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Abstract

Scala is a general-purpose programming language combining functional and object-oriented
paradigms with type inference in a rich syntax and good support for DSL (domain-specific
language) embedding. Scala’s support for XML (Extensible Markup Language) however is
outstanding, as it is build into the compiler and allows to directly use XML syntax in regular Scala
source code. The embeddings of other DSLs in contrast are bound to existing Scala syntax, unless
they are implemented as a modification of the Scala compiler. We argue that Scala should support
user-defined syntactic extensions in form of desugarings to allow programmers the embedding
of other DSLs with their respective direct syntaxes. For this purpose we present SugarScala,
an instantiation of the Sugar* framework, which enables syntactic extensibility for Scala. The
basis for SugarScala is an extensible context-free grammar for Scala in SDF2 (Syntax Definition
Formalism). This grammar is also part of our work and we evaluate it independently from
SugarScala with the testing capabilities of the Spoofax Language Workbench and a self-developed
batch testing utility. We show the suitability of SugarScala with case studies for XML and EScala.
The last part of this work investigates the possibility to directly integrate desugarings into the
Scala compiler and yields a promising approach.

Inhaltsangabe

Scala ist eine Allzweck-Programmiersprache, die funktionale- und objektorientierte Paradigmen
in einer reichhaltigen Syntax mit Typinferenz vereint und sich gut zur Einbettung von DSLs (do-
mänenspezifischen Sprachen) eignet. Die Unterstützung für XML (Extensible Markup Language)
stich dabei jedoch besonders hervor, da diese in den Scala-Compiler integriert ist und die direkte
Verwendung von XML-Syntax in regulärem Scala-Quelltext ermöglicht. Im Gegensatz dazu sind
die Einbettungen anderer DSLs an die existierende Scala-Syntax gebunden, außer diese sind
durch eine Modifikation des Scala-Compilers implementiert. Wir behaupten, dass Scala benutzer-
definierte syntaktische Erweiterungen in Form von Desugarings unterstützen sollte, um damit
die Einbettung anderer DSLs mit deren direkten Syntaxen zu ermöglichen. Dazu präsentieren
wir SugarScala, eine Instantiierung des Sugar*-Frameworks, welche syntaktische Erweiterbarkeit
für Scala ermöglicht. Die Grundlage für SugarScala ist eine erweiterbare kontextfreie Grammatik
für Scala, formuliert in SDF2 (Syntax Definition Formalism). Diese Grammatik ist auch ein Teil
unserer Arbeit und wird von uns unabhängig von SugarScala mit den Testmöglichkeiten der
Spoofax Language Workbench und einem selbstentwickelten Batch-Testwerkzeug evaluiert. Wir
zeigen die Eignung von SugarScala anhand von Fallbeispielen für XML und EScala. Der letzte Teil
dieser Arbeit untersucht die Möglichkeit Desugarings direkt in den Scala-Compiler zu integrieren
und liefert dabei einen aussichtsreichen Ansatz.
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1 Introduction

Scala [25] is a rather young programming language, influenced by object-oriented, as well as
functional programming paradigms. It runs on the Java Virtual Machine (JVM) and is bytecode-
compatible to Java, which allows seamless interoperability between Scala and Java. Scala is an
acronym for “Scalable Language” — according to the designer of Scala, Martin Odersky, ”this
means that Scala grows with you“1.

One example for such growth may be Scala’s direct support for eXtensible Markup Language
(XML) [5] literals in the code. It is possible to enter XML-trees directly into the code, intertwined
with Scala expressions, as one would expect from a template engine of choice. This support is
implemented directly into the Scala compiler, which maintains an own XML-mode and rules for
the scanning of XML expressions [24]. The Scala compiler translates the parsed XML expressions
into instantiations of regular Scala objects in the Scala Standard XML library. This way XML
literals can be used in pattern matching and procedurally manipulated like any other Scala
object.

After parsing the XML expressions are desugared into objects of a provided XML library, which al-
lows one to use them as regular Scala objects, including pattern matching support and procedural
manipulation of the resulting XML tree.

This effort to support XML is probably motivated by the affinity of the Java ecosystem for XML.
Much in the Java world is configured or persisted in XML. One prominent example being Ant [22],
a Java build tool, which uses platform independent XML files to describe the build process of
software artifacts. Another being Maven2, which further allows to describe build life cycles and
dependency management.

As nice as XML might be in respect to extensibility and standard-conforming tool support, it is also
criticized to be verbose and not-well suited to be read and especially written by humans. So there
exist alternatives for configuration files and persistence, ranging from simple key-value-paired
formats like INI-files3 or *.properties files, to more elaborate tree-based forms as JSON [9] or
YAML [1] which are favoured in rapid web development frameworks as Ruby on Rails4 or the
Python equivalent Django5. It would be nice if Scala had the same syntactical support for these
formats as for XML, but it is unlikely that each of this formats gets its own lexical mode in the
Scala compiler.

At this point the question arises: why should XML be supported on compiler level if these
other DSLs probably never will? In the end the support for XML is only syntactic sugar for the
underlying library. Dedicating a whole mode for the parser, just to have support for syntactic
XML, seems excessive. Instead of a special XML mode, there should be means to generally define
syntactic extensions for the language. XML support could then be implemented based on these

1 http://scala-lang.org/what-is-scala.html
2 http://maven.apache.org/
3 http://en.wikipedia.org/wiki/INI_file
4 http://rubyonrails.org
5 https://www.djangoproject.com/
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means, as well as support for any of the other mentioned configuration and serialization formats.
Support for syntactic extensions would allow to better separate the definition of core Scala syntax
and the parsing of possible DSLs. It would additionally follow Scala’s goal to grow with its
users.

The term syntactic extensibility in this work refers to the ability to define syntactic extensions for
an already existing syntax. This syntax is also referred to as base syntax. A syntactic extension
specifies three things: (1) arbitrary new context-free syntax, (2) where this new syntax may be
used in the base syntax and (3) how the new syntax can be expressed with help of the base syntax.
New syntax which can be expressed with the base syntax but is easier to read and comprehend
is called syntactic sugar. The process of translating the new syntax to the base syntax is called
desugaring.

It is the purpose of this work to investigate the possibilities of syntactic extensibility for Scala. For
this purpose we provide a base syntax for Scala in form of an extensible context-free grammar in
SDF26. We test this grammar for conformity with Scala v2.10.3, excluding support for XML and
Unicode, with two different methods. The first method tests the parse results of 370 selected
syntax fragments against certain expectations. The second method tests the successful and
unambiguous parsability of the 1531 Scala source files in the src directory of the Scala v2.10.3
repository with a self-developed batch testing utility7.

We further developed SugarScala8 as instantiation of the Sugar* framework using our grammar.
Two case studies for XML9 and EScala10 show how syntactic extensibility for Scala can be
achieved with the help of SugarScala. The last part of this work investigates the feasibility to
integrate syntactic extensibility into the Scala compiler11 and shows a promising approach.

The structure of the remaining document is as follows: Chapter 2 discusses the definition of an
extensible base syntax for Scala in form of a context-free grammar definition in SDF. Chapter 3
presents SugarScala as instantiation of the Sugar* framework and shows how it can be used to
practically define syntactic extensions for Scala to support XML and EScala. Chapter 4 investigates
how syntactic extensibility could be included in the Scala compiler and delivers a promising
approach. Chapter 5 compares this work to related work and identifies it as a useful complement
rather than a competitor. Chapter 6 concludes the success of this work and provides a look-out
to future work.

6 https://github.com/fjak/scala-grammar
7 https://github.com/fjak/spoofax-batchtest
8 https://github.com/fjak/lang-scala
9 https://github.com/fjak/xml-casestudy
10 https://github.com/fjak/escala-casestudy
11 https://github.com/fjak/sugsc
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2 Scala Grammar in SDF

To be able to implement syntactic extensions, one first needs means to describe these syntactic
extensions. But furthermore one needs a base syntax which can actually be extended. Preferably
the language to describe the base syntax and the language to describe the syntactic extensions
should be the same.

A common choice to describe syntax is in the form of a context-free grammar. The Backus-Naur
Form is a well-known notation to express context-free grammars and is commonly used in an
extended form with better expressiveness, which is called Extended Backus-Naur Form (EBNF).
A context-free grammar is however not sufficant to describe one definit parser for a syntax, yet
alone because it does not define the output of the parser.

The tools used to derive a parser for a grammar are called parser generators. They usually use a
formalism akin to EBNF, but take extra input to further specify the behaviour of the resulting
parser. Depending on the kind of parser to generate the context-free grammar might also need to
fulfill additional constraints. Parser generators for LL(k) or LL(*) parsers for example can usually
not handle left recursive grammars.

With regard to the future definitions of the syntactic extensions we decided to use SDF as our
tool of choice to specify the Scala base syntax. We provide an introduction to SDF and discuss
its advantages in the next Section (2.1). This introduction also helps to better understand the
encountered problems and the proposed solutions in Section 2.2. The resulting grammar is
evaluated in Section 2.3 and fully provided in Appendix A.

2.1 Introduction to SDF

The Syntax Definition Formalism (SDF) [17] is a parser generator for context-free grammars.
It has its focus on maintainability and extensibility of the grammars, which motivates some of
its concepts and is a distinction to well-known parser generators like ANTLR, yacc or bison. SDF
generates a scannerless generalized left-to-right bottom-up parser (SGLR) [33]. This kind of
parser can handle all context-free grammars, even those including left recursive productions.
This property allows authors to focus on providing a concise grammar, rather than tuning it
towards compatibility for the generated parser. As the parser is scannerless, SDF grammars must
also specify the lexical syntax. This requirement together with the generalization may lead to
ambiguous parse results – parse forests – which need disambiguation to be reduced to unam-
biguous parse trees [32]. The disambiguation concepts used by SDF are production priorities,
productions rejects, preference attributes and follow restrictions (look-aheads). Additionally the
grammars can be split into modules, which, together with renamings, makes them composable.

The initial proposal and design for SDF dates back to the year 1986. It was redesigned in 1997
to SDF2 [34] to unify lexical and context-free syntax, amongst other things. At the time of this
writing SDF is in transition to SDF3. The version used in this work is tailored towards SDF2
and deployed as part of the Spoofax Language Workbench [20]. Spoofax is based on Eclipse

7



1 module Contacts

2

3 imports
4 ContactsLexical [CONTACT-ID => ID]

5

6 exports
7

8 context-free start-symbols
9 Contact

10

11 context-free syntax
12 "contact" ID "{" {Data ","}* "}" -> Contact {cons("Contact")}
13 "name" ID+ -> Name {cons("Name")}
14 Modifier? "alias" ID+ -> Alias {cons("Alias")}
15 "private" -> Modifier {cons("Private")}
16 Name -> Data

17 Alias -> Data

Listing 2.1: Contacts.sdf – Definition of the Contacts module

and bundles SDF with a SGLR parser implemented in Java (JSGLR). The result of the language
definition in SDF is not directly an executable parser, but a parse table, which can be used by
JSGLR to create an abstract syntax tree (AST) in the ATerm format.

2.1.1 Contacts Language

We introduce SDF with a simple artificial language Contacts. The language is defined in two
modules Contacts and ContactsLexical. The modules are defined in their own files, Contacts.sdf
and ContactsLexical.sdf, respectively.

Modules in SDF are defined with the keyword module followed by the name of the module. All
following statements until another module or the end of the file are then part of the module. A
module can import sorts from other modules and can export start-symbols, lexical and context-
free syntax. The imports keyword followed by module names denotes that all sorts of the
named modules are imported into the current module. The imported sorts from a module can be
renamed by providing a mapping in brackets behind the module name. All statements after the
exports keyword are exported from the module and may be imported in other modules. Sorts
listed after context-free start symbols are possible start symbols for the defined grammar.

Lexical and context-free syntax is defined with the help of productions after the keywords lexical
syntax and context-free syntax, respectively. The general form of a production is:

metasyntax -> sort {attributes}

The metasyntax is a composition of SDF symbols. The sort is the name of the production and
semantically comparable to a non-terminal in terms of grammar definitions. The attributes are a
set of values or keywords to influence the derivation of the abstract syntax tree.

The Contacts module is defined in Listing 2.1. It has the name Contacts and imports all sorts
from the ContactsLexical module. The import maps the sort CONTACT-ID from the ContactsLexical
module to the local name ID. The module exports the context-free start symbol Contact and six

8 2. Scala Grammar in SDF



[]

Name Alias

[]

"John" "Doe"

[]

"JonnyBoy"

"johndoe"

Contact

Some

Private

Figure 2.1.: Parse tree for the johndoe contact input

context-free syntax productions for the five different sorts Contact, Alias, Name, Modifier and
Data.

The metasyntax in the production for the Contact sort is composed of five symbols: "contact",
ID, "{", {Data ","}* and "}". Symbols in quotation marks like "contact" are called literals. They
require each character inside the quotations marks to appear in exactly that order in the input.
Literals only consisting of letters are usually keywords and are automatically marked to be
highlighted by Spoofax. Simple identifiers like ID reference sorts and their respective productions.
{Data ","}* is a special regular expression symbol. It is equivalent to the repetition of the Data

sort zero or more times separated by the "," literal. Using a + instead of the * would require the
Data sort to appear at least once. Writing the symbols one after another is an implicit sequence
and requires all symbols to appear in this order for the production to match with the input.

The characters *, + and ? have the same meaning as in regular expressions and are quantifiers
for the previous symbol. The Modifier? symbol denotes an optional appearance of the Modifier

sort. Similarly does ID+ denote the appearance of the ID sort at least once. Multiple productions
for the same sort are alternatives for this sort, as it is the case with the Data sort.

The influence of the cons attribute for the derivation of a abstract syntax tree is best described
with the help of a sample input and the resulting abstract syntax tree. The following input will
result in the AST shown in Figure 2.1:

contact johndoe {
  name John Doe,
  private alias JonnyBoy
}

The ATerm notation for that abstract syntax tree is the following:
Contact("johndoe", [Name(["John", "Doe"]), Alias(Some(Private()), ["JonnyBoy"])])

2.1. Introduction to SDF 9



1 module ContactsLexical

2

3 exports
4

5 lexical syntax
6 "alias" -> CONTACT-KEYWORD

7 "contact" -> CONTACT-KEYWORD

8 "name" -> CONTACT-KEYWORD

9 "private" -> CONTACT-KEYWORD

10 [a-zA-Z]+ -> CONTACT-ID

11 CONTACT-KEYWORD -> CONTACT-ID {reject}
12 [\ \t\n\r] -> LAYOUT
13

14 lexical restrictions
15 CONTACT-ID -/- [a-zA-Z]

16

17 context-free restrictions
18 LAYOUT? -/- [\ \t\n\r]

Listing 2.2: ContactsLexical.sdf – Definition of the module ContactsLexical

The cons attribute specifies a constructor for a production. If the parser uses this production then
the constructor is used to create a new node in the abstract syntax tree. This node is also called
constructor application and often just abbreviated as application. The arity of a constructor is the
number of non-literal symbols in the production. It is always equal to the number of children in
the application. Used optional symbols are wrapped in the Some/1 constructor; unused optional
symbols are represented with the help of the None/0 constructor. The notation $cons/$n denotes
the constructor with the name $cons and the arity of $n. Applications have the ATerm format
$cons($c1, $c2, ...). They are always written with the parentheses even if they have an arity of
zero, as can be seen with the Private/0 application. Both productions for the Data sort have no
constructor attribute and thus do not introduce any new nodes in the abstract syntax tree even if
used by the parser.

Literals from the productions do not appear in the abstract syntax tree. They can be derived from
the application as long as the constructor and its arity are unique for one production. String
literals in the abstract syntax tree represent parse results of lexical productions. The ATerm
notation further represents lists as comma-separated subnodes in between brackets. The use
of * and + symbols in a production will always result in a list node in the AST, even if the list is
empty.

The ContactsLexical module is defined in Listing 2.2. As the name suggests it defines the lexical
syntax for the Contacts language. The first production for the CONTACT-ID sort uses a character
group symbol, denoted by brackets. Character group symbols resemble the same functionality
as bracket expressions in regular expressions: They define a set of characters of which one
may appear at that position. Together with the + quantifier the character group symbol in the
mentioned production defines a CONTACT-ID to be one or more letters.

The second production for CONTACT-ID uses the reject attribute. Productions with the reject
attribute are adequately called reject productions. They have the contrary semantics to regular
productions. Whereas a regular production increases the possible derivations for a sort, the reject
production decreases the possible derivations for a sort. The input alias is a valid derivation

10 2. Scala Grammar in SDF



for CONTACT-ID according to the first production. The reject production however rejects all
derivations of CONTACT-KEYWORD in CONTACT-ID position. This way "alias", "name" and "private"
may not be used as CONTACT-ID. Rejecting keywords as identifiers is a common pattern in formal
language design to avoid confusion for the user of the language and make regular expression
based syntax highlighting easier.

The lexical LAYOUT sort has a special role in SDF. It specifies derivations which are only used
to layout the code and help a human reader to better understand the code. Commonly these
derivations are comments or characters used for indentation and newlines. Derivations from
LAYOUT will not appear in the abstract syntax tree. The LAYOUT sort is transparently inserted
with a ? quantifier between other symbols in context-free syntax productions, but not in lexical
syntax productions. This is actually the main distinction between context-free and lexical syntax.
Without LAYOUT the johndoe example would need to written as the following, as no whitespace
were allowed:

contactjohndoe{nameJohnDoe,privatealiasJonnyBoy}

Another important concept of SDF are follow restrictions. They can be defined for lexical
or context-free symbols after the lexical restrictions or context-free restrictions keywords,
respectively. The general form of a restriction is $lhs -/- $rhs, where $lhs is a list of symbols
and $rhs is one or more character groups separated by dots. A restriction does not allow a
derivation of any of the symbols on the left hand side to be followed by the characters from the
right hand side. As of this property restrictions can be used to enforce a longest-match policy on
lexical productions.

The lexical restriction on CONTACT-ID does not allow a CONTACT-ID to be followed by letters.
This is necessary to ensure an unambiguous parse result for a list of CONTACT-ID as used
in the productions for Name and Alias. Without the restriction the input jon parsed by the
symbol CONTACT-ID+ would have the ambiguous results ["jon"], ["jo", "n"], ["j", "on"] and
["j", "o", "n"] as it would not be clear where one identifier ends and where the next one starts.
With the restriction however only the result ["jon"] is valid, as all others are followed by letters.

2.1.2 Ambiguity and Disambiguation

Another important aspect of SDF is the disambiguation of the provided grammars and the
resulting abstract syntax trees. Consider the following simple grammar for arithmetic infix
expressions:

int = ("1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"), {? any digit ?}

op = "+" | "-" | "*" | "/"

expr = int | expr, op, expr

A naive translation to SDF, which lacks any form of disambiguation, is given in Listing 2.3. The
approach is straight-forward: The lexical syntax only consists of integers, here named INT, which
must start with a digit from one to nine and then may be followed by an arbitrary number of
digits. The only other lexical production is LAYOUT to allow whitespace in the context-free syntax.
The start symbol of the grammar is Expr. An Expr is inductively definied to be either an INT, or
of the form Expr OP Expr, where OP is replaced by the respective operator and the constructor
for the node is named accordingly.

2.1. Introduction to SDF 11



module Arithmetics

exports

lexical syntax
[\ \t\n\r] -> LAYOUT
[1-9] [0-9]* -> INT

context-free start-symbols
Expr

context-free syntax
INT -> Expr

Expr "+" Expr -> Expr {cons("Plus")}
Expr "-" Expr -> Expr {cons("Minus")}
Expr "*" Expr -> Expr {cons("Mult")}
Expr "/" Expr -> Expr {cons("Div")}

Listing 2.3: Ambiguous arithmetic expressions

left, right: The provided grammar would be able to parse the expressions 42, 23+42, 13 * 23

and 1ê/ê2 unambiguously. But the expression 1 + 2 + 3 introduces an ambiguity. Both parse
results Plus(1, Plus(2, 3)) and Plus(Plus(1, 2), 3) are valid according to the grammar.
This problem is well-known as the associativity of operators. The first parse result is called
right-associative because the production is recursively used on the right-hand sort. The other is
analogously called left-associative. Figure 2.2 visualizes the two parse results as trees to better
illustrate the issue.

SDF has direct support to express the associativity of operator productions to avoid these kind of
ambiguities. For this purpose the attributes left or right can be added to the affected productions
which declares the production as left- or right-associative, respectively. So the production

Expr "+" Expr -> Expr {cons("Plus"), left}

is the corrected and unambiguous left-associative version for the plus operator.

prefer, avoid: Other disambiguation attributes SDF supports are avoid and prefer. Consider the
following productions to introduce a typical if-then-else construct:

"if" Expr "then" Expr -> Expr {cons("If")}
"if" Expr "then" Expr "else" Expr -> Expr {cons("IfElse")}

These productions introduce the infamous dangling else problem. The problem gets immanent
when trying to parse the following input:

if c then

if ... then ...

else e

The indentation reflects the way the programmer expects the given code to parse: The outer
if-else guards the inner if. If c is not true then e is executed. This indentation is however not
expressed in the grammar and the input is ambiguous. A different indentation for the input
illustrates the alternative parse result:

12 2. Scala Grammar in SDF



Plus

Plus 1

2 3

(a) Right associative

Plus

Plus 3

1 2

(b) Left associative

Figure 2.2.: Ambiguous parse results for expression 1 + 2 + 3

if c then

if ... then ...

else e

In this case the outer simple if guards the inner if-else. If c is not true then nothing is executed.
In summary it is not clear if the dangling else should be associated with the inner or the outer
if. The attributes avoid and prefer help to disambiguate this problem. As the names suggest a
production flagged with avoid or prefer is avoided or preferred over another possible production,
respectively. Adding the prefer attribute to the IfElse production reflects the intent of the first
indentation as the if-else is preferred over the simple if. Adding prefer to the attributes of If
reflects the intent of the second indentation. Alternatively avoid could be added to the opposite
production to achieve the same result. In this context the productions

"if" Expr "then" Expr -> Expr {cons("If")}
"if" Expr "then" Expr "else" Expr -> Expr {cons("IfElse"), avoid}

also reflect the intent of the second form of indentation.

Priority Groups: Another disambiguation tool in SDF are priority groups. The naive expression
grammar from Listing 2.3 can again be used to motivate the use of these priority groups. The
following input is ambiguous with this grammar:

1 + 2 * 3

The two possible parse results are Mult(Plus(1, 2), 3) and Plus(1, Mult(2, 3)). This
problem looks similar to the problem of operator associativity which could be resolved with the
left and right attributes. It is however different, as the ambiguity is between two different Expr
productions, Mult and Plus, whereas the associativity problem is an ambiguity introduced by
only one production. The targeted parse result is Plus(1, Mult(2, 3)) as it is common sense
from arithmetics that the multiplication operator (*) should bind stronger than the plus operator
(+). In other words: the multiplication operator has a higher priority than the plus operator.
But the multiplication operator has the same priority as the division operator (/) and the plus
operator has the same priority as the minus operator (-).

The arithmetics grammar using priority groups is given in Listing 2.4. The context-free priorities
keyword indicates the upcoming use of priorities and replaces the previous context-free syntax
keyword. The operator rules are moved into blocks according to their priority. A greater than
sign combines the blocks indicating that the first block has a higher priority than the second
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context-free priorities
INT -> Expr

> {

Expr "*" Expr -> Expr {cons("Mult"), left}
Expr "/" Expr -> Expr {cons("Div"), left}

}

> {

Expr "+" Expr -> Expr {cons("Plus"), left}
Expr "-" Expr -> Expr {cons("Minus"), left}

}

Listing 2.4: Arithmetics with priority groups

block. This version of the grammar is unambiguous as it defines priorities of the operators as
well as their associativities.

