b in Geschichte unterrichten? *
Markieren Sie nur ein Oval.

ja

nein

Lehrer und Klassen

Lehrer sind entweder dem Gymnasial- oder Haupt-/Realschuldienst zugeordnet. lhre
Qualifikationen besagen, welche Facher sie in welchen Schulzweigen unterrichten dirfen.
Gymnasiallehrer dirfen ihre Facher auch grundsatzlich im Zweig Haupt-/Realschule lehren.
Die zu unterrichtenden Stunden sind gesetzlich und vertraglich individuell festgelegt.

Hauptschule
Klasse 5a

Klasse 5b mit Abweichung won Stundentafel:
geschichte -> 4

Gymnasium
Klasse 7a

Klasse 7b

Lehrer
Lehrer Genscher
Dienst : HR
Fachqualifikation :
Haupt- /Realschule: mathematik,englisch
Pflichtstunden : 25

10. Kann Lehrer Genscher Klasse 5b in Deutsch unterrichten? *
Markieren Sie nur ein Oval.
ja
nein
Lehrer und Klassen

Lehrer sind entweder dem Gymnasial- oder Haupt-/Realschuldienst zugeordnet. |hre
Qualifikationen besagen, welche Facher sie in welchen Schulzweigen unterrichten dirfen.

Gymnasiallehrer dirfen ihre Facher auch grundsatzlich im Zweig Haupt-/Realschule lehren.

Die zu unterrichtenden Stunden sind gesetzlich und vertraglich individuell festgelegt.
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Hauptschule
Klasse 5a

Klasse 5b mit Abweichung von Stundentafel:
geschichte -> 4

Gymnasium
Klasse 7a

Klasse 7b

Lehrer
Lehrer Tauber
Dienst : GYM
Fachqualifikation :

Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26

11. Kann Lehrer Tauber Klasse 5a in Deutsch unterrichten? *
Markieren Sie nur ein Oval.
ja

nein

Vorgaben

Damit nicht nur irgendeine Zuweisung von Lehrern zu Klassen gefunden wird, sondern eine
moglichst gute, konnen auch Vorgaben fir den Lésungsprozess angegeben werden.

Harte Vorgaben mussen befolgt werden. Ist das nicht mdglich, wird ein Fehler gemeldet.
Ein Gutekriterium ist die Abweichung von den Pflichtstunden eines Lehrers.

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :
Gymnasium: deutsch,ethik
Pflichtstunden : 26

Vorgaben
Harte Vorgabe:
Uberstunden von Lehrer Ackermann <= 1
Stundenreduzierung von Lehrer Ackermann <= 3

12. Wie viele Stunden muss Lehrer Ackermann mindestens unterrichten? *

Markieren Sie nur ein Oval.
0
23
24
25
26
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13. Wie viele Stunden muss Lehrer Ackermann héchstens unterrichten? *
Markieren Sie nur ein Oval.

26
27
28
29

Vorgaben

Damit nicht nur irgendeine Zuweisung von Lehrern zu Klassen gefunden wird, sondern eine
moglichst gute, kdnnen auch Vorgaben fir den Losungsprozess angegeben werden.

Harte Vorgaben miissen befolgt werden. Ist das nicht méglich, wird ein Fehler gemeldet.
Ein Gutekriterium ist die Abweichung von den Pflichtstunden eines Lehrers.

Lehrer
Lehrer Tauber
Dienst : GYM
Fachqualifikation :
Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26

Vorgaben
Harte Vorgabe:
Uberstunden von Lehrer Tauber = 0

14. Wie viele Stunden muss Lehrer Tauber mindestens unterrichten? *
Markieren Sie nur ein Oval.

0
25
26

Vorgaben

Damit nicht nur irgendeine Zuweisung von Lehrern zu Klassen gefunden wird, sondern eine
moglichst gute, kdnnen auch Vorgaben fur den Losungsprozess angegeben werden.
Harte Vorgaben mussen befolgt werden. Ist das nicht mdglich, wird ein Fehler gemeldet.