Selective Priorities: Priorities defined in this manner are in effect for all recursive sorts in the
production. Generally this property is desired, but there are exceptions from the rule. Consider
an addition to the language to abstract over the arithmetic expressions and allow to bind
subexpressions to variables:

let x = 20 + 3 {

x * 42

}

But it should not be possible to repeat the let statement in binding position or use it as operand.
So the following expressions should not be valid syntax:

let x = let y = 666 {y}{

x

}

let x = 42 {x} + 3

The SDF arithmetics grammar can express this new let statement with the following addition to
the context-free priorities:

> "let" ID "=" Expr "{" Expr "}" -> Expr {cons("Let")}
> "let" ID "=" Expr "{" Expr "}" -> Expr {cons("Let")}

Technically the SDF disambiguator prunes all parse trees which are created from productions
having lower priority as the production they are transitive children of. As the let production is
added at the end of the priorities it has lower priority as all other productions. Because of this
the disambiguator will disallow a let production as an operand. Additionally the let production
has lower priority as itself which further disallows nested let statements. Unfortunately this
disallows all nested let expressions, including the following, which is a desired one:

let x = 20 + 3 {

let y = 42 {

x * y

}

}

To allow the last expression but disallow a nested let in binding position a SDF grammar can use
selective priorities. These are expressed by writing the offset to the symbol in question in angle
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brackets before the greater than sign of the priority. The desired result is expressed by changing
the repeated let priority to the following:

<3> > "let" ID "=" Expr "{" Expr "}" -> Expr {cons("Let")}

The offset starts from zero, so <3> refers to the first Expr sort in the production. With the selective
priority a nested let is not allowed in binding position of another let, but can still be used as its
body.

2.2 Challenges and their Respective Solutions

Providing an SDF grammar for Scala includes some challenges. The Scala Language Specification
Version 2.8 [24] does indeed provide a context-free grammar to define the syntax. This grammar
however avoids left-recursive productions and is thus not well-suited for an idiomatic SDF
definition. It additionally does not reflect important aspects concerning the parsing, for example
associativity of operators or different interpretation of newlines depending on code region. The
specification only provides this information in form of text. It also lacks information for macro
definitions and string interpolation, as these were first introduced in Scala v2.10.

Nevertheless we took the grammar from the specification as a basis, but had to modify it in large
parts to make it suitable for SDF. Scalas rich syntax makes it easy to introduce ambiguities, which
was a general challenge while developing the grammar. In cases of uncertainty of the correct
parse result we relied on the behaviour of the Scala compiler v2.10.3. The greatest challenges
and their solutions are discussed in the following.

2.2.1 Versatile Identifiers

Scala allows Unicode characters for identifiers. This includes identifiers for operators, where
for example ñ can be used for => or Ð for <-. SDF2 has unfortunately no support for Unicode,
which reduces the allowed input tokens to ASCII characters. This requires all Unicode identifiers
to be converted to ASCII substitutes in input sources, but should not have a larger inpact on
the grammar. It should be easy to add Unicode characters to the lexical definitions as soon as
Unicode support is added to SDF.

Identifiers in Scala come in multiple forms. They are composed of four types of character
classes: lower, upper, digit and opchar. These classes are originally defined over Unicode in the
specification but reduced to ASCII they can be listed as follows:

upper = ? A-Z ? | "$" | "_"

lower = ? a-z ?

digit = ? 0-9 ?

opchar = "!" | "#" | "%" | "&" | "*" | "+" | "-" | "/" | ":"

| "<" | "=" | ">" | "?" | "@" | "\" | "^" | "|" | "~"
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From these character classes, identifiers can be composed by the following productions:

op = opchar, {opchar}

varid = lower, idrest

plainid = upper, idrest

| varid

| op

id = plainid

| "‘" stringLit "‘"

idrest = {letter | digit}, ["_", op]

Pure operators are arbitrary characters from the opchar character class. Variable identifiers
start with a lower case letter, followed by the rest. The counterpart to variable identifiers are
constant identifiers, which start with an upper case letter, followed by the rest. Plain identifiers
are either constant identifiers, pure operators or variable identifiers. Apart from plain identifiers
also exist free-form identifiers, which are delimited by backticks. They allow all characters in
between the backticks which may be used in string literals, even including whitespace. The rest is
composed of letters and digits and may have an optional operator suffix which is set apart with
an underscore. The distinction between variable and constant identifiers is necessary for pattern
matching expressions, where variable identifiers are allowed at different positions compared to
plain identifiers.

In Scala it is possible to define arbitrary operators for classes and objects. To do this one defines
the operators as regular methods where the name of the method is the operator of choice. The
Scala compiler has in-built desugarings which translate prefix, infix or postfix expressions to
method applications. For example an infix expression of the form foo + bar is desugared to
foo.+(bar). Only the operators -, +, ˜ and ! are allowed to be used as prefix operators. These
are desugared to applications of methods, where unary_ is prepended to the operator. For
example is !foo desugared to foo.unary_!. Postfix expressions are respectively desugared from
foo! to foo.!. It is noteworthy that this desugaring also happens for non-operator methods. So
foo and bar also desugars to foo.and(bar).

A disambiguation challenge arises if there are multiple underscores in an identifier and there is
no whitespace between identifiers. The expression _a_+b_- is a good example. Possible parse
results without disambiguation could be

Infix(_a_, +, b_-),

Postfix(_a_+, b_-) or

Postfix(Infix(_a_, +, b_), -).

Per definition the expressions are disambiguated by using a longest-match rule for identifiers,
which makes the second possibility the winner. Expressing this longest-match rule in SDF is
achieved with follow restrictions on the lexical syntax.

The SDF definitions which allow parsing variable identifiers with the longest-match property
are given in Listing 2.5. The character classes UPPER, LOWER, LETTER and OPCHAR are defined
according to the preceding description. But notably the underscore has been removed from
UPPER as it plays a special role as delimiter for the operator suffix. The only production that
can be reused from the specification is that for pure operators (OP) and free-form identifiers
(FREE-FORM-ID). All others productions need to be changed to correctly express the longest-match
rule in combination with operator suffixes.
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lexical syntax
[A-Z] | [\$] -> UPPER

[a-z] -> LOWER

UPPER | LOWER -> LETTER

[0-9] -> DIGIT

LETTER | DIGIT -> ID-REST

[\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~] -> OP-CHAR

OP-CHAR+ -> OP

LOWER -> IVAR-ID

(IVAR-ID | IVAR-ID-USS) ID-REST -> IVAR-ID

(IVAR-ID | IVAR-ID-USS) [\_] -> IVAR-ID-USS

IVAR-ID-USS OP -> IVAR-ID-OP

IVAR-ID -> VAR-ID

IVAR-ID-USS -> VAR-ID-USS

IVAR-ID-OP -> VAR-ID-OP

(VAR-ID | VAR-ID-USS | VAR-ID-OP) -> IVAR-PLAIN-ID

IVAR-PLAIN-ID -> VAR-PLAIN-ID

%% ... -> *CONST-ID*

IVAR-PLAIN-ID -> IPLAIN-ID

ICONST-PLAIN-ID -> IPLAIN-ID

OP -> IPLAIN-ID

IPLAIN-ID -> PLAIN-ID

KEYWORD -> VAR-PLAIN-ID {reject}
KEYWORD -> PLAIN-ID {reject}

"‘" ~[\‘]+ "‘" -> FREE-FORM-ID

FREE-FORM-ID -> PLAIN-ID

lexical restrictions
OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

VAR-ID -/- [A-Za-z0-9\$\_]

VAR-ID-USS -/- [A-Za-z0-9\$\_] \/ [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

context-free syntax
PLAIN-ID -> Id {"Id"}

Listing 2.5: SDF productions for longest-match identifiers

The definition of variable identifiers is split into three cases: (1) a pure variable identifier
(VAR-ID), which does not contain any operator characters and does not end with an underscore,
(2) an underscore suffix (VAR-ID-USS) variable identifier, which ends with an underscore, and
(3) a variable operator identifier (VAR-ID-OP), which has an operator suffix. All of these are
defined with the help of intermediate (I*) counterparts which do not have follow restrictions.
These are needed because otherwise the identifiers would be refused too early even if the final
result would be valid. IVAR-PLAIN-ID is the combination of any of the variable identifiers.
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context-free priorities
PREFIX-OP Expr -> Expr {"PrefixExpr"}

> PREFIX-OP Expr -> Expr {"PrefixExpr"}

> Expr INFIX-OP Expr -> Expr {"InfixExpr"}

> Expr POSTFIX-OP -> Expr {"PostfixExpr"}

> Expr POSTFIX-OP -> Expr {"PostfixExpr"}

Listing 2.6: Expression priorities encoded in SDF

Constant identifiers are definied anologuous to variable identifiers. Plain identifiers (IPLAIN-ID)
are any of the variable, constant or pure-operator identifiers. Even if there is a distinction
between plain identifiers and free-form identifiers in the reference manual, free-form identifiers
have been definied as plain identifiers for simplicity in our SDF grammar. The difference between
IVAR-PLAIN-ID and VAR-PLAIN-ID is, that VAR-PLAIN-ID does not allow keywords. The same is
true for IPLAIN-ID and PLAIN-ID.

Operators must not be followed by any operator char. If they are followed by an operator char,
this char is also part of the operator. This definition conforms to the longest-match property
for all operator identifiers, including the VAR-ID-OP, which is defined with the help of OP. Non-
underscore suffix variable identifiers must not be followed by any letter nor underscores, which
conforms to the longest-match rule property for VAR-ID. An underscore suffix variable identifier
must neither be followed by a letter nor an operator char. If followed by a letter, it no longer has
an underscore suffix and if followed by an operator, it is instead a VAR-ID-OP.

In summary PLAIN-ID is the lexical sort that represents all valid Scala identifiers with the
necessary longest-match rules. The context-free counterpart is the Id sort, which wraps all
identifiers in the Id constructor.

2.2.2 Rich Layout-Sensitive Expressions

Scala features a rich expression syntax, combining concepts known from functional and im-
perative programming languages. As a result, well-known imperative concepts, for example
conditionals, loops or try-catch constructs, which are untyped statements in Java, are realized
as typable expressions in Scala. As they are expressions, they are combinable in many different
ways which can easily lead to ambiguous constructs. The first part of this section explains the
difficulties with expressions on the subset of prefix, infix and postfix expressions. The second
part explains the challenge of different interpretations of newlines depending on code region.

Prefix, Infix and Postfix Expressions

Scala defines prefix, infix and postfix expressions. Prefix expressions have the form prefix-op

expr, infix expressions have the form expr infix-op expr and postfix expressions have the form
expr postfix-op. Infix and postfix operators can be arbitrary identifiers, but prefix operators
can only be -, +, !, and ~. Prefix, infix and postfix expressions can be recursively combined
to compose more complex expressions. This poses some challenges on the parsing of these
expressions.
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context-free priorities
Expr SPECIAL-OP Expr -> Expr {"InfixExpr"}

> Expr MULT-OP Expr -> Expr {"InfixExpr"}

> Expr SUM-OP Expr -> Expr {"InfixExpr"}

> Expr COLON-OP Expr -> Expr {"InfixExpr"}

> Expr CMPR-OP Expr -> Expr {"InfixExpr"}

> Expr BRACKET-OP Expr -> Expr {"InfixExpr"}

> Expr AMPERSAND -OP Expr -> Expr {"InfixExpr"}

> Expr CIRCUMFLEX -OP Expr -> Expr {"InfixExpr"}

> Expr BAR-OP Expr -> Expr {"InfixExpr"}

> Expr LETTER-OP Expr -> Expr {"InfixExpr"}

> Expr ASSIGN-OP Expr -> Expr {"InfixExpr"}

Listing 2.7: Infix operator precedences encoded in SDF

Priorities: The first challenge is the order of priority for these kinds of expressions. Without
further restriction or disambiguation it is not clear how to parse the input foo and bar. It could
either result to Infix(foo, and, bar) or to Postfix(Postfix(foo, and), bar). A prefix
expression for this input is not possible, as no prefix operator is used. The desired result for the
given input is the infix expression. Another example input term is -b + c, which could either
be Prefix(-, Infix(b, +, c)) or Infix(Prefix(-, b), +, c). In this case the latter is the
desired result. Another example is ! !true, which will be refused by the Scala compiler as
syntax error. In summary prefix expressions have the highest priority (bind the closest), followed
by infix expressions, followed by postfix expressions, which have the least priority.

The code to express these priorities in SDF is given in Listing 2.6. It refuses all prefix, infix or
postfix expressions nested in prefix expressions, all postfix expressions nested in infix expressions
and all postfix expressions nested in postfix expressions. The repeated lines are no error and really
needed as otherwise the first given example of foo and bar could not be correctly disambiguated
and ! !true would not be rejected.

Operator Precedence: The second challenge for parsing infix expressions is the operator prece-
dence. As Scala allows arbitrary identifiers for operators, the precedence of the operators is
defined on the basis of the first character used in the operator. The order is (from lowest to
highest): letter, |, ^, &, < or >, = or !, :, + or -, * or / or % and finally any other character. An
exception from the rule are assignment operators, which always have the lowest precedence. An
assignment operator ends with =, must not be <=, >= or != and must also not start with =.

Operator precedences in SDF can be expressed the same way as the priorities of prefix, infix and
postfix expressions. The code is given in Listing 2.7. The solution is to repeat the infix expression
production in order of precedence and using the corresponding operator lexical production.
The lexical operator productions are given in Listing 2.8. The definitions of the *-OP sorts are
straight forward. An ASSIGN-OP consists of an arbitrary amount of OP-CHAR, followed by =. A
LETTER-OP is a variable- or constant identifier, which starts with a non-operator char and can
have an optional operator suffix. A bar operator is a | followed by an arbitrary amount of
OP-CHAR, and so on. The reject productions starting at line 14 are needed to avoid confusion
of comparison operators with assignment operators and of any operator with keywords. The
productions starting at line 31 are needed to disambiguate assignment operators from other infix
operators. An operator of the form += could be a sum operator, because of the leading +, but it
could also be an assignment operator, because of the trailing =. These productions make sure
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1 lexical syntax
2 OP-CHAR* [\=] -> ASSIGN-OP

3 VAR-PLAIN-ID | CONST-PLAIN-ID -> LETTER-OP

4 [\|] OP-CHAR* -> BAR-OP

5 [\^] OP-CHAR* -> CIRCUMFLEX -OP

6 [\&] OP-CHAR* -> AMPERSAND -OP

7 ([\<] | [\>]) OP-CHAR* -> BRACKET-OP

8 ([\=] | [\!]) OP-CHAR* -> CMPR-OP

9 [\:] OP-CHAR* -> COLON-OP

10 ([\+] | [\-]) OP-CHAR* -> SUM-OP

11 ([\*] | [\/] | [\%]) OP-CHAR* -> MULT-OP

12 [\#\?\@\\\~] OP-CHAR* -> SPECIAL-OP

13

14 [\=] OP-CHAR* [\=] -> ASSIGN-OP {reject}
15 "=" -> ASSIGN-OP {reject}
16 "<=" -> ASSIGN-OP {reject}
17 ">=" -> ASSIGN-OP {reject}
18 "!=" -> ASSIGN-OP {reject}
19 "=" -> CMPR-OP {reject}
20 "=>" -> CMPR-OP {reject}
21 ":" -> COLON-OP {reject}
22 "<-" -> BRACKET-OP {reject}
23 "<:" -> BRACKET-OP {reject}
24 "<%" -> BRACKET-OP {reject}
25 ">:" -> BRACKET-OP {reject}
26 "#" -> SPECIAL-OP {reject}
27 "@" -> SPECIAL-OP {reject}
28

29 %% ASSIGN-OP is exception and thus more

30 %% important than the other ops

31 ASSIGN-OP -> LETTER-OP {reject}
32 ASSIGN-OP -> BAR-OP {reject}
33 ASSIGN-OP -> CIRCUMFLEX -OP {reject}
34 ASSIGN-OP -> AMPERSAND -OP {reject}
35 ASSIGN-OP -> BRACKET-OP {reject}
36 ASSIGN-OP -> CMPR-OP {reject}
37 ASSIGN-OP -> COLON-OP {reject}
38 ASSIGN-OP -> SUM-OP {reject}
39 ASSIGN-OP -> MULT-OP {reject}
40 ASSIGN-OP -> SPECIAL-OP {reject}
41

42 lexical restrictions
43 ASSIGN-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

44 LETTER-OP -/- [a-zA-Z0-9]

45 BAR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

46 CIRCUMFLEX -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

47 AMPERSAND -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

48 BRACKET-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

49 CMPR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

50 COLON-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

51 SUM-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

52 MULT-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

53 SPECIAL-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

Listing 2.8: Lexical productions for the different infix operators
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context-free priorities
%% ...

> {

Expr SPECIAL-OP Expr -> Expr {"InfixExpr", left}
Expr RASSOC-SPECIAL-OP Expr -> Expr {"InfixExpr", right}

}

%% ...

> {

Expr LETTER-OP Expr -> Expr {"InfixExpr", left}
Expr RASSOC-LETTER-OP Expr -> Expr {"InfixExpr", right}

}

> Expr ASSIGN-OP Expr -> Expr {"InfixExpr", left}
%% ...

Listing 2.9: Code to support associativities for infix expressions

lexical syntax
(VAR-PLAIN-ID | CONST-PLAIN-ID) [\:] -> RASSOC-LETTER-OP

[\|] OP-CHAR* [\:] -> RASSOC-BAR-OP

%% ...

[\#\?\@\\\~] OP-CHAR* [\:] -> RASSOC-SPECIAL-OP

"<:" -> RASSOC-BRACKET-OP {reject}
">:" -> RASSOC-BRACKET-OP {reject}

%% Right associative identifiers have higher priority than

%% their left associative counterparts

RASSOC-LETTER-OP -> LETTER-OP {reject}
%% ...

RASSOC-SPECIAL-OP -> SPECIAL-OP {reject}

lexical restrictions
RASSOC-LETTER-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

%% ...

RASSOC-SPECIAL-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

Listing 2.10: Definition of right associative infix operators

that assignment operators can not be parsed as other operators. The lexical restrictions starting
from line 43 are required to enforce the longest-match property on the operators.

Associativity: The third challenge is the associativity of infix expressions. In a similar fashion to
operator precedence, associativity is defined on the last character of the operator. All operators
ending in : are right-associative, the others are left-associative. A common example for a
right-associative operator is the list constructor ::, as used in 1 :: 2 :: Nil. This expression
is expected to parse to Infix(1, ::, Infix(2, :: Nil)), opposed to the left-associative
variant of Infix(Infix(1, ::, 2), ::, Nil).

Fortunately SDF has support for parsing different associativities, which yields the code in
Listing 2.9. RASSOC-*-OP definitions are added besides the *-OP definitions. These have the
same precedences as their left-associative counterparts and are thus added into a block with the
same priority. Solely the associativity is adapted accordingly by adding the right keyword to the
attributes. The RASSOC-*-OP lexical sorts are given in Listing 2.10. Similar to the assignment
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context-free priorities
%% ...

> PREFIX Expr

-> Expr {"PrefixExpr", prefer, layout("1.last.line == 2.first.line")}

> {

Expr INFIX-OP Expr

-> Expr {"InfixExpr", left, layout(
"1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-INFIX-OP Expr

-> Expr {"InfixExpr", right, layout(
"1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> Expr Id

-> Expr {"PostfixExpr", avoid, layout("1.last.line == 2.first.line")}

%% ...

Listing 2.11: Layout constraints for prefix-, infix- and postfix expressions

operator, the right associative operators are defined by requiring a trailing :. Here again the
priority is enforced with rejection productions and the longest-match property is described with
the help of restrictions.

Layout Constraints: The fourth and last challenge concerning prefix, infix and postfix expressions
are optional newlines and same-line constraints. Prefix and postfix expressions need their operator
on the same line, or will otherwise be splitted into two seperate expressions. Infix expressions
may have one optional newline after the operator.

Both optional newlines and same-line constraints can be expressed in SDF with layout con-
straints [13]. The general idea behind the layout-sensitive parsing is to attach line and column
information to the beginning and end of parsed symbols. With help of a small DSL and new
attributes, which can be attached to productions, one can then define constraints on relative
positions between symbols in one production. Originally developed to make parsing of layout-
sensitive languages like Python or Haskell possible with SDF, the layout constraint extension also
has some useful features to handle newlines.

The resulting code for expressions using layout constraints is given in Listing 2.11. Prefix
expressions get the constraint that the line of the last token of the operator must be the same as
the line of the first token of the Expr. The constraint for the postfix expression is analogous. The
infix operation has the constraint that the line of the last token of the left-hand-side expression is
equal to the line of the first token of the operator and that the last token of the operator and the
first token of the right-hand-side expression are not more than one line apart.

Newline Regions

The Scala Language Specification defines a special nl token. Whether this token can be consumed
as such or just acts as layout depends on the code before and after this token. It is deactivated in
between parentheses ("(", ")"), but can be reactivated between curly braces ("{", "}"). A direct
translation of this condition to SDF is not possible but can be encoded with layout constraints
and two sorts for expressions: One with layout constraints enabled and the other which does not
enforce layout constraints.
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%% With Layout Constraints

context-free priorities
%% ...

"(" {NoLExpr ","}* ")" -> Expr {"TupleExpr"}

%% ...

> BlockExpr -> Expr

%% ...

> Expr Op Expr -> Expr {"InfixExpr", left,
layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

%% ...

%% No Layout Constraints

context-free priorities
%% ...

"(" {NoLExpr ","}* ")" -> NoLExpr {"TupleExpr"}

%% ...

> BlockExpr -> NoLExpr

%% ...

> NoLExpr Op NoLExpr -> NoLExpr {"InfixExpr"}

%% ...

%% Common

context-free syntax
%% ...

"{" Block "}" -> BlockExpr {"BlockExpr"}

%% ...

Listing 2.12: Newline regions in expression productions

An excerpt of the resulting productions is given in Listing 2.12. It shows the two different sorts
for expressions and three productions for each. The sort with layout constraints enabled is
Expr. The sort without layout constraints is NoLExpr. The three sample productions chosen are
tuples (expressions in parentheses), block expressions (expressions in curly braces) and infix
expressions. As stated earlier the nl is deactivated inside of parentheses. So all expressions sorts
inside parentheses are NoLExprs. Inside curly braces the nl is activated, so all expression symbols
used in Block are Expr.

This way the nl can be activated or deactivated depending on the code region. It unfortunately
requires to copy all 51 Expr productions to NoLExpr productions with the layout information
removed. This is a major drawback in terms of extensibility and maintainability, as a change
in the Expr productions must be manually propagated to the NoLExpr productions. It however
yields a satisfiable parser and no other working approaches could be found.

2.2.3 Statement Termination

Newline as Statement Terminator

Scala allows the termination of statements with either semicolons or newlines. This property
seems to be trivial to implement in a context-free grammar definition. Listing 2.13 shows a
prototypical example of how one would like to express package declarations statements which
can be terminated with newlines. Unfortunately this example does not work.
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module PackageDeclaration

exports
lexical syntax

[a-zA-Z\_] -> ID

context-free syntax
"package" ID ";" -> PackageDeclaration {cons("PackageDeclaration")}
"package" ID "\n" -> PackageDeclaration {cons("PackageDeclaration")}
PackageDeclaration* -> CompilationUnit {cons("CompilationUnit")}

context-free start symbols
CompilationUnit

Listing 2.13: Naive approach to define newline-terminatable package declarations

%% ...

lexical syntax
"\n"* -> NL

lexical-restrictions
NL -/- "\n"

context-free syntax
NL "package" NL ID NL ";" NL -> PackageDeclaration {...}

NL "package" NL ID "\n" NL -> PackageDeclaration {...}

%% ...

Listing 2.14: Package declarations with explicit newlines

The reason for this is, that newlines can also be considered layout; characters insignificant for the
derivation of the AST. As explained in Section 2.1 SDF uses a special LAYOUT sort to define these
insignificant derivations like whitespace or commentaries. If LAYOUT however contains newline
characters then these will be consumed by this sort and can not be used by other productions
including the statement productions.

In summary using newlines in productions for statement termination (as in Listing 2.13) and
adding newlines to LAYOUT is not possible together. Three workarounds for this problem have
been examined in the making of this work:

1. Not adding newlines to LAYOUT and specify them explicitly in the grammar

2. Using simple SDF syntax and circumvent the injection of LAYOUT

3. Using experimental layout constraints

Explicit Use of Newlines: The most obvious approach to avoid adding newlines to LAYOUT and
using simple context-free syntax is to not add newlines to LAYOUT. Instead one has to explicitly
give optional newlines everywhere in the grammar where they could be used as insignificant
characters. Reusing the PackageDeclaration sample, this would lead to a grammar similar to
Listing 2.14. The leading NL is needed for mixed-indentation, or for newlines before the first
package declaration. The restriction is necessary to disambiguate the case of one NL following
another NL, in which the first will always consume all newlines and the second will be empty.
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%% ...

lexical syntax
(" " | "\t")* -> SPACE

syntax
"package" <LAYOUT?-CF> <ID-LEX> <SPACE-LEX> "\n"

-> <PackageDeclaration -CF> {...}

context-free syntax
"package" ID ";" -> PackageDeclaration {cons("PackageDeclaration")}

%% ...

Listing 2.15: Package declarations with plain SDF syntax

One obvious drawback of this approach is the loss of comprehensibility. The grammar is harder
to read with cluttering NL tokens in each production. The grammar is also more error prone: It is
easy to forget the NL token before or after the semicolon. Especially when changing the grammar
the adaption of the newline tokens is missed quickly.

Another unfortunate effect is the cluttering of the resulting AST. Each NL will be another argument
for the constructor of the package declaration. So the constructor for the package declaration
with the semicolon will be 5-ary (NL, NL, ID, NL, NL), whereas the constructor for the package
declaration with the terminating newline will be 4-ary (NL, NL, ID, NL). The constructors could
be rewritten in a post processing step but then one would have to deal with this explicitly as the
auto-generation capabilities of Spoofax would not handle these cases.

Circumvent Injection of LAYOUT: An alternative approach, which allows adding of newlines to
LAYOUT, is the use of plain syntax (non-lexical and non-context-free). Definition of this plain
syntax is an undocumented feature of SDF and most probably not intended to be used by
language developers. It however allows to circumvent the automagical insertion of the LAYOUT

symbol as it would happen in the context-free syntax definition. This way the newline can be
consumed by the PackageDeclaration sort. As the LAYOUT in plain syntax is no longer inserted
automatically it however has to be inserted manually.

How to use plain syntax in context of the sample package declaration can be seen in Listing 2.15.
The plain syntax definition is not as high-level as the lexical or context-free definition and
distinguishes between the different sorts. Thus the LAYOUT sort must be specified as <LAYOUT?-CF>
between the package keyword and the ID lexical token. As there may be tabulators or spaces
after the ID and before the terminating newline the SPACE lexical token is introduced and used.
This token also shows up in the resulting constructor, which will be PackageDeclaration(ID,
SPACE).

Compared to the previous approach this one only requires a cumbersome notation in each
production which needs to consume a newline character. In return the comprehensibility of
these productions is even worse compared to those of the explicit-newline-approach. The biggest
drawback however is the use of an undocumented feature which is most-likely not intended to
be used by language developers.

Layout Constraints: The last approach investigated to express newline-terminated statements
is the use of layout constraints for SDF. A grammar utilizing layout constraints to make parsing
Scala-like package declarations possible is given in 2.16. The notable changes compared to
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%% ...

lexical syntax
";" -> SEMI

-> EOL

context-free syntax
"package" ID SEMI -> PackageDeclaration {...}

"package" ID EOL -> PackageDeclaration {..., enforce-newline}
%% ...

Listing 2.16: Package declarations with layout constraints

the first version in Listing 2.13 are the introduction of lexical symbols SEMI and EOL and the
use of the enforce-newline attribute for the newline-terminated package declaration. The EOL

production is empty and can thus always be consumed. The enforce-newline attribute adds the
constraint to the production, that there must be a newline between the second-to-last and last
symbol in the production – all parse results where this is not the case will be pruned. The empty
EOL is therefore needed to be the token on the next line. The SEMI symbol is not necessary for
the desired behaviour, but introduced to keep the arity of the resulting constructor for package
declarations equal. The EOL will always show up as the second parameter to the constructor
and tree manipulations are easier if there are not two PackageDeclaration constructors with
different arity.

Compared to the other two alternative approaches to handle newline-terminated statements
the layout constraints keep the comprehensibility of the first trivial version from Listing 2.16.
The grammar does not seem to be cluttered or overly-complicated with this approach. The
experimental Spoofax release already has support for layout constraints out of the box, so layout
constraints can be expected to be officially supported in future releases. For these two reasons
we decided to express the termination of statements with the help of layout constraints.

Need for longest-match

Block statements are defined similar to package declaration statements and have the following
form:

BlockStat SEMI -> BlockStatSemi {...}

BlockStat EOL -> BlockStatSemi {..., enforce-newline}

One of the productions for BlockStat is:

Expr -> BlockStat

BlockExpr and Block further have the productions:

"{" Block "}" -> BlockExpr

BlockStatSemi* -> Block

With these definitions, the following block is ambiguous:

{

f()

c1 &&

c2

}
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The reason for the ambiguity are the two last lines of the block. It is not clear if the block should
parse to a list of three block statements, namely the application of f, a postfix operation on c1
with the operator && and the identifier c2, or to a list of only two block statements, namely
the application of f and an infix expression over two lines. Infix and postfix expression are
indeed disambiguated, but this disambiguation for the Expr sort does however not apply for the
disambiguation of possible parse results for block statements. The right disambiguation for block
statements is to always decide for the longest possible match. In the given example the infix
expression over two lines is a longer match than the two short matches of the postfix expression
and the identifier and should thus win. Fortunately the layout constraint extension has the
keyword longest-match exactly for that purpose. Adding this keyword to the BlockStatSemi

productions has the desired effect:

BlockStat SEMI -> BlockStatSemi {..., longest-match}
BlockStat EOL -> BlockStatSemi {..., enforce-newline, longest-match}

This same pattern is also applied for all other statement-like productions, e.g. statements on
template level or enumerators.

2.3 Evaluation

We evaluate the grammar with two different methods:

The first method uses the testing capabilities provided by the Spoofax framework [19]. These
testing capabilities allow to declare named tests on the grammar. Such a test is composed of the
start symbol to use, an input fragment and an expected result. The input fragment is then parsed
using the specified start symbol and compared to the expectation. The possible expectations can
be an AST pattern, general unambiguous parsability or parse failure, among other things. We use
this method to test the grammar for correctness.

The second method uses an individually developed command line batch processing utility. This
utility takes a parse table and a list of files as input, parses the files one after another with the
Spoofax JSGLR parser and reports on the parse results. Options for the tool are the start symbol
to use, a timeout for each individual file and the output of the report as comma separated values
(CSV) for further processing of the data. The report includes a label for the general parse result,
time needed, lines of code, number of characters without line breaks and possible use of XML for
each file. The label for the parse result is one of the following:

Success The file could be parsed successfully under the time limit, the start symbol did match
and no ambiguity occurred.

Ambiguity The file could be parsed successfully under the time limit, the start symbol did match
but at least one ambiguity occurred.

Startsymbol Mismatch The file could be parsed, but the start symbol did not match. Ambiguities
may have occurred.

Timeout The file could not be parsed in the provided time limit.

Failure The file could not be parsed due to invalid syntax.

Error Some unexpected error occurred while parsing the file.
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Because SDF2 can not handle UTF-8 encoding the batch testing utility is accompanied by a
shell script to replace Unicode characters with ASCII counterparts. This script can be used to
pre-process the input files before the actual test. We use this second evaluation method to test
the grammar against possible ambiguities. It however also has the side effect of yielding data
usable for performance measures.

One of the correctness tests which expects an AST looks like the following:

language Scala

start symbol Expr

test right assoc operations [[

1 :: 2 :: Nil

]] parse to InfixExpr(Int("1"), "::", InfixExpr(Int("2"), "::", Id("Nil")))

It tells the testing framework to use the grammar of the language Scala and use Expr as start
symbol. The test is named right assoc operations. It tests the input 1 :: 2 :: Nil to be actually
parsed to right associative infix expressions with the :: operator.

An example for a negative test is the following:

test eta expansion invalid layout [[

f

_

]] parse fails

It does not respecify the language nor the start symbol, as these need to be specified only once
before the first test occurs in a test file. This test checks for the layout constraint that an eta
expansion can not span over multiple lines. As the start symbol is Expr this fragment should fail
to parse. With a different start symbol this fragment may result in a list of two expressions.

If a test does not have an explicit expectation then the fragment is implicitly expected to parse
unambiguously. An example for such a test is the following, which checks that a qualified
instantiation without parameters is unambiguous:

test two element path class instantiation [[

new mutable.Map

]]

These tests are a typical result of a detected ambiguity and serve as regression tests, so the
ambiguity will not be reintroduced if the grammar may change in the future.

We provide 370 of correctness tests for the grammar. 194 expect an AST, 26 are negative tests and
150 check against unambiguous parsability. The results are shown in Table 2.1. Unfortunately
only 366 of these tests pass, leaving four failing tests. Three of this failing tests are negative tests
and check corner cases of layout used in class definitions which should be rejected, but are not. As
a result our grammar is less restrictive than the Scala parser, but the cases are hopefully unlikely
enough to not have a large impact. The remaining failing test checks the right-associativity of
letter operations with a trailing colon, e.g. colon_::, which is not given with our grammar. This
is a known issue with the lexical syntax for operators and can hopefully be fixed in the future.

We use the batch testing utility to evaluate our grammar on Scala source code files under the src

directory in the public Scala v2.10.3 repository1 as we consider the Scala sources an ambitious

1 https://github.com/scala/scala/tree/v2.10.3
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Expectation AST Failure Non-Ambiguity Total
Result
Positive 193 23 150 366
Negative 1 3 0 4
Total 194 26 150 370

Table 2.1.: Results for the correctness tests

Label Success Ambiguity Symbol Mismatch Timeout Failure Error Total
Size
Files 1522 0 0 1 0 0 1523
LOC 265452 0 0 96 0 0 265548

Table 2.2.: Parse results after XML and Unicode correction

project and representative for typical Scala code. The parse result of these 1531 files with 268522
lines of code (LOC) has been measured on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with a
Solid State Drive and is as follows: 1521 files (265227 LOC) parse successfully, nine files (3199
LOC) fail to parse and 1 file (96 LOC) can not be parsed due to a timeout after 60 seconds. None
of the files yields an ambiguous parse result.

Eight of the nine parse failures are due to the use of XML elements in the source file. XML
is however explicitly not part of the grammar and thus the parse failures do not indicate
incorrectness on our work. The one remaining parse failure is due to a substitution of a Unicode
character literal in between single quotes with two ASCII characters. The resulting illegal
expression ’=>’ causes the parse failure. The file parses successfully if the expression is changed
to the legal string literal "=>". As these failures are thus not really failures, the results can be
updated as follows: 1523 files (265548 LOC) total, 1522 files (265452 LOC) parse successfully
and 1 file (96 LOC) can not be parsed due to a timeout. The corrected parse results are also
provided in Table 2.2.

The important part of the file causing the timeout is given in Listing 2.17. We could not figure
out the exact reason why this piece of code is so hard to parse, but it is a combination of the
following circumstances:

• The long boolean expression from line five to 16 is wrapped over multiple lines. If written
in one line the code can be parsed in about 7.3 seconds.

• The expression is the body of the case clause. Without the match expression the file can be
parsed in about 1.8 seconds.

• The expression is the direct body of the case clause. If wrapped in a block the file can be
parsed in about 7.5 seconds.

• The pattern variable begins with the character c. If cs is replaced by s the file can be parsed
in about 4.7 seconds.

Several other — but not as drastic — outliers can be seen on the plot of parse time over LOC
for all successfully parsed files in Figure 2.3. The parse time result characteristics are provided
in Table 2.3. The initialization of the parser before the first file was parsed took 0.576s. The
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1 class Settings {

2 //...

3 override def equals(that: Any): Boolean = that match {

4 case cs: Settings =>
5 this.gBf == cs.gBf &&

6 this.uncheckedBf == cs.uncheckedBf &&

7 this.classpathBf == cs.classpathBf &&

8 this.sourcepathBf == cs.sourcepathBf &&

9 this.sourcedirBf == cs.sourcedirBf &&

10 this.bootclasspathBf == cs.bootclasspathBf &&

11 this.extdirsBf == cs.extdirsBf &&

12 this.dBf == cs.dBf &&

13 this.encodingBf == cs.encodingBf &&

14 this.targetBf == cs.targetBf &&

15 this.optimiseBf == cs.optimiseBf &&

16 this.extraParamsBf == cs.extraParamsBf

17 case _ => false
18 }

19 //...

20 }

Listing 2.17: Piece of Scala code causing a timeout for the parser

Size Parser Init. Minimum Q1 Median Q3 IQR Maximum
Time 0.576s 0ms 11ms 27ms 78ms 67ms 15.59s
LOC 1 34 67 163 129 7450

Table 2.3.: Parse times for all 1521 successfully parsed files

quartiles of the parse times in milliseconds are p11,27, 78q, the interquartile range is 67. The
minimum parse time was below one millisecond and was thus measured as 0, the maximum
however is 15.59s for a file of only 1103 LOC. The quartiles of the lines of codes are p34,67, 163q,
the interquartile range is 129. The minimum for lines of codes is 1 and the maximum is 7450.
The median of the parse times is visualized as a horizontal rule. The median of the lines of
codes is visualized as a vertical rule. The remaining oblique line goes through the origin and
the intersection of the medians to provide a visual help. We assume that most source code files
will be below 1000 lines of code and thus provide another plot of the subset of the data with
LOC ď 1000 and the same visual helper lines in Figure 2.4. This subset still covers 97.436% of
all the files from the sample. Two additional plots with other magnifications are provided in
Appendix B.

From a performance perspective about 95% of all the files can be parsed below 550ms, but the
parser generated from the grammar has a strong weakness for outliers. Considering neither the
grammar nor the parser are tailored towards performance and still open for improvement we
however argue this is fair enough. More importantly allows the grammar to generate a parser
which can successfully parse 99.9% of 1523 relevant files (265548 LOC) in the Scala source
repository without ambiguities. It is additionally backed with 366 successful correctness tests
which in summary indicate good suitability for the Scala language.
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Figure 2.3.: Parse times for all 1521 successfully parsed files — lines mark medians and resulting
gradient through origin
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Figure 2.4.: Parse times for the 1482 successfully parsed files with LOC ď 1000 — lines mark
medians and resulting gradient through origin
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3 SugarScala as Sugar* Instantiation

SugarJ [12] allows library-based syntactic extensibility for the Java programming language. The
SugarJ compiler is able to modify its parser if it encounters import statements resolving to sugar
libraries. These sugar libraries provide new syntax in form of grammar extensions in SDF and
accompanying Stratego rules to transform these syntatic extensions back into the base language.
Additionally the sugar libraries can define static analysis for the new syntax, again in form of
Stratego rules, or modify the appearance of the code in the Eclipse editor.

The Sugar* Framework [14] is an advancement from SugarJ, which adds support for arbitrary
languages besides Java in the form of language plug-ins. Such a language plug-in is created
by implementing two well-defined Java interfaces and providing the base language as a SDF
grammar definition. Other Spoofax resources as pretty-printing tables, Stratego term rewriting
rules or Eclipse editor definitions for syntax-highlighting are also supported.

The structure of this chapter is as follows: Section 3.1 explains unparsing of Scala ASTs created
from the SDF grammar. Section 3.2 introduces Stratego, which is used for the desugarings. The
implementation of SugarScala is described in Section 3.3. Sections 3.4 and 3.5 present the case
studies for XML and EScala. Section 3.6 concludes this chapter with a discussion of SugarScala.

3.1 Unparsing of SDF Grammars

The process of turning the parse result back into source code is called unparsing, as it is the
reverse operation to parsing. A specialized form of unparsing is pretty-printing, which has the
additional ambition to create visually appealing results for humans or adhere to common style
guides. This distinction is however vague and pretty-printing is often used synonymously to
unparsing.

Unparsing is necessary in the context of SugarScala to turn ASTs into source code, which can be
passed to the Scala compiler for the actual compilation. The Spoofax language workbench has
built-in support for unparsing. It uses the Box [31] language to specify pretty-printing instructions
for application constructors. These instructions are stored in pretty-printing tables and can be
looked-up on unparsing of an AST. Spoofax automatically derives the pretty-printing table for a
language with the help of the productions in the grammar, but allows language developers to
manually override entries in the table. The automatic derivation of pretty-printing instructions
unfortunately fails for productions defined in a context-free priorities scope or in combination
with layout constraints.

The problem with the pretty-printing instructions for productions in context-free priorities can
be solved by simply repeating the productions in context-free syntax. Layout constraints are
however not understood by the pretty-printing table generator. This requires manual intervention
on some of the pretty-printing rules to assure correct unparsing. The issue can be shown with
the AST for the following source code:
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{

foo postOp

bar

}

The AST of this source code is a block with two statements: a postfix expression and an identifier.
Unparsing this AST with the automatically derived pretty-printing rules yields the following
source code:

{ foo postOp bar }

Reparsing this source code would yield a block with only an infix expression, which is not correct.
We thus manually modified some of the pretty-printing rules to produce the right amount of
whitespace to avoid incorrect unparsings. The result is however not visually pleasing and only
suitable for unparsing but not for pretty-printing.

3.2 Introduction to Stratego

Stratego is a domain specific language for term transformations. It is part of the Stratego/XT [3]
tool suite and a large and mature project on its own. This work uses Stratego to transform parse
results from SDF generated parsers. For this reason does the following introduction only focus
on the use of Stratego in the context of parse tree rewriting in the Sugar* framework and leaves
out parts of the big picture.

The terms encountered in this context can have three types: Constructor applications, lists and
strings. Constructor applications have an identifier – the name of the constructor – and a variable
amount of arguments. They resemble named nodes with zero or more children in a tree. The
SGLR parser maps the constructor attributes from the SDF grammar to constructor application
terms. Lists can also have a variable amount of arguments but do not have a name. Stratego
could represent them as an application with the name List, but it knows special abstractions for
lists to make working with them easier. Strings are primitives and can not have any arguments.
Because of that they are always leaves in the term tree. The SGLR parser maps lexical SDF
productions, for example identifiers, to strings in the term representation.

Stratego describes term transformations with the help of rewriting rules and strategies. The
intention behind rules is the matching on one term and the conditional rewrite to another
term, whereas the intention behind strategies is the description of term transformations on a
higher level – for example the traversal of the term tree in top-down or bottom-up manner. The
distinction between rules and strategies is conceptual rather than technical. More specifically a
rule is a special form of a strategy. The following descriptions will only refer to strategies but do
also implicitly apply to rules.

Every strategy has an implicit context which is the currently examined term. Additionally any
strategy can take other strategies or terms as arguments. A strategy can use the built-in operator
?term to match against a term and !term to set a term. The expression ?Foo(_, a) matches
the current context term against the application with constructor Foo/2 and binds the second
subterm to the variable a. The expression !Bar("foo") instead sets the current context term to
the application of Bar/1 with the subterm "foo".
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A strategy can further use operators on strategies to define itself with the help of other strategies.
The sequence operator a;b defines a strategy as a sequence of the strategies a and b. It first
applies the strategy a. If a succeeds then ; applies b on the result of strategy a. The result of
the composed strategy is then the result of strategy b. If strategy a however fails then the whole
strategy fails and strategy b is not even tried.

Another common operator is the deterministic left choice operator a<+b. This one will again first
try a. If a succeeds the result of the composed strategy will be the result of a and <+ will not
further apply b. But if a fails then <+ will try b with the original context; any possible changes
made by a will be reset. A near relative of a<+b is a+b. The only difference between the two is
the order in which they try the strategies. Where <+ strictly tries the strategies from left to right
the order of + is arbitrary.

A key concept of Stratego is the passing of strategies to other strategies. The expression s(a<+b)

passes the composed strategy a<+b to the strategy s without evaluating a<+b beforehand. The
notation to apply a strategy instead of passing it on is the strategy surrounded by angle brackets.
In comparison the expression s(<a> v) will apply a to v and pass the result to s.

The syntax to define strategies comes in two forms:

1. strategy = id, "=", expr

2. rule = id, ":", pattern, "->", expr

The first is the more general form and usually used to define conceptual strategies. The second
syntax is sugar for the common strategy definition $id = ?$pattern ; !$expr which is a
pattern match on the context term followed by the term it should be rewritten to on match. As
mentioned before this form is also called a rule.

3.3 Implementation

An overview of the package structure of SugarScala is given in Figure 3.1. Every Sugar*
instantiation must implement two interfaces: IBaseLanguage and IBaseProcessor. The former
defines methods to query basic information about the base language, the latter defines methods to
process source code of the language. To make the implementation of these two interfaces easier,
the framework provides two abstract classes, AbstractBaseLanguage and AbstractBaseProcessor,
respectively. These are intended to be extented by the base language implementor and provide
common configuration and helper code. More precisely, the base language registry is written
against AbstractBaseLanguage and IBaseLanguage references AbstractBaseProcessor, which makes
the extension of the abstract classes a quasi-requirement.

3.3.1 Language Interface

The complete type hierarchy for ScalaLanguage is given in Figure 3.2. AbstractBaseLanguage
implements parts of the IBaseLanguage interface and ScalaLanguage further extends AbstractBase-
Language and implements the rest of the required methods.
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Figure 3.1.: SugarScala Project Layout

The language interface methods can be subdivided into four kinds: processor factory, config-
uration, initializer and predicate. The createNewProcessor method is the only method of the
processor factory kind and is expected to create a valid processor for the language to be defined.
In the case of ScalaLanguage this method simply instantiates a new ScalaProcessor. The methods
of the configuration kind are getBaseFileExtension, getBinaryFileExtension, getLanguageName,
getSugarFileExtension, getVersion and getPackagedGrammars. The methods of the initializer
kind are getInitEditor, getInitEditorModuleName, getInitGrammar, getInitGrammarModuleName,
getInitTrans and getInitTransModuleName. The methods of the predicate kind are isBaseDecl,
isExtensionDecl, isImportDecl and isPlainDecl.

The base file extension is the file extension of the base language. So for ScalaLanguage getBaseFile-
Extension simply returns "scala", as base Scala source files have this file extension. The binary file
extension is the file extension to which the base language compiles to. Scala compiles to *.class
files, so getBinaryFileExtension simply returns "class". The language name is the human-readable
name of the language, so ScalaLanguage.getLanguageName returns "Scala". The sugar file exten-
sion is the extension for files, which may contain code with syntactic sugar. For ScalaLanguage we
choose "sugs" as sugar file extension. It is reasonably short, compared to more descriptive forms
as "sugscala" or even "sugarscala" and still distinctive, which "ss" would not be, as it clashes with
a scheme source file extension. The getVersion method simply returns a free-form version string,
which may be updated during the development of the base language. The getPackagedGrammars
is supposed to return a list of paths to SDF *.def files, which contain the base language definition
as well as the form of syntactic extensions and rules for what a ToplevelDeclaration is. For
ScalaLanguage this methods returns paths to two files: Scala.def, which contains the complete
grammar for the Scala language, and SugarScala.def, which contains the rules for the syntactic
extensions and ToplevelDeclarations. The ToplevelDeclaration rule is necessary for Sugar*
to process any sugared file. The framework will process one ToplevelDeclaration at a time and
then maybe adapt the further parsing accordingly.