Lehrer
2 Lehrer Ackermann
Dienst : GYM
Fachqualifikation :
Gymnasium: deutsch,ethik
Pflichtstunden : 26

Vorgaben
Harte Vorgabe:
Verbiete: Lehrer Ackermann unterrichtet Unterricht ethik

15. Kann Lehrer Ackermann eine Klasse in Ethik unterrichten? *
Markieren Sie nur ein Oval.
ja

nein
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Vorgaben

Damit nicht nur irgendeine Zuweisung von Lehrern zu Klassen gefunden wird, sondern eine
moglichst gute, kdnnen auch Vorgaben fir den Losungsprozess angegeben werden.
Harte Vorgaben miissen befolgt werden. Ist das nicht mdéglich, wird ein Fehler gemeldet.

1 Lehrer

Lehrer Dittrich
Dienst : HR
5 Fachqualifikation

6 Haupt- /Realschule: geschichte,englisch,geschichte_bilingual
/ Pflichtstunden : 20

9 \Vorgaben
10 Harte Vorgabe:

Anzahl an Zuweisungen in denen Lehrer Dittrich Unterricht geschichte unterrichtet >= 2

16. Wie viele Klassen unterrichtet Lehrer
Dittrich mindestens im Fach Geschichte?

*

Regeln

Vorgaben koénnen nicht nur fir bestimmte Lehrer oder Klassen gelten, sondern z.B. fiir alle
Lehrer mit einer bestimmten Eigenschaft.

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :

Gymnasium: deutsch,ethik
Pflichtstunden : 26

Lehrer Dittrich
Dienst : HR
Fachqualifikation :

Haupt - /Realschule: geschichte,englisch,geschichte_bilingual
2 Pflichtstunden : 20

Lehrer Genscher
Dienst : HR
Fachqualifikation :
Haupt- /Realschule: mathematik,englisch
Pflichtstunden : 25

Lehrer Tauber
Dienst : GYM
Fachqualifikation :
Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26

Vorgahen
Harte Vorgabe:
Fiir jeden Lehrer X aus Alle Lehrer gilt:
Uberstunden von Lehrer X <= 2
Stundenreduzierung von Lehrer X <= 4

Harte Vorgabe:

Fir jeden Lehrer X aus Lehrer mit Qualifikation englisch gilt:
Uberstunden von Lehrer X <= 1
Stundenreduzierung von Lehrer X <= 2
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17. Fur welche Lehrer gilt die harte Vorgabe aus Zeile 27? *
Waéhlen Sie alle zutreffenden Antworten aus.

Ackermann
Dittrich
Genscher

Tauber

18. Fiir welche Lehrer gilt die harte Vorgabe aus Zeile 32? *
Waéhlen Sie alle zutreffenden Antworten aus.

Ackermann
Dittrich
Genscher

Tauber

Weiche Vorgaben

Weiche Vorgaben werden wenn mdglich befolgt. Bei einem Widerspruch zwischen zwei
weichen Vorgaben hat die mit hoherer Gewichtung Vorrang.

Hauptschule

Klasse 5c mit Abweichung von Stundentafel:
geschichte -> @
geschichte_bilingual -= 2

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :

Gymnasium: deutsch,ethik
Pflichtstunden : 26

Lehrer Dittrich
Dienst : HR
Fachqualifikation :

Haupt - /Realschule: geschichte,englisch,geschichte_bilingual
Pflichtstunden : 20

Lehrer Genscher
Dienst : HR
) Fachqualifikation :
2 Haupt - /Realschule: mathematik,englisch
) Pflichtstunden : 25

Lehrer Tauber
Dienst : GYM
Fachqualifikation :

Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26

Vorgaben
32 Weiche Vorgabe mit Gewichtung 5:
Setze: Lehrer Genscher unterrichtet Klasse Hauptschule 5c in Unterricht englisch

Weiche Vorgabe mit Gewichtung 10:
Fir jeden Lehrer X aus Lehrer mit Qualifikation geschichte_bilingual gilt:
Wenn Lehrer X Klasse 5c in Unterricht geschichte_bilingual unterrichtet,
dann unterrichtet Lehrer X Klasse 5c in Unterricht englisch
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19. Welche Vorgabe hat bei einem Widerspruch Vorrang? *
Markieren Sie nur ein Oval.