The complete contents of SugarScala.def is given in Listing 3.1. The fully qualified name
of the module is org/sugarj/languages/SugarScala and it uses the rules from the base lan-
guage definition and predefined rules from org/sugarj/languages/Sugar. Every rule of the
Scala grammar is prepended with "Scala" in the Scala.def, to avoid possible name clashes.
The rules which may be used to parse ToplevelDeclaration are PackageDeclarationSemi,
ScalaTopStatSemi and ScalaExtension. A ScalaExtension is composed of a head and a
body. The head is the keyword "sugar", followed by a Scala id. The body of an extension is

36 3. SugarScala as Sugar* Instantiation



ScalaLanguage
+getInstance(): ScalaLanguage
+createNewProcessor(): AbstractBaseProcessor
+getBaseFileExtension(): String
+getBinaryFileExtension(): String
+getInitEditor(): Path
+getInitEditorModuleName(): String
+getInitGrammar(): Path
+getInitGrammarModuleName(): String
+getInitTrans(): Path
+getInitTransModuleName(): String
+getLanguageName(): String
+getPackagedGrammars(): List<Path>
+getSugarFileExtension(): String
+getVersion(): String
+isBaseDecl(IStrategoTerm): boolean
+isExtensionDecl(IStrategoTerm): boolean
+isImportDecl(IStrategoTerm): boolean
+isNamespaceDec(IStrategoTerm): boolean
+isPlainDecl(IStrategoTerm): boolean

«interface»
IBaseLanguage

createNewProcessor(): AbstractBaseProcessor
getBaseFileExtension(): String
getBinaryFileExtension(): String
getInitEditor(): Path
getInitEditorModuleName(): String
getInitGrammar(): Path
getInitGrammerModuleName(): String
getInitTrans(): Path
getInitTransModuleName(): String
getLanguageName(): String
getPackagedGrammars(): List<Path>
getSugarFileExtension(): String
getVersion(): String
isBaseDecl(IStrategoTerm): boolean
isExtensionDecl(IStrategoTerm): boolean
isImportDecl(IStrategoTerm): boolean
isPlainDecl(IStrategoTerm): boolean

AbstractBaseLanguage
+AbstractBaseLanguage()
+ensureFile(String): Path
+getModelName(IStrategoTerm): String
+getPackagedGrammars(): List<Path>
+getPluginDirectory(): Path
+getTransformationApplication(IStrategoTerm): IStrategoTerm
+getTransformationBody(IStrategoTerm): IStrategoTerm
+getTransformationName(IStrategoTerm): String
+isModelDec(IStrategoTerm): boolean
+isTransformationApplication(IStrategoTerm): boolean
+isTransformationDec(IStrategoTerm): boolean
+isTransformationImportDec(IStrategoTerm): boolean

Figure 3.2.: ScalaLanguage class hierarchy
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1 definition
2 module org/sugarj/languages/SugarScala

3 imports org/sugarj/languages/Scala

4 org/sugarj/languages/Sugar

5

6 exports
7 context-free syntax
8 ScalaPackageDeclarationSemi -> ToplevelDeclaration

9 ScalaTopStatSemi -> ToplevelDeclaration

10 ScalaExtension -> ToplevelDeclaration

11

12 ScalaExtensionHead ScalaExtensionBody -> ScalaExtension {"ScalaExtension"}

13 "sugar" ScalaId -> ScalaExtensionHead {"ScalaExtensionHead"}

14 "{" ExtensionElem* "}" -> ScalaExtensionBody {"ScalaExtensionBody"}

Listing 3.1: Extension Syntax and ToplevelDeclarations for ScalaLanguage

an arbitrary number of ExtensionElem inside of curly braces. ExtensionElem is a rule defined
in org/sugarj/languages/Sugar and can either be Stratego or SDF rules. A more thorough
explanation of syntax extensions is given in the case studies in this chapter.

The initializer methods come in pairs and are used to point to initial state files and the respective
modules defined in these files. The editor initializer points to a *.serv file, which contains
definitions for an Eclipse editor. The grammar initializer points to an *.sdf file, which is supposed
to include the sugar module and a SugarJ common module. The trans initializer points to a *.str
file, which is supposed to import all initial Stratego definitions for the language to define.

The predicate methods are used by the Sugar* framework to help identify Stratego terms. A
base declaration is any top level declaration in the base language, for example class or object
declarations in Scala. The predicate should thus return true if the Stratego term is a constructor of
such a declaration. An extension declaration is a Stratego term which corresponds to a syntactic
extension. For ScalaLanguage this is the ScalaExtension constructor. An import declaration
denotes another entity to be imported and has a special role in Sugar*, as it may also be used to
import a syntactic extension into a compilation unit. How this is achieved is explained in the
description of the language processor. A plain declaration is used for less structured languages
like LATEX and can be ignored in the context of ScalaLanguage.

3.3.2 Processor Interface

The complete type hierarchy for ScalaProcessor is given in Figure 3.3. The responsibility of the
processor is to process one compilation unit with possible syntactic extensions. For this, it must
unparse the AST in form of IStrategoTerms to compilable base language source code, tell Sugar*
how to call the base language compiler appropriately and also signal dependencies on other
modules to the framework. The actual resolving of circular dependencies is handled by the
framework and does not need to be taken care of in the processor. The processor is created by
the framework with a call to createNewProcessor in the corresponding implementation of the
language interface.
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ScalaProcessor
+compile(List<Path>, Path, List<Path>): List<Path>
+getExtensionBody(IStrategoTerm): IStrategoTerm
+getExtensionName(IStrategoTerm): String
+getGeneratedSource(): String
+getGeneratedSourceFile(): Path
+getLanguage(): ScalaLanguage
+getModulePathOfImport(IStrategoTerm): String
+getNamespace(): String
+init(RelativePath, Environment)
+isModuleExternallyResolvable(String): boolean
+prettyPrint(IStrategoTerm): String
+processBaseDecl(IStrategoTerm): List<String>
+processModuleImport(IStrategoTerm)

AbstractBaseProcessor
+AbstractBaseProcessor()
+compile(Path, String, Path, List<Path>, Map<Path, Pair<Path, String», Map<Path, Integer>)
+getImportLocalName(IStrategoTerm): String
+getInterpreter(): HybridInterpreter
+getModulePath(IStrategoTerm): String
+getRelativeNamespaceSep(): String
+getTransformedModulePath(IStrategoTerm): String
+reconstructImport(String, IStrategoTerm): IStrategoTerm
+setInterpreter(HybridInterpreter)

«interface»
IBaseProcessor

compile(List<Path>, Path, List<Path>): List<Path>
getExtensionBody(IStrategoTerm): IStrategoTerm
getExtensionName(IStrategoTerm): String
getGeneratedSource(): String
getGeneratedSourceFile(): Path
getLanguage(): AbstractBaseLanguage
getModulePathOfImport(IStrategoTerm): String
getNamespace(): String
init(RelativePath, Environment)
isModuleExternallyResolvable(String): boolean
processBaseDecl(IStrategoTerm): List<String>
processModuleImport(IStrategoTerm)

Figure 3.3.: ScalaProcessor class hierarchy

All methods of IBaseProcessor are callbacks and called by Sugar* at appropriate times. When
to call some of the methods of the processor is determined with the help of the predicates in
the corresponding language interface. The first method called after instantiation of a processor
is init, which informs the processor of the path to the sugared compilation unit source file and
the current environment. ScalaProcessor uses this information to determine the location of the
to-be-created base language source file returned by getGeneratedSourceFile, which may be passed
to the compiler in later steps.
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TermFinder
+find(cons: String, term: IStrategoTerm): IStrategoTerm
+mayFind(cons: String, term: IStrategoTerm): IStrategoTerm
+select(cons: String, term: IStrategoTerm): List<IStrategoTerm>

ImportTermExtractor
+ImportTermExtractor(ScalaProcessor)
+extract(IStrategoTerm): List<String>
+extractFirst(IStrategoTerm): String

ScalaCommands
+isExternallyResolvable(module: String): boolean
+scalac(files: List<Path>, bin: Path, includes: List<Path>)

Figure 3.4.: ScalaProcessor Helper Classes

Every identified base declaration is passed to processBaseDecl. The processor then needs to
unparse this term and append the result to an internal buffer, which can be used at a call to
getGeneratedSource to build the base source file. The unparsing is achieved with the helper
method prettyPrint, which makes use of an ATermCommands helper class provided by the Sugar*
framework. This helper class allows to parse pretty printing tables in the Box language format
and then apply these pretty printing rules to Stratego terms. The pretty printing table for the
Scala grammar is generated by Spoofax and included in the plug-in as Scala.pp.

The processBaseDecl method is also used to query and update context information from the passed
terms. ScalaProcessor for example further extract namespace information from encountered pack-
age declaration terms, which can then be returned by getNamespace. The processModuleImport
method is intended for the same unparsing and processing purpose, but it is not called everytime
an import is encountered. The reason for this is, that import statements, resolving to syntactic
extensions, should not show up in base source files. The compiler of the base language would
not be able to resolve the import and fail to compile the desugared source files.

Syntactic extensions are handled by the processor with the methods getExtensionBody and
getExtensionName, which simply extract body and name from an extension term, respectivelly.
The actual interpretation of the extension definition and the adaption of the parser is handled
by Sugar*. If the processed compilation unit only consists of imports or syntactic extension, the
processor must take care to return the empty string on a call to getGeneratedSource. This is the
signal for the framework to consider the compilation unit to be a pure syntactic extension and
avoid a call to processModuleImport on other compilation units including the currently processed
unit.

Another callback concerning modules is isModuleExternallyResolvable. On encountering an import
declaration the framework tries to resolve the respective module in the active projects. If it
fails to find a corresponding file, it uses the callback to determine if the module can be resolved
outside from the project context. This is for example the case for the Scala standard library,
which is in the classpath of the project, but can not be resolved as source file.

ScalaProcessor makes use of three helper classes: ScalaCommands, ImportTermExtractor and
TermFinder. The contained methods and signatures are given in Figure 3.4. The isModuleExternal-
lyResolvable method from ScalaProcessor is forwarded to the helper method isExternallyResolvable
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Figure 3.5.: Project Layout for the XML Syntax Extension

from ScalaCommands. This helper method determines the resolvability of a module by creating a
source file only containing an import statement corresponding to the module in question. This
file is then passed to the compiler with the current classpath and the result is checked against
success or failure.

The scalac method creates a command line call from the passed arguments to the scalac script
included in the standard Scala distribution. The files argument is the list of files to compile, bin is
the path to the output directory and include is the classpath to use. The expected return value is
a list of files which were actually created by the call. This list of files is obtained by matching the
verbose output of the compiler against the regular expression ^\[wrote ’[^’]*’ to (.*)\]$.
The implementation of ScalaProcessor.compile simply forwards to the scalac method.

The helper classes ImportTermExtractor and TermFinder are used to implement the getMod-
ulePathOfImport method. This method expects a Stratego term representing any kind of scala
import constructor and returns the expected path to the module to import. As Scala has a variety
of possible import terms the TermFinder is used to find subterms representing module names in
the given term and the ImportTermExtractor then extracts the fully qualified name out of the
term.

3.4 Case Study: XML

The Scala grammar created in this work does intentionally not have support for embedded
XML expressions – opposed to native Scala code. This first case study shows how support for
embedded XML expressions in Scala can be achieved with SugarScala. The Eclipse project layout
of the XML extension is given in Figure 3.5.

The project is split into three packages: concretesyntax, sample and xml. The concretesyntax

package contains definitions for easier handling of the actual syntactic extensions. The sample

package contains example uses of the syntactic extension. Inside the xml package are the actual
syntactic extension and the necessary term rewritings.

To give a short recap on XML the basic grammar for an XML element is given in Listing 3.2.
An element is either in the open form, having a start and end tag, or in the closed form, only
consisting of one tag. A tag always begins with a less-than-sign and ends with a greater-than-sign.
An end tag has a slash after the less-than-sign and a closed tag has a slash before the greater-
than-sign. Start and closed tags can have an arbitrary number of attributes after the tag name.
An attribute consists of an attribute name, followed by an equals-sign and a value surrounded
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elem = sTag, {elem | ? CDATA ?}, eTag

| emptyElem

sTag = "<", name, {attr}, ">"

eTag = "</", name, ">"

name = [ns], id

emptyElem = "<", name, {attr} "/>"

ns = id, ":"

attr = name, "=", attrVal

attrVal = ’"’, ? val ?, ’"’

Listing 3.2: Sketched out XML element syntax

Figure 3.6.: Eclipse editor using the XML extension, showing a modified sample/Book.sugs

by quotation marks. Every name can have a namespace, which is an id prepended before the
name, followed by a colon. In between start and end tags can be an arbitrary number of nested
elements or character data.

A showcase of the features of the XML extension is given in Figure 3.6 which shows an Eclipse
editor using the XML extension. The sample file consists of a package declaration, imports for
the XML extension and a Book case class with a toXml method. As one can see the XML syntax is
used in a position where a Scala expression is expected. Furthermore the attribute value for the
ISBN and the contents of the author and title elements are replaced by Scala blocks. Additionally
the mismatch of the start and end tag names is detected and marked as an error.

The desugared code for the sample file in Figure 3.6 is given in Listing 3.3. XML elements with
contents are expressed by the scala.xml.Elem class. The signature for the apply method of the
companion object used for the desugaring is:

def apply(prefix: String, label: String, attributes: MetaData,

scope: NamespaceBinding , minimizeEmpty: Boolean, child: Node*): Elem

The prefix is the namespace part of the tag name. The label is simply the tag name. The list of
attributes is not represented by the List type in Scala, but is rather of type scala.xml.MetaData.
MetaData is a common supertype of unprefixed and prefixed attributes, which are represented by
two different classes, scala.xml.UnprefixedAttribute and scala.xml.PrefixedAttribute, respectively.
The parameters for the UnprefixedAttribute constructor are the name of the attribute, the value
of the attribute and the remaining attributes, again represented as MetaData, in that order.

42 3. SugarScala as Sugar* Instantiation



1 package sample

2

3 import xml.ImplicitSugar._

4

5 case class Book(isbn: String, title: String, author: String) {

6 def toXml =

7 scala.xml.Elem("b", "book",

8 new scala.xml.UnprefixedAttribute("isbn", { isbn }, scala.xml.Null),

9 scala.xml.TopScope,

10 false,
11 scala.xml.Elem("b", "author", scala.xml.Null,

12 scala.xml.TopScope, false, { author }),

13 scala.xml.Elem("b", "title", scala.xml.Null,

14 scala.xml.TopScope, false, { title }))

15 }

Listing 3.3: Desugared Code for Book Example

1 package concretesyntax

2

3 import org.sugarj.languages.Scala

4 import org.sugarj.languages.Stratego

5

6 import concretesyntax.MetaExplode

7

8 sugar Scala {

9 context-free syntax
10 "|[" ScalaExpr "]|" -> StrategoTerm {cons("ToMetaExpr")}
11 ":${" StrategoTerm "}" -> ScalaExpr {cons("FromMetaExpr")}
12 ":${" StrategoTerm "}" -> ScalaNoLExpr {cons("FromMetaExpr")}
13 }

Listing 3.4: concretesyntax/Scala.sugs

The empty list of MetaData is represented by the class scala.xml.Null. The NamespaceBinding
represents the namespace the element is in, which could be introduced by a special xmlns
attribute. But as there is none all the elements are part of the toplevel namespace scope which is
represented by the scala.xml.TopScope object. The minimizeEmpty flag can be set to signal that
the element may be printed as an empty element, as long as it does not have any nested children.
The list of children for an element is given as the child variable arguments parameter.

The contents of concretesyntax/Scala.sugs is given in Listing 3.4. Lines 1-6 are regular Scala
syntax, but none of the imports refers to valid Scala types. Line 3 imports the Scala grammar
SDF rules, including ScalaExpr and ScalaNoLExpr. Line 4 imports the Stratego grammar rules,
including StrategoTerm. Line 6 imports the local concretesyntax/MetaExplode.sugs, which
is taken from the StrategoXT repository and contains Stratego rules matching on ToMetaExpr and
FromMetaExpr constructors. Lines 8-13 describe a syntactic extension, as defined in Listing 3.1.

The syntactic extension consists of new SDF rules which simplify the writing of desugarings on
the Scala SDF AST, as they define the concrete syntax of Scala [4]. The first rule in line 10 allows
to use a Scala expression as a StrategoTerm, which will be transparently transformed by the
rules from MetaExplode.sugs to the corresponding AST. The rules defined in lines 11 and 12
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describe the opposite direction and allow a StrategoTerm to be transparently transformed to a
Scala expression.

The core syntactic extension for XML is described in xml/Sugar.sugs and given in Listings 3.5
and 3.6. It makes use of Scala and Stratego syntax elements, as well as concrete syntax and
thus imports concretesyntax.Scala. Another important aspect of the XML syntax extension is
actual XML syntax and corresponding rewriting rules, which are imported from xml.XmlSyntax

and xml.XmlTextTools. Both of these files are copied from the Stratego repository and did not
require any modification. The actual syntax extension is given from line 8 to 18 and is only a
small part of the whole extension. The rest of the file describes the tree rewritings to achieve the
desugaring to base Scala syntax.

The changes to existing lexical rules are the rejection of XML commentary start and end brackets
as Scala operators. Additionally they are added to the keywords as they also resemble perfectly
fine identifiers with which they should not be ambiguous. The changes to context-free syntax
enable the interweaving of Scala syntax with XML syntax. Element and AttValue are the
imported SDF rules for XML elements and attribute values, respectively. Lines 15 and 16 allow
an XML element to appear everywhere, where a Scala expression could be. Lines 17 and 18 allow
to use Scala blocks, including the curly braces, instead of elements or attribute values.

The Stratego rules declared as desugarings are applied innermost on the parsed AST, until no
more changes can be made to the tree. So desugar-element, desugar-empty-element and desugar-
text are entry points for the desugaring, whereas desugar-attrs, desugar-prefix and desugar-attrval
are helper rules. Strategy scala-multiline-quote is a helper strategy to wrap Strings without quotes
into Scala multiline strings. The rule constraint-error is special, as it is used by Sugar* to highlight
errors in the Eclipse editor.

The rule desugar-element matches against the Element constructor. This constructor takes four
parameters: the name of the start tag, a list of attributes, a list of children and the name of
the end tag. A tag name in the imported XML syntax always is a QName constructor, nested in
an ElemName constructor. The QName constructor takes two parameters: a namespace prefix
and the actual name. The desugar-element rule is defined twice – one matches against Element
without children, the other matches against Element with children.

The first case for Element without children is the simpler of both and can make use of the concrete
syntax defined in Listing 3.4. As one can see by comparing Figure 3.6 and Listing 3.3, an Element
needs to be desugared to an application of the scala.xml.Element object. Because of the concrete
syntax the application can be expressed in regular Scala syntax. As the arguments need further
desugaring, the concrete syntax is again used to fall back to Stratego expressions, except for the
TopScope and false arguments.

The prefix is optional in the grammar and is thus either None() or Some(Prefix(p)). The helper
rule desugar-prefix has two definitions for these two cases. None is desugared to the Scala null,
which is represented by the Null() constructor in the AST. The p of prefix is a Stratego string. If
wrapped in double quotes, it denotes a Scala string in the AST.

The attrs pattern variable binds against a possibly empty list of Attribute constructors. The
Attribute constructors takes two parameters: an attribute name in form of AttrName constructors
and a value. The AttrName always has an already known QName as only child. The desugaring
of the attributes list is achieved with the desugar-attrs rule, which distinguishes three cases:
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1 package xml

2

3 import concretesyntax.Scala

4 import xml.XmlSyntax

5 import xml.XmlTextTools

6

7 sugar Sugar {

8 lexical syntax
9 "<!--" -> SCALA-KEYWORD

10 "<!--" -> SCALA-BRACKET-OP {reject}
11 "-->" -> SCALA-KEYWORD

12 "-->" -> SCALA-SUM-OP {reject}
13

14 context-free syntax
15 Element -> ScalaExpr {prefer}
16 Element -> ScalaNoLExpr {prefer}
17 ScalaBlockExpr -> Element {prefer}
18 ScalaBlockExpr -> AttValue

19

20 desugarings
21 desugar-element

22 desugar-empty-element

23 desugar-text

24

25 strategies
26 scala-multiline -quote = double-quote; double-quote; double-quote

27

28 rules
29 desugar-element:

30 Element(ElemName(QName(prefix, name)), attrs, [], _) ->

31 |[ scala.xml.Elem(

32 :${<desugar-prefix> prefix},

33 :${quotedName},

34 :${<desugar-attrs> attrs},

35 scala.xml.TopScope,

36 false) ]|

37 where quotedName := <quote(!’"’)> name

38

39 desugar-element:

40 Element(ElemName(QName(prefix, name)), attrs, children, _) ->

41 AppExpr(

42 Path(["scala", "xml", "Elem"])

43 , ArgumentExprs(

44 Some(

45 Exprs(

46 <flatten-list>

47 [ <desugar-prefix> prefix

48 , <double-quote> name

49 , <desugar-attrs> attrs

50 , Path(["scala", "xml", "TopScope"])

51 , False()

52 , children ]))))

Listing 3.5: xml/Sugar.sugs
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54 desugar-empty-element:

55 EmptyElement(ElemName(QName(prefix, name)), attrs) ->

56 |[ scala.xml.Elem(

57 :${<desugar-prefix> prefix},

58 :${quotedName},

59 :${<desugar-attrs> attrs},

60 scala.xml.TopScope,

61 true) ]|

62 where quotedName := <quote(!’"’)> name

63

64 desugar-text:

65 Text(chardata) ->

66 |[ scala.xml.Text(:${str}) ]|

67 where str := <scala-multiline -quote> <chardata2string > Text(chardata)

68

69 constraint -error:

70 Element(sname, _, _, ename) ->

71 [(sname, "Start and end tag names are different"),

72 (ename, "Start and end tag names are different")]

73 where <not(structurally -equal)> (sname, ename)

74

75 desugar-attrs:

76 [] -> |[ scala.xml.Null ]|

77

78 desugar-attrs:

79 [Attribute(AttrName(QName(None(), name)), attrval) | rst] ->

80 |[ new scala.xml.UnprefixedAttribute(

81 :${<double-quote> name},

82 :${<desugar-attrval> attrval},

83 :${<desugar-attrs> rst}) ]|

84

85 desugar-attrs:

86 [Attribute(AttrName(QName(Some(Prefix(prefix)), name)), attrval) | rst] ->

87 |[ new scala.xml.PrefixedAttribute(

88 :${<double-quote> prefix},

89 :${<double-quote> name},

90 :${<desugar-attrval> attrval},

91 :${<desugar-attrs> rst}) ]|

92

93 desugar-prefix:

94 None() -> Null()

95

96 desugar-prefix:

97 Some(Prefix(p)) -> <double-quote> p

98

99 desugar-attrval:

100 BlockExpr(blk) -> BlockExpr(blk)

101

102 desugar-attrval:

103 DoubleQuoted(c) -> <double-quote> <xml-attr-value2string > DoubleQuoted(c)

104 }

Listing 3.6: xml/Sugar.sugs cont.
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1. The list is empty. This case desugars to the Scala object scala.xml.Null.

2. The head of the list is an attribute without a prefixed name. This case desugars to a new
initialization of a scala.xml.UnprefixedAttribute.

3. The head of the list is an attribute having a prefixed name. This case desugars to a new
initialization of a scala.xml.PrefixedAttribute.

All cases make use of concrete syntax to avoid writing the AST directly. The name and a possible
prefix just need to be turned to strings by wrapping them in double quotes. The attribute value is
handled by the helper rule desugar-attrval. The rest of the attribute list is recursively handled by
the desugar-attrs rule.

The attribute values can either be Scala block expressions, denoted by BlockExpr, or valid XML
values wrapped in double quotes, which are represented by a DoubleQuoted constructor. The
BlockExpr does not need any desugaring and is thus just returned. The DoubleQuoted is processed
by the imported helper rule xml-attr-value2string, which turns the value to a Stratego string and
is then wrapped with double-quote to be a Scala string.

The case with children for desugar-element can not make use of the concrete syntax. This is
because the number of children is arbitrary and must be appended to the list of expressions
inside of the argument expression. For this purpose the AST is written down directly, as it allows
to make use of the flatten-list rule to flatten the list of expressions. This way the list of the form
[prefix, name, attrs, scope, flag, [c1, c2, ...]] is transformed to [prefix, name, attrs, scope, flag,
c1, c2, ...], which is the desired effect.

The rule desugar-empty-element is defined analogously to desugar-element in the case without
children. The only difference is, that the rules matches against the EmptyElement constructor,
which does not even have a parameter for children. Additionally the minimizeEmpty flag is set to
true, as empty elements should be rendered as such and not in the open element form.

The rule desugar-text matches against Text constructors, which represent char data and can also
be used as children to open elements. Text elements in Scala are represented by the scala.xml.Text
class and can be easily instantiated by the companion object from simple strings. As these strings
may contain linebreaks, the rule makes use of the imported chardata2string rule to transform the
text into a Stratego string and then applies the scala-multiline-quote rule to wrap the String into
a Scala multiline string form.

The constraint-error rule is used by the Spoofax framework for static analysis and marking of
errors in the editor. The rule matches on Element constructors in which the term structure of the
start tag name and the end tag name are not equal. This is only true if the start tag name and
end tag name are not the same. In this case the element is transformed into a list of pairs. The
first argument of the pair is the term to mark, and the second argument of the pair is the error
message to attach to the mark.

This XML case study shows how Scala can be syntactically extended with a domain specific
language. It does not make any use of the XML parsing capability built into the Scala compiler,
but still appears to be seamlessly integrated into the language. XML elements can be used instead
of expressions and Scala blocks can be used as an interpolation mechanism for nested elements
or attributes. Additionally static analysis can be used to detect mismatching opening and closing
tags.
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Figure 3.7.: Editor showing an example EScala file

The extension describes the entry points by providing additional productions and constructors
for already existing sorts of the Scala grammar. These additional productions are again only com-
posed of imported sorts from the XML grammar which could be reused without any modification.
The Stratego language is used to transform the newly introduced nodes from the XML grammar
to nodes of the Scala grammar. As the unparsing rules for the Scala grammar are provided as
part of SugarScala, the Scala syntax tree is unparsed to valid Scala syntax which can then be
passed to the Scala compiler for the actual compilation.

3.5 Case Study: EScala

EScala is an extension to Scala which allows declarative object-oriented events [16]. It is originally
developed as a modification to the Scala Compiler v2.9.0. Unfortunately this modification is not
compatible with the current Scala compiler v2.10.3. Large parts of the functionality of EScala are
however implemented in a Scala library which can be used apart from the compiler modification.
This case study shows how SugarScala allows to use the functionality of the EScala library with
the familiar syntax from the compiler modification.

Figure 3.7 shows an example EScala file, opened in an Eclipse editor with SugarScala enabled.
The import in line 3 is needed to actually activate the EScala syntactic extension. The syntax
extensions used are the two new template statements imperative evt and evt. The imperative
evt statement, as used in line 7, declares a new imperative event with an identifier and a type
parameter clause. The type parameter clause defines the type of arguments the event expects to
be triggered with. A Unit type parameter defines an event which does not take any arguments.
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EventNodeAnd[T]

scala.events

... ImperativeEvent[T]
apply(v: T)

EventNodeSeq[T]EventNodeOr[T]

EventNode[T]

«trait»
Event[+T]

| |, and, map, then, +=, -=, ...

Figure 3.8.: Type hierarchy for EScala events

1 package escala

2

3 object Imperative {

4 import scala.events.EventsLibConversions._

5

6 lazy val evt1 = new scala.events.ImperativeEvent[Unit]

7 lazy val evt2 = new scala.events.ImperativeEvent[Unit]

8

9 lazy val changed = evt1 || evt2

10

11 def react { println ( "Something changed" ) }

12

13 def main (args: Array[String]) {

14 changed += react _

15 evt2()

16 }

17 }

Listing 3.7: Desugared code for Figure 3.7

Imperative events can be triggered in the code in a similar way to applying functions, as can be
seen in line 21. The evt statement in line 11 is used for declarative events, which are defined
on behalf of already existing events. For this purpose the statement takes arbitary expressions
on its right hand side, which can combine already existing events with operators. Apart from
combination operators, events also have operators to register or unregister event handlers. Line
18 registers the react function on the declarative changed event, which is then called each time
when evt1 or evt2 are triggered.

The type hierarchy for events in EScala is sketched out in Figure 3.8. Event is the base trait of
the events and EventNode a common abstract implementation. All events thus have common
operators defined which can be used for combination and reaction purposes. Additionally all
types are generalized over T, which is the argument type of the event. The different operations
yield a corresponding event type with the appropriate handling logic. Only imperative events
can be triggered (applied) directly.
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1 package escala

2

3 import escala.Sugar

4

5 class Figure {

6 // declare event on observable method

7 evt moved = afterExec(moveBy)
8

9 // define observable method

10 observable def moveBy(dx: Int, dy: Int) = {

11 // moving...

12 }

13

14 // method to call on moved event

15 def afterMoved(args: (Int, Int), ret: Unit) = println("Moving...")

16

17 // register method with moved event

18 moved += afterMoved _

19 }

Listing 3.8: EScala observable method example

Listing 3.7 shows the desugared code for Figure 3.7. The import for escala.Sugar does not show
up in the desugared code, as it refers to a syntactic extension and not a valid Scala module. But
instead a new import statement is included at top of the template of Imperative, which imports
implicit conversions for the EScala library. These are used to implicitly convert the events to
appropriate types and thus provide a nicer API. The imperative evt statements are desugared
to lazy value definitions of instantiations of scala.events.ImperativeEvent. The declarative evt
statement is simply desugared to a lazy value definition with the right-hand-side reused. The ||

is definied as unary method in scala.events.ImperativeEvent can thus be used as infix operator.

Apart from imperative and declarative events, EScala also has support for observable methods.
An example use is given in Listing 3.8. The moved event is declared by a new afterExec expression
in line 7. The corresponding observable method moveBy is defined in line 10 and marked with the
new observable modifier. The reaction function afterMoved is defined in line 15 and registered
in line 18. Reaction functions to observable methods always require two arguments: the first
is the arguments for the observed method and the second is the return value of the observed
method. Multiple arguments are expressed with tuple types.

The desugared code for the observable method example is given in Listing 3.9. Again the import
of escala.Sugar does no longer appear, but the implicits are imported on top of the template
for Figure. The afterExec expression is desugared to a simple select of after on the argument, as
can be seen in line 6. The desugaring of observable methods is twofold:

1. The method signature and definition are taken as they are, but the name is synthesized
(line 8). The synthetization is leaned on the way Scala handles synthetic names, by making
use of dollar signs and a descriptive label.

2. A new lazy value with the original name is defined. It is bound to an application of
scala.events.Observable[T, U] taking the method as argument (line 10). The Observable
wraps around the method definition and has the val after of type ImperativeEvent as member,
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1 package escala

2

3 class Figure {

4 import scala.events.EventsLibConversions._

5

6 lazy val moved = moveBy.after

7

8 def $escala_syn$moveBy(dx: Int, dy: Int) = {}

9

10 lazy val moveBy = scala.events.Observable($escala_syn$moveBy)

11

12 def afterMoved(args: (Int, Int), ret: Unit) = println("Moving...")

13

14 moved += afterMoved _

15 }

Listing 3.9: Desugared code for Listing 3.8

among others. Additionally Observable[T, U] extends pT q ñ U , so together with the imported
implicits it can be handled like any other mod from a usage point of view.

The EScala syntactic extension is defined in escala/Sugar.sugs and is given in Listings 3.10
and 3.11. Lines 6 to 24 describe the new syntax. The imperative and declarative events, as
well as the observable method are defined as new template statements. Each production has its
own node constructor, so they can be easily distinguished and desugared later on. The afterExec
and beforeExec expressions are added as new ScalaExprs, again with their own respective
constructors. For simplicity reasons the syntax inside the parentheses is expected to be a ScalaId,
but it could as well be an arbitary ScalaNoLExpr. In the same manner, afterExec and beforeExec
can not be used as ScalaNoLExpr, inside parentheses, with this extension. The new keywords
are added as such to the lexical syntax so they can not be ambiguous with identifiers.

The desugaring for EScala is conceptually a bit different from the desugaring for XML. The reason
for this is the need to conditionally add the import for the implicits to templates containing
EScala nodes. The Stratego rules declared as desugarings are applied innermost, as stated before.
But they are not applied innermost one after another in the order they are declared, but rather is
each of the rules tried at each possible position in the tree. So if the desugaring rules were all
declared as desugarings, the EScala nodes would all have been already desugared at the point,
where the desugaring process encounters the first template. This way it would be impossible to
detect the use of EScala nodes on the template level. To encounter this circumstance the EScala
syntactic extension defines only one rule as entry point for the desugaring, desugar-escala.

The rule desugar-escala, defined in line 30, makes use of the implicit conditionals used in the
Stratego language. So first it tries to apply the rule desugar-escala-implicits-import, and only if
that succeeds, it will use the rule desugar-escala-nodes innermost from the current position. But
the rule desugar-escala-implicits-import will only match on TemplateBody applications. So if this
rule does not match, then desugar-escala will fail on the current node. This way it is possible to
prepend the implicits import in the template but still apply the node desugarings innermost.

Apart from only matching TemplateBody applications, the desugar-escala-implicits-import defined
in line 34 has two additional requirements:
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5 sugar Sugar {

6 context-free syntax
7 "imperative" "evt" ScalaId ScalaTypeParamClause

8 -> ScalaTemplateStat {cons("ImperativeEvt")}
9

10 "evt" ScalaId ScalaTypeParamClause? "=" ScalaExpr

11 -> ScalaTemplateStat {cons("Evt")}
12

13 "observable" "def" ScalaFunDef

14 -> ScalaTemplateStat {cons("ObservableDef")}
15

16 "afterExec" "(" ScalaId ")" -> ScalaExpr {cons("AfterExec")}
17 "beforeExec" "(" ScalaId ")" -> ScalaExpr {cons("BeforeExec")}
18

19 lexical syntax
20 "afterExec" -> SCALA-KEYWORD

21 "beforeExec" -> SCALA-KEYWORD

22 "observable" -> SCALA-KEYWORD

23 "evt" -> SCALA-KEYWORD

24 "imperative" -> SCALA-KEYWORD

25

26 desugarings
27 desugar-escala

28

29 rules
30 desugar-escala =

31 desugar-escala-implicits -import

32 ; innermost(desugar-escala-nodes)

33

34 desugar-escala-implicits -import:

35 TemplateBody([|body]) -> TemplateBody([import|body])

36 where import := |[ import scala.events.EventsLibConversions._; ]|

37 ; <not(elem)> (import, body)

38 ; <uses-escala> body

39

40 uses-escala =

41 oncetd(

42 ?AfterExec(_)

43 + ?BeforeExec(_)

44 + ?ImperativeEvt(_, _)

45 + ?Evt(_, _, _)

46 + ?ObservableDef(_))

47

48 escala-syn = ?name; <strcat >("$escala_syn$", name)

49

50 desugar-escala-nodes =

51 desugar-after-exec

52 <+ desugar-before-exec

53 <+ desugar-imperative -evt

54 <+ desugar-evt

Listing 3.10: EScala Syntactic Extension
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56

57 desugar-after-exec:

58 AfterExec(name) -> DesignatorExpr(name, Id("after"))

59

60 desugar-before-exec:

61 BeforeExec(name) -> DesignatorExpr(name, Id("before"))

62

63 desugar-imperative -evt:

64 ImperativeEvt(name, type) ->

65 |[ lazy val :${name} = new scala.events.ImperativeEvent :${type} ]|

66

67 desugar-evt:

68 Evt(name, type, expr) -> |[ lazy val :${name} = :${expr} ]|

69

70 desugar-observable -def:

71 [obs_def|rst] ->

72 <flatten-list> <map(desugar-observable -def-proc <+ id)> [obs_def|rst]

73 where
74 <oncetd(?ObservableDef(_))> [obs_def|rst]

75

76 desugar-observable -def-proc:

77 TemplateStatSemi(

78 ObservableDef(

79 ProcDef(

80 FunSig(Id(name), typeParamClause , paramClause),

81 blk)),

82 semi)

83 ->

84 [TemplateStatSemi(

85 FunDefDef(

86 ProcDef(

87 FunSig(

88 Id(<escala-syn> name),

89 typeParamClause ,

90 paramClause),

91 blk)),

92 semi)

93 ,TemplateStatSemi(

94 |[ lazy val :${name} = scala.events.Observable(:${<escala-syn> name}) ]|,

Listing 3.11: EScala Syntactic Extension cont.

8 sugar Scala {

9 context-free syntax
10 "|[" ScalaTemplateStat "]|" -> StrategoTerm {cons("ToMetaExpr")}
11 "|[" ScalaTemplateStatSemi "]|" -> StrategoTerm {cons("ToMetaExpr")}
12 ":${" StrategoTerm "}" -> ScalaExpr {cons("FromMetaExpr")}
13 ":${" StrategoTerm "}" -> ScalaNoLExpr {cons("FromMetaExpr")}
14 ":${" StrategoTerm "}" -> ScalaTemplateStat {cons("FromMetaExpr")}
15 ":${" StrategoTerm "}" -> ScalaId {cons("FromMetaExpr")}
16 ":${" StrategoTerm "}" -> ScalaTypeParamClause {cons("FromMetaExpr")}
17 }

Listing 3.12: Concrete syntax for EScala – concretesyntax/Scala.sugs
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1. The import statement must not already be in the template body.

2. The body must contain at least one EScala node.

The former is checked with the predefined elem rule on the body. The latter uses a matching-
only helper rule uses-escala. Also noteworthy is the actual definition of the import statement
with the help of concrete syntax. The semicolon makes sure that the import statement can be
unambiguously parsed as a terminated statement. So where the XML concrete syntax only defines
Scala expressions, the EScala concrete syntax also makes use of template statements and other
Scala rules. The adapted concretesyntax/Scala.sugs is given in Listing 3.12 and is defined
analogous to Listing 3.4.

The helper rule uses-escala matches against any of the defined EScala applications AfterExec,
BeforeExec, ImperativeEvt, Evt or ObservableDef with the oncetd strategy. This strategy traverses
the AST in a top-down fashion and succeeds if the given rule can be successfully applied at least
once. So the rule uses-escala succeeds, if any of the EScala nodes is used in the subtree of the
current node.

The rule desugar-escala-nodes simply tries each of the rules desugar-after-exec, desugar-before-
exec, desugar-imperative-evt, desugar-evt and desugar-observable-def from left to right. All of the
mentioned rules, except for the last rule desugar-observable-def, are straight-forward translations.
Rule desugar-after-exec desugars the node AfterExec(name) to a DesignatorExpr with name as the
left-hand-side and the id "after" as the right-hand-side. The rule desugar-before-exec is defined
analogous. Rules desugar-imperative-evt and desugar-evt desugar the respective application to a
lazy val definition, as already described. With the help of the concrete syntax the rules can be
expressed intuitively.

The desugaring of ObservableDef applications is achieved with the help of the desugar-observable-
def rule. As in this case one statement must be desugared into two statements, the rule matches
on lists of statements. If the list contains an ObservableDef application, then the helper rules
desugar-observable-def-proc are mapped over the list. These are two rules with the same name,
but different match criteria. One of these rules matches on ProcDef statements, the other on
FunDef statements (omitted in the listing). As the map should not fail – and with it the whole
rule – on non-ObservableDef applications, the alternative to the desugar-observable-def-proc is the
never-failing id. If one of the rules matches on a statement in the list, it will be transformed
into a list of two statements: The first with the respective def, but a synthetic name; the second
with a lazy value definition having the original name, and being bound to scala.events.Observable
wrapped around the synthetic name, as explained before. As the desired result is not a nested list,
the predefined flatten rule is used to assure a flat list. The synthetization of the name is achieved
with the escala-syn rule, which simply prepends the string "$escala_syn$" on the name.

The EScala case study shows that SugarScala allows to syntactically integrate Scala language
extensions without much effort – supposed these extensions come in form of Scala libraries. The
respective invocations of these libraries can be hidden with syntactic sugar and let them appear
to be almost seamlessly integrated into the base language. This syntactic sugar can be defined
anywhere in the Scala grammar, not only at expression or application position, as can be seen
with the evt or observable statements. If the language library further provides smart implicit
declarations, these can be transparently imported to avoid providing otherwise necessary type
information. Implicits are a large benefit for SugarScala given that desugarings can not access
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the type system of the base language and thus can not be defined type-dependent or derive
necessary type information.

SugarScala however fails to replace the EScala compiler extension to full extent. The original
EScala does not require methods to be marked with observable to use them in afterExec and
beforeExec expressions in the same class. The use of observable would only be necessary to
allow methods to be observable between different types. But SugarScala needs a syntactical
distinction between regular methods and observable methods to know which need to be rewritten.
The introduction of new syntax allows to introduce a new node in the AST, which can then be
easily detected and transformed. Otherwise the necessary static analysis to find the referenced
method would need to be reimplemented in form of complicated Stratego rules.

Another shortcoming is the already mentioned inability to access or modify the type system.
The observable seems to be a modifier for method definitions but it is in fact a new statement
which only resembles method definitions. A user unaware of the extension may assume that
the observable def is really a method definition which can be overridden in subclasses, as
other method definitions can. This however will not work as the desugaring will transform the
statement into a lazy val definition of type Observable with the same name. The EScala compiler
extension additionally allows to override events in subclasses and reference the parent event with
super. This semantical change of super requires access to the type system and can thus simply not
be expressed with SugarScala.

3.6 Discussion

The XML and EScala case studies show how SugarScala allows to extend regular Scala with
support for domain specific languages on the syntactical level: The SDF Scala grammar is
extended by adding new arbitrary productions for existing sorts. With the new productions the
parser may then create new constructor applications in the resulting AST. The AST with the
new applications must be transformed with the help of Stratego to an AST only consisting of
applications from the original grammar. This task can be simplified with the help of concrete
syntax. The desugared AST can then finally be unparsed and the resulting source code is passed
to the Scala compiler.

This is a purely syntactical approach because it is not possible to define desugarings conditional
on information derived from static analysis. It may be possible to handle type information with
Stratego in SugarScala as can be seen with SugarFomega [21], but we did not investigate in this
direction due to the complexity of the Scala language. What however is possible is the definition
of simple syntactic analysis as can be seen with the detection of mismatching start and end tags
for the XML case study.

The lack of static analysis is a drawback for usability of SugarScala. Compilation errors are
not indicated in the opened Eclipse editor, but are printed by the Scala compiler on the Sugar*
console. As the Scala compiler only sees the unparsed AST the user might be confronted with
error messages referring to code he has not written himself but is the result of desugarings.

The error reporting and recovery in general have room for improvement, as well as the usability.
Syntax errors are simply reported as such by the JSGLR parser, as it does not have an under-
standing of the semantics of the syntax. Failing to desugar all new application constructors of an
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extension may silently inhibit that the unparsed code is passed to the compiler. The Sugar* parser
may need some time to resolve and parse dependencies of the currently edited file, which may
lead to a noticeable delay between typing and updated syntax highlighting and static analysis
results.

SugarScala however appears functional and can be used for prototyping syntactic DSL embed-
dings in Scala without the need to modify the Scala compiler.
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4 Integration into the Scala Compiler

The previous chapters discuss support for syntactic extensibility for Scala with the help of the
Sugar* framework. The facilities used in this framework are the composition of grammars
expressed in SDF as well as term rewritings and analysis with the help of the Stratego language.
The desugared terms are then finally unparsed and passed to the base language compiler to
generate byte- or machine code. The framework however does not provide any means to access
the type system of the base language which decreases the possibilities for the static analysis.
From a theoretical point of view the type system of the base language could be reimplemented in
Stratego, or a type-annotated output from the compiler could be reparsed and the information
could be used to enrich the current term representation. But from a practical standpoint it is just
not feasible to reimplement a complex type system as Scala‘s in Stratego. Passing parts of the
unparsed AST to the Scala compiler and making use of the XPrint flag seems more feasible. But
this output needs to be parsed again and the gained information must be re-integrated into the
existing tree, which bears new sources of challenges and errors.

The approach discussed in this chapter is the direct integration of syntactic extensibility into the
Scala compiler. Once being in the compiler, all its provided facilities can be used and the type
information can be accessed directly in its internal representation. There would be no need to
reimplement the type system and no error-prone parsing of converted type information output
would be necessary.

4.1 Scala Compiler Overview

The Scala compiler is itself written in Scala. Its source code resides under src/compiler

in the Scala code repository. The main entry point for the executable compiler is the class
scala.tools.nsc.Main, where nsc is an abbreviation for new Scala compiler. Main extends the
abstract type scala.tools.nsc.Driver, in which the actual main method is defined. Both Driver
and Main are responsible to parse the command line arguments to the compiler, prepare the
actual compilation environment represented by a scala.tools.nsc.Global class and actually start the
compilation. Global can be considered the root of the compiler and imports and combines large
parts of the remaining code of the compiler sources. Apart from the compilation environment and
helpers, it defines and configures the different compilation phases and describes the compilation
process and the switching of phases.

Phases active in the Scala compiler v2.10.3, according to the sources, are parser, namer, typer,
inlineclasses, pickler, refchecks, uncurry, specialize, explicitouter, erasure, posterasure, lambdalift,
flatten, mixin, cleanup, icode, inliner, inlinerExceptionHandlers, closelim, dce and jvm. The first
compilation phase is parser, which has the responsibility to parse a source file and construct the
initial AST. All following phases then sequentially analyze, transform or annotate the current AST,
including checking for constraints or issuing compilation warnings. In the context of syntactic
extensibility, the parser phase is the most interesting. So the remainder of this chapter will ignore
the other phases and instead focus on the parser phase.
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1 class Global /* ... */ {

2 // ...

3 // phaseName = "parser"

4 object syntaxAnalyzer extends {

5 val global: Global.this.type = Global.this
6 val runsAfter = List[String]()

7 val runsRightAfter = None

8 } with SyntaxAnalyzer

9 //...

10 }

Listing 4.1: Object syntaxAnalyzer definition in Global

1 // ...

2 abstract class SyntaxAnalyzer extends SubComponent with Parsers

3 with MarkupParsers with Scanners with JavaParsers with JavaScanners {

4 val phaseName = "parser"

5

6 def newPhase(prev: Phase): StdPhase = new ParserPhase(prev)

7

8 class ParserPhase(prev: scala.tools.nsc.Phase) extends StdPhase(prev) {

9 // ...

10 def apply(unit: global.CompilationUnit) {

11 import global._

12 informProgress("parsing " + unit)

13 unit.body =

14 if (unit.isJava) new JavaUnitParser(unit).parse()

15 else if (reporter.incompleteHandled) new UnitParser(unit).parse()

16 else new UnitParser(unit).smartParse()

17 // ...

18 }

19 }

20 }

Listing 4.2: Original SyntaxAnalyzer

The definition of the parser phase in Global is given in Listing 4.1. It is of type SyntaxAnalyzer
and implemented as an object member with the name syntaxAnalyzer. The compiler environment
and the predecessors of the parser phase are provided in an early definition block to the object
definition. The explicit passing of the Global instance is a common pattern used in the compiler
and can be seen often. The code for the abstract SyntaxAnalyzer is given in Listing 4.2. Being a
subcomponent of the compiler it extends the corresponding abstract class SubComponent, but
also mixes in parsing and scanning utilities from Parsers MarkupParsers, Scanners, JavaParsers
and JavaScanners. The definition of the inner class ParserPhase shows the general concept of the
phases in the Scala compiler. Each phase is applied to a compilation unit, which is expressed
nicely in the code. During this application, the abstract syntax tree for the compilation unit is
checked or modified. In the case of the parser phase, the tree needs to be initial created by
parsing the source file for the compilation unit. Unsurprisingly the definition of apply is basically
an assignment to unit.body. The parsing itself is delegated to UnitParser or JavaUnitParser,
depending on whether the compilation unit is Java or Scala.
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1 // ...