Vorgabe in Zeile 32
Vorgabe in Zeile 35

20. Welcher Lehrer unterrichtet Klasse 5c in Englisch? *
Markieren Sie nur ein Oval.

Ackermann
Dittrich
Genscher

Tauber

Mehrere Vorgaben

Eine Lésung enthélt die Zuweisungen der Lehrer zu Unterrichtseinheiten. Unten sehen sie die
addierten Unterrichtsstunden fiir einzelne Facher aus den Zuweisungen einer Lésung fur vier
Lehrer.

Lehrer
Lehrer Ackermann
Dienst : GYM
Fachqualifikation :

Gymnasium: deutsch,ethik
Pflichtstunden : 26

Lehrer Dittrich
Dienst : HR
Fachqualifikation :
Haupt - /Realschule: geschichte,englisch,geschichte bilingual
Pflichtstunden : 20

Lehrer Genscher
Dienst : HR
Fachqualifikation :
Haupt - /Realschule: mathematik,englisch
Pflichtstunden : 25

Lehrer Tauber
Dienst : GYM
Fachqualifikation :
Gymnasium: franzoesisch,deutsch
Pflichtstunden : 26

Vorgaben
Weiche Vorgabe mit Gewichtung 10:
Fir jeden Lehrer X aus Alle Lehrer gilt:
Uberstunden von Lehrer X <= 1

Harte Vorgabe:
Unterrichtsstunden in denen Lehrer Dittrich Unterricht englisch unterrichtet >= 10

Harte Vorgabe:
Stundenreduzierung von Lehrer Tauber >= 2

Harte Vorgabe:
Verbiete: Lehrer Ackermann unterrichtet Unterricht ethik
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Losung

Lehrer\Fach [englisch  deutsch mathematik _jethik [franzoesisch Jgeschichte _[Summe 26]
IAckermann 24 2)

[Dittrich 21] 3) 25)
iGenscher 10| 11} 21]
Tauber 12 12 24)

21. Kreuzen Sie die eingehaltenen Vorgaben an. *
Wéhlen Sie alle zutreffenden Antworten aus.

|| Vorgabe in Zeile 27
| | Vorgabe in Zeile 31
| | Vorgabe in Zeile 34
| | Vorgabe in Zeile 37

AbschlieRende Fragen

22. Wie alt sind Sie? *

23. Haben Sie jemals eine Programmiersprache selbst benutzt? Es zdhlt jedwede
Erfahrung. *

Markieren Sie nur ein Oval.

24. Wenn ja, mit welchen Programmiersprachen haben Sie bereits Erfahrungen
gesammelt?

25. Sind Sie schon einmal mit den Planungen zur Unterrichtsverteilung beschéftigt
gewesen? *

Markieren Sie nur ein Oval.
@y :

() nein

69



	List of Tables
	List of Figures
	List of Listings
	Introduction
	Preliminaries
	Problem Domain Teacher-Course-Assignment
	Problem Formulations
	Solving Technology
	Solving Strategies

	Specification Language
	Problem Specification Syntax
	Spoofax Design

	Problem Interpretation
	Domain Object odel
	Problem Formulation
	Constraint architecture

	Solving Process Design
	Concistency Check
	Efficiency iteration
	Optimization with Local Search

	Case Study
	Problem Data
	Hard and Weak Constraints
	Realistic Problem Instance
	Summary

	User Evaluation
	Related and Future Work
	Conclusion
	Bibliography
	Appendix
	Problem Specification
	Realistic Constraints
	Survey