2 abstract class SyntaxAnalyzer extends SubComponent with SGLRParsers with Parsers

3 with MarkupParsers with Scanners with JavaParsers with JavaScanners {

4 val phaseName = "parser"

5

6 def newPhase(prev: Phase): StdPhase = new ParserPhase(prev)

7

8 class ParserPhase(prev: scala.tools.nsc.Phase) extends StdPhase(prev) {

9 // ...

10 def apply(unit: global.CompilationUnit) {

11 import global._

12 informProgress("parsing " + unit)

13 unit.body =

14 if (unit.isJava) new JavaUnitParser(unit).parse()

15 else new SGLRUnitParser(unit).parse()

16 // ...

17 }

18 }

19 }

Listing 4.3: Modified SyntaxAnalyzer

As this work focuses on syntactic extensibility for Scala the JavaUnitParser will not be further
explained. The UnitParser however is the entry point for the actual parsing. It has the respon-
sibility to turn the Scala source code associated with the compilation unit into the AST on
which the whole remaining compilation relies. UnitParser is a nested type of the Parsers trait
in scala/tools/nsc/ast/parser/Parsers.scala. It is an extension of SourceFileParser, which
further is an extension of Parser. In Parser resides the actual parsing logic, the other mentioned
extensions are mainly used for configuration purposes. Unfortunately Parser does not only
translate the scanned tokens into a naive first version of the AST, but has more responsibilities.
One obvious additional responsibility for the parser is syntax error reporting. In cases where
the parser just is not able to produce an AST it fails with a descriptive error message including
position information. Another nice usability feature is the emisson of warnings in cases of
error-prone or deprecated syntactical constructs.

But apart from reporting the parser also combines desugaring, synthetization and normalization,
which makes it particularly hard to extend directly. An example for desugaring is the trans-
formation of left associative infix expressions to priority-correctly nested function applications.
So a + b * c is desugared to a.$plus(b.$times(c)) and not a.$plus(b).$times(c). Synthetization
is a bit more elaborate and includes generation of default constructors for templates, which
are created dependendly on the defined class parameters. An example for normalization is the
transformation of lead-in package statements to nested package declarations, which wrap around
the whole compilation unit.

4.2 Extension Approach

This bag of responsibilities is all mixed in the code and does not allow for easy extensibility
of the parser. So instead of modifying the current parser or other existing code in the Scala
compiler, we chose to replace it altogether. The entry point for the modification is the definition
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1 trait SGLRParsers {

2 // ...

3 class SGLRUnitParser(unit: global.CompilationUnit) {

4 def parse(): Tree = {

5 val stratego_term = parser.parse(unit.source)

6 val wrapped_term = Term(stratego_term)(unit.source)

7 val iScalacAST = toTree(wrapped_term)

8 val fullyTransformed = ToFullScalacASTTransformer.transform(iScalacAST)

9 fullyTransformed

10 }

11 }

12 // ...

13 }

Listing 4.4: Implementation of SGLRUnitParser

of SyntaxAnalyzer. The changed code is given in Listing 4.3. The case distinction between
Java or non-Java code is kept intact. But in case of non-Java code instead of UnitParser a new
SGLRUnitParser is instantiated and used to parse the compilation unit.

The implementation of SGLRUnitParser is given in Listing 4.4. The new approach to parse a
compilation unit is split into four phases:

1. Derivation of a first parse tree with a SGLR parser

2. Wrapping of the derived parse tree into a better data structure for easier processing

3. Translation of the wrapped tree into an unfinished native Scala AST

4. Finishing the native Scala AST with further transformations, so it can be processed by the
later phases

4.2.1 Derivation of a Parse Tree With a SGLR Parser

As the name already suggests SGLRUnitParser utilizes a SGLR parser to parse the source code.
More precisely the JSGLR parser from the Spoofax project is used together with the corresponding
term library. Both are included as Java archives and added to the dependencies of the project
as org.spoofax.jsglr_1.2.0.*.jar and org.spoofax.terms_1.2.0.*.jar, respectively. The
Scala wrapper around the JSGLR Java library is given in Listing 4.5. The SGLR parser expects
two parameters for initialization (l. 11). The first is the tree builder to use and the second is
the precompiled parse table. The tree builder used is one provided from the Spoofax library
and is expected to return IStrategoTerms (l. 10 and l. 15ff). The parse table is created from the
Scala grammar developed in this work with the help of the Spoofax Language Workbench. It is
provided as resource in a linked JAR and loaded with the help of the Spoofax ParseTableManager
(l. 5), which is itself wrapped in a simple Scala object of the same name (l. 23ff).

4.2.2 Wrapped Datastructure

The IStrategoTerms yielded from the parser are then again wrapped in Scala case classes. The
resulting tree types are given in Figure 4.1 The abstract base class for the wrapped terms is Term.
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1 trait SGLRParsers {

2 // ...

3 val scala_tbl_stream =

4 getClass.getResourceAsStream("/scala/tools/nsc/sugar/Scala.tbl")

5 val scala_tbl = ParseTableManager.loadFromStream(scala_tbl_stream)

6 val parser = SGLRParser

7 // ...

8

9 object SGLRParser {

10 val tb = new TreeBuilder

11 val sglr = new SGLR(tb, scala_tbl)

12

13 def parse(source: SourceFile): IStrategoTerm = {

14 sglr.parse(new FileReader(source.file.file), source.file.name,

15 "CompilationUnit") match {

16 case v: IStrategoTerm => v

17 case unexp =>
18 throw new RuntimeException(s"Expected IStrategoTerm , but got ${unexp}")

19 }

20 }

21 }

22

23 object ParseTableManager {

24 val ptm = new org.spoofax.jsglr.io.ParseTableManager

25

26 def loadFromStream(stream: InputStream) = ptm.loadFromStream(stream)

27 def loadFromFile(file: File) = ptm.loadFromStream(new FileInputStream(file))

28 }

29 // ...

30 }

Listing 4.5: Scala wrapper around the Spoofax JSGLR parser

scala.tools.nsc.sugar.SGLRParsers

«object» Term

apply(term: IStrategoTerm)(implicit src: SourceFile): Term

«case» Str
«case» value: String

«case» Lst
«case» elems: Term*

«case» @@
«case» name: String
«case» children: Term*

Term
«var» pos: Position
withPos(i: Int)(implicit src: SourceFile): Term

Figure 4.1.: Wrapped Term type hierarchy
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Every Term has a position, which holds the offset to the term in the source file. The position is not
part of the case variables for term, as it is mutable and may be changed with the helper method
withPos at any time. It is extracted from the underlying IStrategoTerm, which also provides exact
range and column information of the parse result. This information is currently not used, but
could be in later versions.

The subclasses of Term are @@, Lst and Str. These wrap around StrategoAppl, StrategoList and
StrategoString, respectively. The operator style for the applications is used to allow a nicer syntax
for later pattern matching and term rewriting. Every application has a name, which is equal to
the constructor name of the node and an arbitary amount of children. A Lst only has an arbitrary
amount of children, without a constructor name. A Str is an atomar value in a Term tree and
is simply mapped to a Java/Scala String. The actual wrapping from IStrategoTerm to Term is
defined in the apply method of the companion object Term. The implicit SourceFile is used as
reference for the position information, which is also applied by the companion object.

With help of the companion object nested IStrategoTerms can be easily translated from cum-
bersome Java API into an idiomatic Scala algebraic data type. Having a Scala case class rep-
resentation of the derived parse tree allows a functional pattern matching style processing
and transformation. This simplifies the code for further processing and makes analysis and
modification easier.

4.2.3 Transformation to an Unfinished Native Scala AST

The wrapped parse tree in form of the Term data type can not be used by the remaining
compiler phases, as they expect the native Scala compiler AST to work with. For this purpose
the SGLRParsers trait defines a couple of transformation methods from Term to Tree, which
are shown in Figure 4.2. All this methods take one or more Term arguments, pattern match
over the arguments and then either call one another or return a value corresponding with the
method name. The entry point for the transformation is the general toTree method returning the
corresponding general Tree type. Adding an "s" to the method name denotes a list of the type,
which can repeated for nested lists. This can be seen with the toTreess method, which returns
List[List[Tree]]. The nested lists of Tree are for example used to represent method arguments
which can come in multiple argument lists with each having multiple arguments. But also
more specialized methods like toImportSelector exist, which can be utilized everytime a Term is
expected to transform to an ImportSelector. The native Scala AST often expects certain types
for child-nodes in the tree, for which these specialized methods help avoiding type conversions.
They also help to structure the transformation logic and provide better maintainability for the
code.

To illustrate the basic approach and excerpt of toTree is given in Listing 4.6. As already mentioned,
the body of the method is a large pattern match against the term argument. The usage of the
operator name @@ for applications allows to use infix notations for application patterns. As
a large amount of matches are against applications this improves the overall readability of
the patterns. All parse trees derived with the Scala SDF grammar created in this work have
CompilationUnit as root node. The first of the two arguments to this constructor is a list of
package statements, the second is a list of other toplevel statements.
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«trait» SGLRParsers
toTree(term: Term): Tree
toTrees(term: Term): List[Tree]
toTreess(term: Term) : List[List[Tree]]
toExpr(term: Term): Tree
toExpr0(term: Term): Tree
toEnum(term: Term): Enumerator
toEnums(term: Term): List[Enumerator]
toArg(term: Term): Tree
toArgs(term: Term): List[Tree]
toImport(term: Term): Import
toImportSelector(term: Term): ImportSelector
toImportSelectors(term: Term): List[ImportSelector]
toDefDef(mods: Modifiers, funDef: Term): DefDef
toTypeTree(term: Term): Tree
toTypeTrees(term: Term): List[Tree]
toValDef(term: Term, mods: Modifiers): ValDef
toValDefs(term: Term, mods: Modifiers): List[ValDef]
toValDefss(term: Term): List[List[ValDef]]
toTypeDef(term: Term): TypeDef
toTypeDefs(term: Term): List[TypeDef]
toTypeBoundsTree(lbt: Term, ubt: Term): TypeBoundsTree
toPackageDef(pkgs: List[Term], topStats: Term): PackageDef
toRefTree(term: Term): RefTree
toModifiers(term: Term): Modifiers
toCaseDef(term: Term): CaseDef
toCaseDefs(term: Term): List[CaseDef]
toPatternTree(term: Tree): Tree
toTermName(term: Term): TermName
toTypeName(term: Term): TypeName
toTemplate(term: Term): Option[Tree]

Figure 4.2.: List of methods used for the transformation of Term to Tree

The first pattern in l.5 matches against this CompilationUnit constructor and passes the arguments
to the helper method toPackageDef, which wraps the toplevel statements in package declarations
according to the provided package statements. The method toPackageDef uses toTrees on the
toplevel statements, which then again maps toTree on the list of statements. Method toTrees is
needed as it also handles other cases, for example import statements with multiple imports which
then would again transform to List[Tree] rather than only one Tree.

The next pattern in l.8 matches against TopStatSemi and is a simple unwrapper. The actual semi
information is discarded and toTree is recursively called on the actual statement.

The patterns in lines 10 to 25 match deeper than only one constructor application and are
counted among the most complicated patterns used in the transformation. The reason for this
is the rather complex nature of template definitions. Every toplevel template definition must
have a name and may have annotations, modifiers and a template body. The parents of the
template are defined as part of the template body. A trait definition may additionally have type
parameters, as it can be polymorphic. A class definition may additionally have constructors
annotations, constructors access modifiers and value parameters. Objects in the native Scala
AST are represented by ModuleDef nodes, whereas classes and traits are represented by ClassDef
nodes. The distinction between traits and classes are the used modifiers for the template and the
constructor. Trait templates are always abstract and additionally have the special trait modifier.
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1 trait SGLRParsers {

2 // ...

3 def toTree(term: Term): Tree = term match {

4 // --- Top Level Statements ---

5 case "CompilationUnit" @@ (Lst(pkgs@_*), topStats) =>
6 toPackageDef(pkgs.toList, topStats)

7

8 case "TopStatSemi" @@ (topStat, _) => toTree(topStat)

9

10 case "TopTmplDef" @@
11 (annots, mods, "Object" @@ ("ObjectDef" @@ (name, body))) =>
12 IObjectDef(toModifiers(mods, annots), toTermName(name), toTemplate(body))

13

14 case "TopTmplDef" @@
15 (annots, mods, "Class" @@ ("ClassDef" @@
16 (morphism, constrAnnots , accessMods , classParamClauses , tplOpt))) =>
17 IClassDef(toModifiers(mods, annots), toTypeName(morphism),

18 toTypeDefs(morphism), toModifiers(accessMods),

19 toValDefss(classParamClauses), toTemplate(tplOpt))

20

21 case "TopTmplDef" @@
22 (annots, mods, "Trait" @@ ("TraitDef" @@ (id, typeParams , tplOpt))) =>
23 IClassDef(toModifiers(mods, annots) | Flags.TRAIT | Flags.ABSTRACT,

24 toTypeName(id), toTypeDefs(typeParams),

25 Modifiers() | Flags.TRAIT, ListOfNil , toTemplate(tplOpt))

26 // ...

27 // --- Some and None ---

28 case "Some" @@ (t) => toTree(t)

29 case @@("None") => EmptyTree

30 case _ => toExpr(term)

31 }

32 // ...

33 }

Listing 4.6: Excerpt from toTree, illustrating the basic approach

This trait modifier is attached to the template and additionally used as access modifier for the
constructor. The different typed arguments for the intermediate template representations are
obtained by using the specialized helper methods toModifiers, toTypeName, toTemplate, toTypeDefs
and toValDefss for the terms in the respective positions.

Optional nodes in the tree are represented by Some and None constructors. For this purpose some
transformation methods match against these constructors to unwrap the values from Some or
provide a fall back value for None as does toTree in l.28f. The default case for toTree is to try
toExpr. Most other transformation methods will throw a descriptive exception instead.

A special case for the tree transformation are expressions – more precisely the handling of
wildcards in expressions. Consider the following Scala expression: _ + _. The SGLR parser will
derive the term InfixExpr(WildcardExpr(), "+", WildcardExpr()) from this expression. Wildcards
in expressions have the property of implicitly spanning a new closure for the scope of the wildcard.
Each extra wildcard in the same scope will however just be a new parameter for the closure.
So the expected transformed result of the above expression is (x$1, x$2) => x$1.$plus(x$2), an
anonymous function with two parameters, where the types of x$1 and x$2 need to be inferable
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scala.tools.nsc.sugar.SGLRParsers

scala.reflect.internal.Trees.Tree

«case» IClassDef
«case» mods: Modifiers
«case» name: TypeName
«case» tparams: List[TypeDef]
«case» accessMods: Modifiers
«case» vparamss: List[List[ValDef]]
«case» impl: Option[Tree]

«case» IObjectDef
«case» mods: Modifiers
«case» name: TermName
«case» tpl: Option[Tree]

«case» IUnfinishedTemplate
«case» parents: List[Tree]
«case» attrss: List[List[Tree]]
«case» self: ValDef
«case» body: Tree*

Figure 4.3.: New intermediate representations for templates

from the context of the expression. A more elaborate example is the expression _ op {_ + _}.
The curly braces denote a new scope, so this expressions needs to be transformed to nested
anonymous functions. The expected result is (x$1) => x$1.op(((x$2, x$3) => x$2.$plus(x$3))).

The need to handle closures in expressions yields two functions to handle expressions, toExpr
and toExpr0. The former is used for expressions which introduce a new scope and contains the
logic to store the currently seen placeholder parameters to create a fresh environment. The latter
is used for expressions which should keep the current environment of placeholder parameters. It
is also used by toExpr after the placeholder housekeeping logic is executed.

The actual logic to handle the encountered wildcards with their respective scope makes use of a
mutable trait-wide placeholderParams variable of type List[ValDef]. A call to toExpr saves this list
in a local variable and resets the trait-wide one to create a fresh environment. The input term is
then forwared to toExpr0, which contains the pattern matching and actual transformation logic.
If toExpr0 encounters a wildcard, it will prepend it on the trait-wide placeholderParams. After
toExpr0 has finished, toExpr will wrap the result in an anonymous function if any wildcards were
encountered. Before toExpr returns, it will restore the placeholderParams. This same approach is
used in the original Scala parser and the resulting code is copied in large parts, but of course
adapted to the new Term data type.

The result of the transformation with toTree may be unfinished in the sense that it may contain
nodes which are not recognized by other phases. The reason for this is the introduction of new
children IUnfinishedTemplate, IObjectDef and IClassDef for Term, which are shown in Figure 4.3.
They are prefixed with "I" for "Intermediate" and represent nodes which need further synthetiza-
tion before they can be considered valid native Scala AST nodes. The idea behind this approach
is the separation of two concerns:

1. Transforming the source code into a tree representation

2. Enriching this tree with implicit or derivable information

The second concern is especially elaborate in the context of templates, which lead to the decision
to introduce the mentioned new nodes and defer the actual synthetization to a later step.
As an immediate benefit the first concern is easier to express and comprehend. With regard
to transformations on the Term structure it also eases the introduction of templates as part
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scala.tools.nsc.sugar.SGLRParsers

scala.tools.nsc.Trees.Transformer

ToFullScalacASTTransformer
transform(tree: Tree): Tree
mkTemplate(impl: Option[Tree], aMods: Modifiers, vparamss: List[List[ValDef]]: Template

Figure 4.4.: Signature of the transformer from intermediate Tree nodes to the native Scala AST

of desugarings, as the desugarer does not bear the responsibility to provide the synthesized
information and can better focus on the logical abstraction.

4.2.4 Finishing the Native Scala AST for Further Processing

The finishing of the Scala AST with intermediate nodes is achieved with help of ToFullScalacAST-
Transformer, which is shown in Figure 4.4. It extends the compiler-provided Transformer class,
which contains the logic to recursively visit each node in the native Scala AST. The transform
method pattern matches on the provided tree node and may transform the node in case of a
match. If the node does not match the Transformer continues the visitation without the need
of the implementor to explicitly define how to continue. The mkTemplate method is a helper
method to actually achieve the transformation of the intermediate nodes from Figure 4.3. It
makes heavy use of the provided helper method Template in scala.tools.nsc.ast.Trees.

The motivation for this extra step can best be illustrated with a minimal class example. Consider
a compilation unit with the source file contents given in the following:

class Foo

It only contains the definition of the class Foo, which does not provide a template body. Not even
a package declaration is provided for the compilation unit. Naturally one would expect a simple
AST from this simple definition. The unexpected actual result created by the Scala parser is the
following:

package <empty> {

class Foo extends scala.AnyRef {

def <init>() = {

super.<init >();
()

}

}

}

As part of the normalization performed in the parser all definitions of a compilation unit are
wrapped in a package declaration, even if there is no package statement at the beginning of a
compilation unit. In this case a special name <empty> is used for the package declaration. The
implicit fact that every non-value class has scala.AnyRef as parent is also made explicit by the
parser. Even if the original source code did not provide a template body for Foo at all, the parser
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real[s] user[s] system[s]
scalac 5.212 10.415 0.192
sugsc 6.789 12.775 0.324

slowdown +30.24% +22.66% +68.75%

Table 4.1.: Comparison of time needed to compile the test bench of 84 files averaged over five
runs — scalac with optimized parser vs. sugsc with SGLR parser

adds the default template body containing the default constructor and the required call to super
inside of the constructor. To emphasize once more: all this is information is added by the parser,
not by the namer or typer or another compilation phase. Omitting this information would lead to
errors in the later compilation phases. Fortunately the needed logic is partly provided as helper
methods, values or objects. But to keep the transformation and synthetization concerns separate,
the new intermediate types are introduced. This way the syntactical body- and parentless class
definition can simply be transformed to IClassDef with impl set to None. The synthetization is
then performed in this final finishing step.

4.3 Discussion

The integration of syntactic extensibility into the compiler is still in a early stage at the time of
this writing. More precisely the current state does not even allow syntactic extensibility but is an
incomplete prototypical replacement of the original Scala parser. The focus of this prototype is to
produce the same native Scala AST as the original parser but use an extensible SGLR parser as
backend. This SGLR parser uses a parse table derived from an extensible SDF grammar which in
return allows easy extensibility of the parser. So the effortless addition of desugaring capabilities
in later iterations seems promising. Moreover the integration in the compiler renders it possible
to access the Scala type system which may allow type-depend desugarings in the future.

The focus on extensibility with the SGLR parser however comes with a cost. As the SGLR parser
is not optimized for speed, opposed to the original Scala parser, the compilation time increases
by roughly 30% on the test bench. The average timings over five test runs are shown in Table 4.1.
Moreover the SGLR parser does not have the same error recovery capability as the native parser.
Where the native parser produces a human-readable error message with position information, the
SGLR parser simply fails with a cryptic parse error. Warnings on deprecated syntax or errors on
semantically wrong but syntactically correct parse trees could be produced by the SGLR approach,
but where neglected in focus of compatible parse results.

To assess the compatibility of the SGLR parser with the original parser the produced results are
compared on two levels. The first level is the output created by passing the flag -Xprint:parser
to the compilers. This causes the compiler to print the derived AST after the parser phase of
the compilation. The output is then captured for both runs and compared using sdiff from GNU
diffutils. Equal AST output is an indicator for equal behaviour, but not all AST information really
shows up in the output. For this purpose the result is also compared on a lower level, which is
the produced JVM bytecode. The resulting class files are disassembled with the most verbose
invocation1 of javap and then again compared with sdiff. This assures that the code compiled
1 Using the flags -s -c -p
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from the SGLR AST shows exactly the same behaviour as the code compiled from the original
parser AST for the test bench.

The test bench currently consists of 84 hand-crafted Scala files each trying to test a certain
syntactical construct. These files reach from different versions of HelloWorld (with/without
package statement, explicit main as procedure, explicit main as definition, extension of App, . . . ),
over different template and statement constructs to expressions, including closure constructs. All
this source files contain valid syntax – no negative tests are formulated. We unfortunately ran
out of time and could thus not complete the transformation from our AST to the native Scala
AST, but all sample files can be correctly compiled. In summary our approach seems promising to
be able to completely replace the Scala parser for research purposes in the future.
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5 Related Work

Scala Macros [7] are a new experimental language feature of Scala 2.10. They enable compile-
time metaprogramming with respect to the rich syntax and static type system of Scala. A Scala
Macro definition resembles a regular function definition, but is distinguished by the keyword
macro at the beginning of the function body. The body is then expected to be a qualifier to the
macro implementation, rather then an arbitrary Scala block. A macro application is syntactically
equal to a function application. But the arguments to the macro are not the objects resulting
from an evaluation of the argument expressions, but the abstract syntax trees of the expressions
in argument position. The macro implementation can then, conditionally on the passed abstract
syntax and the context it was applied in, rewrite the abstract syntax tree.

To spare a macro implementor from the error-prone burden to manually construct abstract syntax
trees with the help of classes from the compiler-library a macro called reify is provided as part
of the macro feature. This macro works opposite to the evaluation function and allows to turn
typed Scala expressions into Scala abstract syntax trees, promoting it to a quasiquoting-similar
utility. Furthermore are all macros which only construct abstract syntax trees with help of reify
hygienic [18], as the implemention of reify takes care of hygiene.

Together with string interpolation Scala Macros allow a better embedding of external DSLs [6].
String interpolation in Scala allows to prepend strings with arbitrary identifiers. A corresponding
implicit method to that identifier can then be used to process the provided string, split into static
and interpolated parts. Using a macro in that context allows to process the string at compile time.
Provided the string represents a deeply embedded language this further allows static analysis
with help of the Scala type system.

Quasiquotes for Scala [28] is another example for a Scala extension making use of the combina-
tion of macros and string interpolation. Where reify only works with typed Scala expressions, a
quasiquote, denoted by the q string interpolation prefix, allows to create untyped Scala abstract
syntax trees, even including definitions and values. Quasiquotes aim to be a drop-in replacement
for reify, as they can be used for a wider range of syntax and further minimize the need to
manually construct or rewrite Scala abstract syntax trees with the compiler-library.

Yet another approach to increase the extensibility of Scala is Scala-Virtualized [26]. The aim
of the virtualization is to make Scala a better host for embedded DSLs. For this purpose it
introduces infix methods, expresses control flow statements as method calls and provides source
code context information through implicit argument expressions.

However non of these approaches allows to extend Scala directly with arbitrary syntax similar to
the build-in XML support because they are all bound to the unextensible Scala parser integrated
into the Scala compiler. The nearest one can get with these approaches to syntactically embed
XML is to wrap the XML into an interpolated string. The direct use of XML elements in an
expression position is however not possible to realize, as XML uses a completey different syntax
compared to Scala.

SugarScala instead builds on the extensibility of the parser and thus allows any language
expressible as a context free grammar to be an extension of Scala on the syntactical level, as has
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been shown in the XML case study. But the actual deep embedding of XML is still expressed in
form of a Scala library and not in SugarScala. So the relation of SugarScala to Scala Macros,
String Interpolation and Scala-Virtualized is not competetive, but rather cooperative. It can be
considered another stage on top of a staging compilation process which allows to seemlessly
embed DSLs with their native syntax into Scala.

Other work does not aim on the general extensibility of Scala but has its focus on one particular
DSL or submodule of Scala. Ozma [10] extends Scala with features from the Oz language [29]
for concurrent and distributed systems. Akin to that is SubScript [30] which extends Scala with
the algebra of communicating processes. Burak Emir has extended the pattern matching of Scala
to allow better XML processing similar to the XPath [8] and XQuery [2] languages [11]. Garcia,
Izmaylova and Schupp have extended Scala with the capability to formulate database queries
similar to Microsoft’s LINQ [15,23]. REScala [27] builds on EScala and further extends Scala
with reactive functional programming capabilities.

Presumably more work on the extension of Scala exists but the point is the large interest for the
extension of Scala with any kind of domain specific language capability. SugarScala can help
with the embedding of syntax for these domain specific languages, if at least for early prototyping
or feasability studies.
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6 Conclusion and Future Work

We have argued that Scala should have an extensible syntax to allow DSL embedding similar
to its built-in support for XML. For this purpose we have crafted a modular and extensible
context-free grammar for Scala in SDF2. Based on this grammar we have developed SugarScala
as an instantiation of the Sugar* framework. We have further presented two extensions for
SugarScala in the case studies for XML and EScala. Finally we have investigated a possibility
to integrate our work in the Scala compiler to allow for built-in syntactic extensibility in the
future.

The grammar could be further tuned to be more concise and it has room for improvement in
terms of performance and precision. We however diligently tested it for quality and quantity and
it has proven to be usable for the XML and EScala case studies. We could additionally show that
the ASTs resulting from the grammar can be correctly transformed to the native Scala AST for a
selected subset of Scala source files.

SugarScala is in an experimental state and has some issues concerning performance, stability and
usability, but we could successfully utilize it for the XML and EScala case studies. It does neither
allow access to the Scala type system nor does it provide static analysis for Scala. Nevertheless
can SugarScala be used for quick prototyping of syntactic DSL embedding without the need to
modify the Scala compiler. One could even argue that the lack of access to the Scala type system
is a benefit because it requires the DSL implementor to provide a library-based embedding of the
DSL with a good API which can be used with just simple desugarings.

We achieved the integration in the Scala compiler by replacing a call to the parse method of
UnitParser in the parser phase with a call to a method of our new trait SGLRUnitParser. This
new trait utilizes the JSGLR parser of the Spoofax project in combination with the generated
parse table of our grammar to parse the contents of provided compilation unit sources. We then
transform the resulting AST of our grammar to the native Scala AST of the compiler for further
use in the remaining compilation process.

We compare the textual representation of the resulting AST as well as the disassembled resulting
byte-code of our implementation with the respective results of the native Scala compiler to assert
correctness of our implementation. The transformation is not yet completely defined for all nodes
in our AST, but we were successful to construct the correct native Scala AST for few chosen
examples, including general template definitions and implicit expression closures. We interpret
this success as indication of the feasibility of the approach.

Future work could finish the transformation of the AST and provide a complete replacement
of the current hard-to-extend Scala parser. The next steps then would be to allow user-defined
syntax extensions together with the necessary transformations conceptually similar to the Sugar*
framework. These extensions would however have the possibility to access all compiler facilities,
including the type system, and could thus be more elaborate than current SugarScala extensions.
Additionally could the transformations be based on Scala with arbitrary libraries, e.g. Kiama1, as
alternative to Stratego.
1 http://code.google.com/p/kiama/
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A Full SDF Grammar

%%% Scala-Annotations.sdf %%%

module Scala-Annotations

imports
Scala-Expressions

Scala-Types

exports

context-free syntax
"@" SimpleType ArgumentExprsSeq? -> Annotation {"Annotation",

layout("2.last.line == 3.first.line")}

"@" SimpleType ArgumentExprs? -> ConstrAnnotation {"ConstrAnnotation",

layout("2.last.line == 3.first.line")}

Annotation -> AnnotationSeq

Annotation AnnotationSeq -> AnnotationSeq {"AnnotationSeq",

layout("2.first.line - 1.last.line < num(2)")}

%%% Scala-BasicDeclsDefs.sdf %%%

module Scala-BasicDeclsDefs

imports
Scala-ClassesObjects

Scala-Expressions

Scala-Identifiers

Scala-Types

exports

context-free syntax
%% Extracted to avoid optional lexical syntax:

%% (":" Type)?

":" Type -> Typed {"Typed"}

":" ParamType -> ParamTyped {"ParamTyped"}

%% §4 - Basic Declarations and Definitions

PatVarDef -> Def

TmplDef -> Def

%% §4.1 - Value Declarations and Definitions

"val" ValDcl -> Dcl {"ValDclDcl"}

{Id ","}+ ":" Type -> ValDcl {"ValDcl"}

"val" PatDef -> PatVarDef {"ValPatDef"}

{Pattern2 ","}+ Typed? "=" Expr -> PatDef {"PatDef"}
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%% §4.2 - Variable Declarations and Definitions

"var" VarDcl -> Dcl {"VarDclDcl"}

"var" VarDef -> PatVarDef {"VarPatDef"}

{Id ","}+ ":" Type -> VarDcl {"VarDcl"}

{Id ","}+ ":" Type "=" "_" -> VarDef {prefer, "WildcardVarDef"}

PatDef -> VarDef

%% §4.3 - Type Declarations and Type Aliases

"type" TypeDcl -> Dcl {"TypeDclDcl"}

Id TypeParamClause? LowerBoundType? UpperBoundType? -> TypeDcl {"TypeDcl"}

"type" TypeDef -> Def {"TypeDefDef"}

Id TypeParamClause? "=" Type -> TypeDef {"TypeDef"}

%% §.4.4 - Type Parameters

"[" {VariantTypeParam ","}+ "]" -> TypeParamClause {"TypeParamClause"}

Annotation* TypeParam -> VariantTypeParam {"VariantTypeParam"}

Annotation* "+" TypeParam -> VariantTypeParam {"PlusVariantTypeParam"}

Annotation* "-" TypeParam -> VariantTypeParam {"NegVariantTypeParam"}

Id TypeParamClause? LowerBoundType?

UpperBoundType? TypeViewBound* TypeContextBound* -> TypeParam {"TypeParam"}

"_" TypeParamClause? LowerBoundType?

UpperBoundType? TypeViewBound* TypeContextBound* -> TypeParam

{"WildcardTypeParam"}

">:" Type -> LowerBoundType {"LowerBoundType"}

"<:" Type -> UpperBoundType {"UpperBoundType"}

"<%" Type -> TypeViewBound {"TypeViewBound"}

":" Type -> TypeContextBound {"TypeContextBound"}

%% §4.6 - Function Declarations and Definitions

"def" FunDcl -> Dcl {"FunDclDcl"}

FunSig ":" Type -> FunDcl {"FunDcl"}

"def" FunDef -> Def {"FunDefDef"}

FunSig Typed? "=" Expr -> FunDef {"FunDef"}

Id TypeParamClause? ParamClauses? -> FunSig {"FunSig",

layout("3.first.line - 1.last.line < num(2)")}

%% Annotations are allowed for function type parameters according to

%% scalac v2.10.0*, % so TypeParamClause is used here instead of

%% FunTypeParamClause

%% "[" {TypeParam ","}+ "]" -> FunTypeParamClause {"FunTypeParamClause"}

ParamClause -> ParamClauses

"(" "implicit" {Param ","}+ ")" -> ParamClauses {"ImplicitParamClause"}

ParamClause ParamClauses -> ParamClauses {"ParamClauses",

layout("2.first.line - 1.last.line < num(2)")}

"(" {Param ","}* ")" -> ParamClause {"ParamClause"}

Annotation* Id ParamTyped? Assignment? -> Param {"Param"}
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Type -> ParamType

"=>" Type -> ParamType {"ByNameParam"}

Type "*" -> ParamType {"RepeatedParam"}

%% §4.6.3 - Procedures

FunSig -> FunDcl {"ProcDcl"}

FunSig "{" Block "}" -> FunDef {"ProcDef",

layout("2.first.line - 1.last.line < num(2)")}

%% §4.7 - Import Clauses

"import" {ImportExpr ","}+ -> Import {"Import"}

StableId -> ImportExpr {"ImportExpr"}

StableId "." "_" -> ImportExpr {"WildcardImportExpr"}

StableId "." ImportSelectors -> ImportExpr {"SelectorsImportExpr"}

"{" {ImportSelector ","}+ "}" -> ImportSelectors {"ImportSelectors"}

"{" {ImportSelector ","}+ "," "_" "}" -> ImportSelectors

{"ImportSelectorsWithWildcard"}

"{" "_" "}" -> ImportSelectors

{"OnlyWildcardImportSelectors"}

Id -> ImportSelector {"ImportSelector"}

Id "=>" Id -> ImportSelector {"MappedImportSelector"}

Id "=>" "_" -> ImportSelector {"WildcardImportSelector"}

%%% Scala-ClassesObjects.sdf %%%

%% §5 Classes and Objects

module Scala-ClassesObjects

imports
Scala-BasicDeclsDefs

Scala-Expressions

Scala-Identifiers

Scala-Types

Scala-Whitespace

exports

context-free syntax
%% §5.1 - Templates

EarlyDefs? ClassParents TemplateBody? -> ClassTemplate {"ClassTemplate"}

EarlyDefs? TraitParents TemplateBody? -> TraitTemplate {"TraitTemplate"}

Constr WithAnnotType* -> ClassParents {"ClassParents"}

AnnotType WithAnnotType* -> TraitParents {"TraitParents"}

"with" AnnotType -> WithAnnotType {"WithAnnotType"}

Id Typed? "=>" -> SelfType {"SelfType"}

"this" ":" Type "=>" -> SelfType {"ThisSelfType"}

"_" ":" Type "=>" -> SelfType {"WildcardSelfType"}
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"{" SelfType TemplateStatSemi* "}" -> TemplateBody {"SelfTypeTemplateBody",

prefer}
"{" TemplateStatSemi* "}" -> TemplateBody {"TemplateBody"}

%% §5.1.1 - Constructor Invocations

AnnotType ArgumentExprsSeq? -> Constr {"Constr"}

%% §5.1.6 - Early Definitions

"{" EarlyDefSemi* "}" "with" -> EarlyDefs {"EarlyDefs"}

EarlyDef SEMI -> EarlyDefSemi {longest-match, "EarlyDefSemi"}

EarlyDef EOL -> EarlyDefSemi {"EarlyDefSemi",

enforce-newline, longest-match, prefer}
EarlyDef EOB -> EarlyDefSemi {longest-match, avoid, "EarlyDefSemi"}

AnnotationSeq? Modifier* PatVarDef -> EarlyDef {"EarlyDef"}

%% §5.2 - Modifiers

LocalModifier -> Modifier

AccessModifier -> Modifier

"override" -> Modifier {"OverrideModifier"}

"abstract" -> LocalModifier {"AbstractModifier"}

"final" -> LocalModifier {"FinalModifier"}

"sealed" -> LocalModifier {"SealedModifier"}

"implicit" -> LocalModifier {"ImplicitModifier"}

"lazy" -> LocalModifier {"LazyModifier"}

"private" AccessQualifier? -> AccessModifier {"PrivateModifier"}

"protected" AccessQualifier? -> AccessModifier {"ProtectedModifier"}

"[" Id "]" -> AccessQualifier {"AccessQualifier"}

"[" "this" "]" -> AccessQualifier {"ThisQualifier"}

%% §5.3 - Class Definitions

"class" ClassDef -> TmplDef {"Class"}

Morphism ConstrAnnotation*

AccessModifier? ClassParamClauses? ClassTemplateOpt -> ClassDef {"ClassDef",

layout("4.first.line - 1.last.line < num(2)")}

Id -> Morphism

Id TypeParamClause -> Morphism {"Polymorph"}

ClassParamClause -> ClassParamClauses

"(" "implicit" {ClassParam ","}+ ")" -> ClassParamClauses

{prefer, "ImplicitClassParamClause"}

ClassParamClause ClassParamClauses -> ClassParamClauses

{layout("2.first.line - 1.last.line < num(2)"), "ClassParamClauses"}

"(" {ClassParam ","}* ")" -> ClassParamClause {"ClassParamClause"}
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Annotation* Id ":" ParamType Assignment? -> ClassParam

{"ClassParam"}

Annotation* Modifier* "val" Id ":" ParamType Assignment? -> ClassParam

{"ValClassParam"}

Annotation* Modifier* "var" Id ":" ParamType Assignment? -> ClassParam

{"VarClassParam"}

"extends" ClassTemplate -> ClassTemplateOpt {"ClassClassTemplateOpt"}

"extends" TemplateBody -> ClassTemplateOpt {"TemplateClassTemplateOpt"}

-> ClassTemplateOpt {"EmptyClassTemplateOpt"}

TemplateBody -> ClassTemplateOpt

%% §5.3.1 - Constructor Definitions

"this" ParamClauses "=" ConstrExpr -> FunDef {"ThisExprFunDef"}

"this" ParamClauses ConstrBlock -> FunDef {"ThisBlockFunDef",

layout("3.first.line - 2.last.line < num(2)")}

"this" ArgumentExprsSeq -> SelfInvocation {"SelfInvocation"}

"this" BlockExpr -> SelfInvocation {"BlockSelfInvocation",

layout("2.first.line - 1.last.line < num(2)")}

SelfInvocation -> ConstrExpr

ConstrBlock -> ConstrExpr

"{" SelfInvocation ";" BlockStatSemi* "}" -> ConstrBlock {"ConstrBlock"}

"{" SelfInvocation "}" -> ConstrBlock {"ConstrBlock"}

"{" SelfInvocation BlockStatSemi+ "}" -> ConstrBlock {"ConstrBlock",

layout("3.first.line - 2.last.line > num(0)")}

%% §5.3.2 - Case Classes

"case" "class" ClassDef -> TmplDef {"CaseClass"}

%% §5.3.3 - Traits

"trait" TraitDef -> TmplDef {"Trait"}

Id TypeParamClause? TraitTemplateOpt -> TraitDef {"TraitDef"}

"extends" TraitTemplate -> TraitTemplateOpt {"TraitTraitTemplateOpt"}

"extends" TemplateBody -> TraitTemplateOpt {"TemplateTraitTemplateOpt"}

-> TraitTemplateOpt {"EmptyTraitTemplateOpt"}

TemplateBody -> TraitTemplateOpt

%% §5.4 - Object Definitions

"case" "object" ObjectDef -> TmplDef {"CaseObject"}

"object" ObjectDef -> TmplDef {"Object"}

Id ClassTemplateOpt -> ObjectDef {"ObjectDef"}
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%%% Scala-Expressions.sdf %%%

module Scala-Expressions

imports
Scala-Annotations

Scala-BasicDeclsDefs

Scala-ClassesObjects

Scala-Literals

Scala-PatternMatching

Scala-Types

Scala-Whitespace

exports

lexical syntax
-> EOC

context-free restrictions
EOC -/- ~[c]

%%%%% With Layout %%%%%%

context-free priorities
{

Literal -> Expr {prefer}
"_" -> Expr {"WildcardExpr"}

Expr ArgumentExprs -> Expr {"AppExpr",

layout("1.last.line == 2.first.line")}

Expr BlockExpr -> Expr {"BlockAppExpr",

layout("2.first.line - 1.last.line < num(2)")}

"(" {NoLExpr ","}* ")" -> Expr {"TupleExpr"}

Expr TypeArgs -> Expr {"TypeApplication"}

Path -> Expr

}

> {

"new" ClassTemplate -> Expr {prefer, "NewClassExpr"}

"new" TemplateBody -> Expr {prefer, "NewTemplateExpr"}

Expr "_" -> Expr {left, "EtaExpansionExpr",

layout("1.last.line == 2.first.line")}

BlockExpr -> Expr

}

> PREFIX Expr -> Expr {"PrefixExpr",

prefer, layout("1.last.line == 2.first.line")}

> PREFIX Expr -> Expr {"PrefixExpr",

prefer, layout("1.last.line == 2.first.line")}

> {

Expr SPECIAL-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-SPECIAL-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}
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> {

Expr MULT-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-MULT-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr SUM-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-SUM-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr COLON-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-COLON-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr CMPR-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-CMPR-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr BRACKET-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-BRACKET-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr AMPERSAND -OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-AMPERSAND -OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr CIRCUMFLEX -OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-CIRCUMFLEX -OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr BAR-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-BAR-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}

> {

Expr LETTER-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-LETTER-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

}
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> Expr ASSIGN-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

> Expr Id -> Expr {avoid, layout("1.last.line == 2.first.line"), "PostfixExpr"}

> Expr Id -> Expr {avoid, layout("1.last.line == 2.first.line"), "PostfixExpr"}

> Expr "match" "{" CaseClause+ "}" -> Expr {"MatchExpr"}

> Expr ArgumentExprs "=" Expr -> Expr {non-assoc, "AccessAssignmentExpr"}

<0> > Expr "." Id "=" Expr -> Expr {non-assoc, "DesignatorAssignmentExpr"}

<0> > {

Bindings "=>" Expr -> Expr {prefer, "FunExpr"}

Id "=>" Expr -> Expr {prefer, "IdFunExpr"}

"implicit" Id "=>" Expr -> Expr {prefer, "ImplicitFunExpr"}

"_" "=>" Expr -> Expr {prefer, "WildcardFunExpr"}

"if" "(" NoLExpr ")" Expr -> Expr {prefer, "IfExpr"}

"if" "(" NoLExpr ")" Expr "else" Expr -> Expr {"IfElseExpr"}

"if" "(" NoLExpr ")" Expr ";" "else" Expr -> Expr {"IfElseExpr"}

"while" "(" NoLExpr ")" Expr -> Expr {"WhileExpr"}

"try" Expr -> Expr {prefer, "TryExpr"}

"try" Expr "catch" Expr -> Expr {"TryCatchExpr"}

"try" Expr "finally" Expr -> Expr {"TryFinallyExpr"}

"try" Expr "catch" Expr "finally" Expr -> Expr {"TryCatchFinallyExpr",

avoid}
"do" Expr ";" "while" "(" Expr ")" -> Expr {"DoWhileExpr"}

"do" Expr "while" "(" Expr ")" -> Expr {"DoWhileExpr"}

"for" "(" EnumeratorSemi+ ")" Expr -> Expr {"ForExpr"}

"for" "{" EnumeratorSemi+ "}" Expr -> Expr {"ForExpr"}

"for" "(" EnumeratorSemi+ ")" "yield" Expr -> Expr {"ForYieldExpr"}

"for" "{" EnumeratorSemi+ "}" "yield" Expr -> Expr {"ForYieldExpr"}

"throw" Expr -> Expr {"ThrowExpr"}

"return" Expr? -> Expr {"ReturnExpr",

layout("1.last.line == 2.first.line")}

Id "=" Expr -> Expr {non-assoc, "AssignmentExpr"}

Expr Ascription -> Expr {avoid, "AscriptionExpr"}

}

context-free priorities
Expr "." Id -> Expr {avoid, "DesignatorExpr"}

> PREFIX Expr -> Expr {"PrefixExpr"}

%%%%% NO Layout %%%%%%

context-free priorities
{

Literal -> NoLExpr {prefer}
"_" -> NoLExpr {"WildcardExpr"}

NoLExpr ArgumentExprs -> NoLExpr {"AppExpr"}

NoLExpr BlockExpr -> NoLExpr {"BlockAppExpr"}

"(" {NoLExpr ","}* ")" -> NoLExpr {"TupleExpr"}

NoLExpr TypeArgs -> NoLExpr {"TypeApplication"}

Path -> NoLExpr

}
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> {

"new" ClassTemplate -> NoLExpr {prefer, "NewClassExpr"}

"new" TemplateBody -> NoLExpr {prefer, "NewTemplateExpr"}

NoLExpr "_" -> NoLExpr {left, "EtaExpansionExpr"}

BlockExpr -> NoLExpr

}

> PREFIX NoLExpr -> NoLExpr {"PrefixExpr"}

> PREFIX NoLExpr -> NoLExpr {"PrefixExpr"}

> {

NoLExpr SPECIAL-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-SPECIAL-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr MULT-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-MULT-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr SUM-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-SUM-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr COLON-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-COLON-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr CMPR-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-CMPR-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr BRACKET-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-BRACKET-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr AMPERSAND -OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-AMPERSAND -OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr CIRCUMFLEX -OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-CIRCUMFLEX -OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr BAR-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-BAR-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> {

NoLExpr LETTER-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-LETTER-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

}

> NoLExpr ASSIGN-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

> NoLExpr Id -> NoLExpr {avoid, "PostfixExpr"}

> NoLExpr Id -> NoLExpr {avoid, "PostfixExpr"}

> NoLExpr "match" "{" CaseClause+ "}" -> NoLExpr {"MatchExpr"}

> NoLExpr ArgumentExprs "=" NoLExpr -> NoLExpr {"AccessAssignmentExpr",

non-assoc}
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<0> > NoLExpr "." Id "=" NoLExpr -> NoLExpr {"DesignatorAssignmentExpr",

non-assoc}

<0> > {

Bindings "=>" NoLExpr -> NoLExpr {prefer, "FunExpr"}

Id "=>" NoLExpr -> NoLExpr {prefer, "IdFunExpr"}

"implicit" Id "=>" NoLExpr -> NoLExpr {prefer, "ImplicitFunExpr"}

"_" "=>" NoLExpr -> NoLExpr {prefer, "WildcardFunExpr"}

"if" "(" NoLExpr ")" NoLExpr -> NoLExpr {prefer, "IfExpr"}

"if" "(" NoLExpr ")" NoLExpr

"else" NoLExpr -> NoLExpr {"IfElseExpr"}

"if" "(" NoLExpr ")" NoLExpr

";" "else" NoLExpr -> NoLExpr {"IfElseExpr"}

"while" "(" NoLExpr ")" NoLExpr -> NoLExpr {"WhileExpr"}

"try" NoLExpr -> NoLExpr {prefer, "TryExpr"}

"try" NoLExpr "catch" NoLExpr -> NoLExpr {"TryCatchExpr"}

"try" NoLExpr "finally" NoLExpr -> NoLExpr {"TryFinallyExpr"}

"try" NoLExpr "catch" NoLExpr

"finally" NoLExpr -> NoLExpr {avoid, "TryCatchFinallyExpr"}

"do" NoLExpr ";" "while" "(" NoLExpr ")" -> NoLExpr {"DoWhileExpr"}

"do" NoLExpr "while" "(" NoLExpr ")" -> NoLExpr {"DoWhileExpr"}

"for" "(" EnumeratorSemi+ ")" NoLExpr -> NoLExpr {"ForExpr"}

"for" "{" EnumeratorSemi+ "}" NoLExpr -> NoLExpr {"ForExpr"}

"for" "(" EnumeratorSemi+ ")" "yield" NoLExpr -> NoLExpr {"ForYieldExpr"}

"for" "{" EnumeratorSemi+ "}" "yield" NoLExpr -> NoLExpr {"ForYieldExpr"}

"throw" NoLExpr -> NoLExpr {"ThrowExpr"}

"return" NoLExpr? -> NoLExpr {"ReturnExpr"}

Id "=" NoLExpr -> NoLExpr {non-assoc, "AssignmentExpr"}

NoLExpr Ascription -> NoLExpr {avoid, "AscriptionExpr"}

}

context-free priorities
NoLExpr "." Id -> NoLExpr {avoid, "DesignatorExpr"}

> PREFIX NoLExpr -> NoLExpr {"PrefixExpr"}

%%% Repeat Priorities in context-free syntax for correct PPTable generation %%%

context-free syntax
"_" -> Expr {"WildcardExpr"}

Expr ArgumentExprs -> Expr {"AppExpr",

layout("1.last.line == 2.first.line")}

Expr BlockExpr -> Expr {"BlockAppExpr",

layout("2.first.line - 1.last.line < num(2)")}

"(" {NoLExpr ","}* ")" -> Expr {"TupleExpr"}

Expr TypeArgs -> Expr {"TypeApplication"}

"new" ClassTemplate -> Expr {prefer, "NewClassExpr"}

"new" TemplateBody -> Expr {prefer, "NewTemplateExpr"}

Expr "_" -> Expr {left, "EtaExpansionExpr",

layout("1.last.line == 2.first.line")}

PREFIX Expr -> Expr {prefer, "PrefixExpr"}

Expr SPECIAL-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr MULT-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr SUM-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}
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Expr COLON-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr CMPR-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr BRACKET-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr AMPERSAND -OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr CIRCUMFLEX -OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr BAR-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr LETTER-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-SPECIAL-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-MULT-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-SUM-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-COLON-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-CMPR-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-BRACKET-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-AMPERSAND -OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-CIRCUMFLEX -OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-BAR-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr RASSOC-LETTER-OP Expr -> Expr {right, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr ASSIGN-OP Expr -> Expr {left, "InfixExpr",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

Expr Id -> Expr {avoid, "PostfixExpr",

layout("1.last.line == 2.first.line")}

Expr "match" "{" CaseClause+ "}" -> Expr {"MatchExpr"}

Expr ArgumentExprs "=" Expr -> Expr {non-assoc, "AccessAssignmentExpr"}

Expr "." Id "=" Expr -> Expr {non-assoc, "DesignatorAssignmentExpr"}

Bindings "=>" Expr -> Expr {prefer, "FunExpr"}

Id "=>" Expr -> Expr {prefer, "IdFunExpr"}

"implicit" Id "=>" Expr -> Expr {prefer, "ImplicitFunExpr"}

"_" "=>" Expr -> Expr {prefer, "WildcardFunExpr"}

"if" "(" NoLExpr ")" Expr -> Expr {prefer, "IfExpr"}

"if" "(" NoLExpr ")" Expr

"else" Expr -> Expr {"IfElseExpr"}

"if" "(" NoLExpr ")" Expr ";"

"else" Expr -> Expr {"IfElseExpr"}

"while" "(" NoLExpr ")" Expr -> Expr {"WhileExpr"}

"try" Expr -> Expr {prefer, "TryExpr"}

"try" Expr "catch" Expr -> Expr {"TryCatchExpr"}

"try" Expr "finally" Expr -> Expr {"TryFinallyExpr"}

"try" Expr "catch" Expr "finally" Expr -> Expr {avoid, "TryCatchFinallyExpr"}
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"do" Expr ";" "while" "(" Expr ")" -> Expr {"DoWhileExpr"}

"do" Expr "while" "(" Expr ")" -> Expr {"DoWhileExpr"}

"for" "(" EnumeratorSemi+ ")" Expr -> Expr {"ForExpr"}

"for" "{" EnumeratorSemi+ "}" Expr -> Expr {"ForExpr"}

"for" "(" EnumeratorSemi+ ")" "yield" Expr -> Expr {"ForYieldExpr"}

"for" "{" EnumeratorSemi+ "}" "yield" Expr -> Expr {"ForYieldExpr"}

"throw" Expr -> Expr {"ThrowExpr"}

"return" Expr? -> Expr {"ReturnExpr",

layout("1.last.line == 2.first.line")}

Id "=" Expr -> Expr {non-assoc, "AssignmentExpr"}

Expr Ascription -> Expr {avoid, "AscriptionExpr"}

Expr "." Id -> Expr {avoid, "DesignatorExpr"}

PREFIX Expr -> Expr {"PrefixExpr"}

"_" -> NoLExpr {"WildcardExpr"}

Literal -> NoLExpr {prefer}
NoLExpr ArgumentExprs -> NoLExpr {"AppExpr"}

NoLExpr BlockExpr -> NoLExpr {"BlockAppExpr"}

"(" {NoLExpr ","}* ")" -> NoLExpr {"TupleExpr"}

NoLExpr TypeArgs -> NoLExpr {"TypeApplication"}

"new" ClassTemplate -> NoLExpr {prefer, "NewClassExpr"}

"new" TemplateBody -> NoLExpr {prefer, "NewTemplateExpr"}

NoLExpr "_" -> NoLExpr {left, "EtaExpansionExpr"}

PREFIX NoLExpr -> NoLExpr {prefer, "PrefixExpr"}

NoLExpr SPECIAL-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr MULT-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr SUM-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr COLON-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr CMPR-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr BRACKET-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr AMPERSAND -OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr CIRCUMFLEX -OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr BAR-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr LETTER-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr RASSOC-SPECIAL-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-MULT-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-SUM-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-COLON-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-CMPR-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-BRACKET-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-AMPERSAND -OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-CIRCUMFLEX -OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-BAR-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr RASSOC-LETTER-OP NoLExpr -> NoLExpr {right, "InfixExpr"}

NoLExpr ASSIGN-OP NoLExpr -> NoLExpr {left, "InfixExpr"}

NoLExpr Id -> NoLExpr {avoid, "PostfixExpr"}

NoLExpr Id -> NoLExpr {avoid, "PostfixExpr"}

NoLExpr "match" "{" CaseClause+ "}" -> NoLExpr {"MatchExpr"}

NoLExpr ArgumentExprs "=" NoLExpr -> NoLExpr {"AccessAssignmentExpr",

non-assoc}

NoLExpr "." Id "=" NoLExpr -> NoLExpr {"DesignatorAssignmentExpr",

non-assoc}

Bindings "=>" NoLExpr -> NoLExpr {prefer, "FunExpr"}

Id "=>" NoLExpr -> NoLExpr {prefer, "IdFunExpr"}

"implicit" Id "=>" NoLExpr -> NoLExpr {prefer, "ImplicitFunExpr"}
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"_" "=>" NoLExpr -> NoLExpr {prefer, "WildcardFunExpr"}

"if" "(" NoLExpr ")" NoLExpr -> NoLExpr {prefer, "IfExpr"}

"if" "(" NoLExpr ")" NoLExpr "else" NoLExpr -> NoLExpr {"IfElseExpr"}

"if" "(" NoLExpr ")" NoLExpr ";" "else" NoLExpr -> NoLExpr {"IfElseExpr"}

"while" "(" NoLExpr ")" NoLExpr -> NoLExpr {"WhileExpr"}

"try" NoLExpr -> NoLExpr {"TryExpr"}

"try" NoLExpr "catch" NoLExpr -> NoLExpr {"TryCatchExpr"}

"try" NoLExpr "finally" NoLExpr -> NoLExpr {"TryFinallyExpr"}

"try" NoLExpr "catch" NoLExpr

"finally" NoLExpr -> NoLExpr {"TryCatchFinallyExpr"}

"do" NoLExpr ";" "while" "(" NoLExpr ")" -> NoLExpr {"DoWhileExpr"}

"do" NoLExpr "while" "(" NoLExpr ")" -> NoLExpr {"DoWhileExpr"}

"for" "(" EnumeratorSemi+ ")" NoLExpr -> NoLExpr {"ForExpr"}

"for" "{" EnumeratorSemi+ "}" NoLExpr -> NoLExpr {"ForExpr"}

"for" "(" EnumeratorSemi+ ")" "yield" NoLExpr -> NoLExpr {"ForYieldExpr"}

"for" "{" EnumeratorSemi+ "}" "yield" NoLExpr -> NoLExpr {"ForYieldExpr"}

"throw" NoLExpr -> NoLExpr {"ThrowExpr"}

"return" NoLExpr? -> NoLExpr {"ReturnExpr",

layout("1.last.line == 2.first.line")}

NoLExpr Ascription -> NoLExpr {avoid, "AscriptionExpr"}

Id "=" NoLExpr -> NoLExpr {non-assoc, "AssignmentExpr"}

NoLExpr "." Id -> NoLExpr {avoid, "DesignatorExpr"}

PREFIX NoLExpr -> NoLExpr {"PrefixExpr"}

%%%%% Common %%%%%%

context-free syntax
"(" NoLExprs? ")" -> ArgumentExprs {"ArgumentExprs"}

"(" (NoLExprs ",")? NoLExpr ":" "_" "*" ")" -> ArgumentExprs

{prefer, "SequenceArgumentExprs"}

ArgumentExprs -> ArgumentExprsSeq

ArgumentExprs ArgumentExprsSeq -> ArgumentExprsSeq {"ArgumentExprsSeq",

layout("1.last.line == 2.first.line")}

{NoLExpr ","}+ -> NoLExprs {"Exprs"}

":" InfixType -> Ascription {"TypeAscription"}

":" Annotation+ -> Ascription {"AnnotationAscription"}

":" "_" "*" -> Ascription {"SequenceAscription"}

Pattern1 "<-" Expr Guard? -> Generator {"Generator"}

"val" Pattern1 "<-" Expr Guard? -> Generator {"Generator"}

"if" NoLExpr -> Guard {"Guard"}

Enumerator EOL -> EnumeratorSemi {"EnumeratorSemi",

enforce-newline, longest-match, prefer}
Enumerator SEMI -> EnumeratorSemi {longest-match, "EnumeratorSemi"}

Enumerator EOP -> EnumeratorSemi {longest-match, avoid, "EnumeratorSemi"}

Enumerator EOB -> EnumeratorSemi {longest-match, avoid, "EnumeratorSemi"}
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Generator -> Enumerator

Guard -> Enumerator

Pattern1 "=" Expr -> Enumerator {"ValDef"}

"val" Pattern1 "=" Expr -> Enumerator {"ValDef"}

"case" Pattern Guard? "=>" CaseBlock -> CaseClause {"CaseClause"}

"{" CaseClause+ "}" -> BlockExpr {"CaseBlockExpr"}

"{" Block "}" -> BlockExpr {"BlockExpr"}

Block -> CaseBlock

CaseBlockStatSemi* -> CaseBlock {avoid, "CaseBlock"}

BlockStatSemi -> CaseBlockStatSemi

BlockStat EOC -> CaseBlockStatSemi {avoid, "EOCBlockStatSemi"}

BlockStatSemi* ResultExpr -> Block {prefer, "Block"}

BlockStatSemi* -> Block {"Block"}

Bindings "=>" Block -> ResultExpr {"BindingsResultExpr"}

"implicit" Id ":" CompoundType "=>" Block -> ResultExpr {"ImplicitResultExpr"}

Id (":" CompoundType)? "=>" Block -> ResultExpr {"SimpleResultExpr"}

"_" (":" CompoundType)? "=>" Block -> ResultExpr {"WildcardResultExpr"}

BlockStat EOL -> BlockStatSemi {"BlockStatSemi",

enforce-newline, longest-match, prefer}
BlockStat SEMI -> BlockStatSemi {longest-match, "BlockStatSemi"}

BlockStat EOB -> BlockStatSemi {longest-match, avoid, "BlockStatSemi"}

SEMI -> BlockStatSemi

Import -> BlockStat

Expr -> BlockStat

Annotation* LocalModifier* TmplDef -> BlockStat {prefer, "TmplDefBlockStat"}

Annotation* Def -> BlockStat {"DefBlockStat"}

Annotation* "implicit" Def -> BlockStat {"ImplicitDefBlockStat"}

Annotation* "lazy" Def -> BlockStat {"LazyDefBlockStat"}

TemplateStat SEMI -> TemplateStatSemi {longest-match, "TemplateStatSemi"}

TemplateStat EOL -> TemplateStatSemi {"TemplateStatSemi",

enforce-newline, longest-match, prefer}
TemplateStat EOB -> TemplateStatSemi {longest-match, avoid, "TemplateStatSemi"}

SEMI -> TemplateStatSemi

AnnotationSeq? Modifier* Def -> TemplateStat {"DefTemplateStat"}

AnnotationSeq? Modifier* Dcl -> TemplateStat {"DclTemplateStat"}

Import -> TemplateStat {"ImportTemplateStat"}

Expr -> TemplateStat {"ExprTemplateStat"}

Id (":" Type)? -> Binding {"Binding"}

"_" (":" Type)? -> Binding {"WildCardBinding"}

"(" {Binding ","}* ")" -> Bindings {"Bindings"}

"=" Expr -> Assignment {"Assignment"}
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%%% Scala-Identifiers.sdf %%%

module Scala-Identifiers

exports

lexical syntax
[A-Z] | [\$] -> UPPER

[a-z] -> LOWER

UPPER | LOWER -> LETTER

[0-9] -> DIGIT

LETTER | DIGIT -> ID-REST

[\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~] -> OP-CHAR

%% OPerators by precedence from low to high

OP-CHAR* [\=] -> ASSIGN-OP

VAR-PLAIN-ID | CONST-PLAIN-ID -> LETTER-OP

[\|] OP-CHAR* -> BAR-OP

[\^] OP-CHAR* -> CIRCUMFLEX -OP

[\&] OP-CHAR* -> AMPERSAND -OP

([\<] | [\>]) OP-CHAR* -> BRACKET-OP

([\=] | [\!]) OP-CHAR* -> CMPR-OP

[\:] OP-CHAR* -> COLON-OP

([\+] | [\-]) OP-CHAR* -> SUM-OP

([\*] | [\/] | [\%]) OP-CHAR* -> MULT-OP

[\#\?\@\\\~] OP-CHAR* -> SPECIAL-OP

%% right associative operators

%% TODO: Make RASSOC-LETTER-OP actually work

%% Won’t do at the current state, as of restrictions on OP

(VAR-PLAIN-ID | CONST-PLAIN-ID) [\:] -> RASSOC-LETTER-OP

[\|] OP-CHAR* [\:] -> RASSOC-BAR-OP

[\^] OP-CHAR* [\:] -> RASSOC-CIRCUMFLEX -OP

[\&] OP-CHAR* [\:] -> RASSOC-AMPERSAND -OP

([\<] | [\>]) OP-CHAR* [\:] -> RASSOC-BRACKET-OP

([\=] | [\!]) OP-CHAR* [\:] -> RASSOC-CMPR-OP

[\:] OP-CHAR* [\:] -> RASSOC-COLON-OP

([\+] | [\-]) OP-CHAR* [\:] -> RASSOC-SUM-OP

([\*] | [\/] | [\%]) OP-CHAR* [\:] -> RASSOC-MULT-OP

[\#\?\@\\\~] OP-CHAR* [\:] -> RASSOC-SPECIAL-OP

[\=] OP-CHAR* [\=] -> ASSIGN-OP {reject}
"=" -> ASSIGN-OP {reject}
"<=" -> ASSIGN-OP {reject}
">=" -> ASSIGN-OP {reject}
"!=" -> ASSIGN-OP {reject}
"=" -> CMPR-OP {reject}
"=>" -> CMPR-OP {reject}
":" -> COLON-OP {reject}
"<-" -> BRACKET-OP {reject}
"<:" -> BRACKET-OP {reject}
"<:" -> RASSOC-BRACKET-OP {reject}
"<%" -> BRACKET-OP {reject}
">:" -> BRACKET-OP {reject}
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">:" -> RASSOC-BRACKET-OP {reject}
"#" -> SPECIAL-OP {reject}
"@" -> SPECIAL-OP {reject}

%% ASSIGN-OP is exception and thus more important than the other ops

ASSIGN-OP -> LETTER-OP {reject}
ASSIGN-OP -> BAR-OP {reject}
ASSIGN-OP -> CIRCUMFLEX -OP {reject}
ASSIGN-OP -> AMPERSAND -OP {reject}
ASSIGN-OP -> BRACKET-OP {reject}
ASSIGN-OP -> CMPR-OP {reject}
ASSIGN-OP -> COLON-OP {reject}
ASSIGN-OP -> SUM-OP {reject}
ASSIGN-OP -> MULT-OP {reject}
ASSIGN-OP -> SPECIAL-OP {reject}

%% Right associative identifiers have higher priority than

%% their left associative counterparts

RASSOC-LETTER-OP -> LETTER-OP {reject}
RASSOC-BAR-OP -> BAR-OP {reject}
RASSOC-CIRCUMFLEX -OP -> CIRCUMFLEX -OP {reject}
RASSOC-AMPERSAND -OP -> AMPERSAND -OP {reject}
RASSOC-BRACKET-OP -> BRACKET-OP {reject}
RASSOC-CMPR-OP -> CMPR-OP {reject}
RASSOC-COLON-OP -> COLON-OP {reject}
RASSOC-SUM-OP -> SUM-OP {reject}
RASSOC-MULT-OP -> MULT-OP {reject}
RASSOC-SPECIAL-OP -> SPECIAL-OP {reject}

OP-CHAR+ -> OP

LOWER -> IVAR-ID

(IVAR-ID | IVAR-ID-USS) ID-REST -> IVAR-ID

(IVAR-ID | IVAR-ID-USS) [\_] -> IVAR-ID-USS

IVAR-ID-USS OP -> IVAR-ID-OP

[\_] -> ICONST-ID

UPPER -> ICONST-ID

(ICONST-ID | ICONST-ID-USS) ID-REST -> ICONST-ID

(ICONST-ID | ICONST-ID-USS) [\_] -> ICONST-ID-USS

ICONST-ID-USS [\_] -> ICONST-ID-USS

ICONST-ID-USS OP -> ICONST-ID-OP

IVAR-ID -> VAR-ID

IVAR-ID-USS -> VAR-ID-USS

IVAR-ID-OP -> VAR-ID-OP

ICONST-ID -> CONST-ID

ICONST-ID-USS -> CONST-ID-USS

ICONST-ID-OP -> CONST-ID-OP

(VAR-ID | VAR-ID-USS | VAR-ID-OP) -> IVAR-PLAIN-ID

(CONST-ID | CONST-ID-USS | CONST-ID-OP) -> ICONST-PLAIN-ID
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OP -> IPLAIN-ID

IVAR-PLAIN-ID -> IPLAIN-ID

ICONST-PLAIN-ID -> IPLAIN-ID

IVAR-PLAIN-ID -> VAR-PLAIN-ID

ICONST-PLAIN-ID -> CONST-PLAIN-ID

IPLAIN-ID -> PLAIN-ID

"abstract" -> KEYWORD

"case" -> KEYWORD

"catch" -> KEYWORD

"class" -> KEYWORD

"def" -> KEYWORD

"do" -> KEYWORD

"else" -> KEYWORD

"extends" -> KEYWORD

"false" -> KEYWORD

"final" -> KEYWORD

"finally" -> KEYWORD

"for" -> KEYWORD

"forSome" -> KEYWORD

"if" -> KEYWORD

"implicit" -> KEYWORD

"import" -> KEYWORD

"lazy" -> KEYWORD

"macro" -> KEYWORD

"match" -> KEYWORD

"new" -> KEYWORD

"null" -> KEYWORD

"object" -> KEYWORD

"override" -> KEYWORD

"package" -> KEYWORD

"private" -> KEYWORD

"protected" -> KEYWORD

"return" -> KEYWORD

"sealed" -> KEYWORD

"super" -> KEYWORD

"this" -> KEYWORD

"throw" -> KEYWORD

"trait" -> KEYWORD

"try" -> KEYWORD

"true" -> KEYWORD

"type" -> KEYWORD

"val" -> KEYWORD

"var" -> KEYWORD

"while" -> KEYWORD

"with" -> KEYWORD

"yield" -> KEYWORD

"_" -> KEYWORD

":" -> KEYWORD

"=" -> KEYWORD

"=>" -> KEYWORD

"<-" -> KEYWORD

"<:" -> KEYWORD

"<%" -> KEYWORD
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">:" -> KEYWORD

"#" -> KEYWORD

"@" -> KEYWORD

KEYWORD -> VAR-PLAIN-ID {reject}
KEYWORD -> CONST-PLAIN-ID {reject}
KEYWORD -> PLAIN-ID {reject}

"-" -> MINUS-PREFIX

"+" -> PREFIX

MINUS-PREFIX -> PREFIX

"~" -> PREFIX

"!" -> PREFIX

"‘" ~[\‘]+ "‘" -> FANCY-ID

FANCY-ID -> PLAIN-ID

lexical restrictions
OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

ASSIGN-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

LETTER-OP -/- [a-zA-Z0-9]

BAR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

CIRCUMFLEX -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

AMPERSAND -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

BRACKET-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

CMPR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

COLON-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

SUM-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

MULT-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

SPECIAL-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-LETTER-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-BAR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-CIRCUMFLEX -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-AMPERSAND -OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-BRACKET-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-CMPR-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-COLON-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-SUM-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-MULT-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

RASSOC-SPECIAL-OP -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

VAR-ID -/- [A-Za-z0-9\$\_]

CONST-ID -/- [A-Za-z0-9\$\_]

VAR-ID-USS -/- [A-Za-z0-9\$\_] \/ [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

CONST-ID-USS -/- [A-Za-z0-9\$\_] \/ [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]
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"abstract" -/- [a-zA-Z0-9\$\_]

"case" -/- [a-zA-Z0-9\$\_]

"catch" -/- [a-zA-Z0-9\$\_]

"class" -/- [a-zA-Z0-9\$\_]

"def" -/- [a-zA-Z0-9\$\_]

"do" -/- [a-zA-Z0-9\$\_]

"else" -/- [a-zA-Z0-9\$\_]

"extends" -/- [a-zA-Z0-9\$\_]

"false" -/- [a-zA-Z0-9\$\_]

"final" -/- [a-zA-Z0-9\$\_]

"finally" -/- [a-zA-Z0-9\$\_]

"for" -/- [a-zA-Z0-9\$\_]

"forSome" -/- [a-zA-Z0-9\$\_]

"if" -/- [a-zA-Z0-9\$\_]

"implicit" -/- [a-zA-Z0-9\$\_]

"import" -/- [a-zA-Z0-9\$\_]

"lazy" -/- [a-zA-Z0-9\$\_]

"macro" -/- [a-zA-Z0-9\$\_]

"match" -/- [a-zA-Z0-9\$\_]

"new" -/- [a-zA-Z0-9\$\_]

"null" -/- [a-zA-Z0-9\$\_]

"object" -/- [a-zA-Z0-9\$\_]

"override" -/- [a-zA-Z0-9\$\_]

"package" -/- [a-zA-Z0-9\$\_]

"private" -/- [a-zA-Z0-9\$\_]

"protected"-/- [a-zA-Z0-9\$\_]

"return" -/- [a-zA-Z0-9\$\_]

"sealed" -/- [a-zA-Z0-9\$\_]

"super" -/- [a-zA-Z0-9\$\_]

"this" -/- [a-zA-Z0-9\$\_]

"throw" -/- [a-zA-Z0-9\$\_]

"trait" -/- [a-zA-Z0-9\$\_]

"try" -/- [a-zA-Z0-9\$\_]

"true" -/- [a-zA-Z0-9\$\_]

"type" -/- [a-zA-Z0-9\$\_]

"val" -/- [a-zA-Z0-9\$\_]

"var" -/- [a-zA-Z0-9\$\_]

"while" -/- [a-zA-Z0-9\$\_]

"with" -/- [a-zA-Z0-9\$\_]

"yield" -/- [a-zA-Z0-9\$\_]

"=" -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

":" -/- [\!\#\%\&\*\+\-\/\:\<\=\>\?\@\\\^\|\~]

"_" -/- [a-zA-Z0-9\_\$]

PREFIX -/- [\+\-\~\!]

MINUS-PREFIX -/- [0-9]

FANCY-ID -/- [a-zA-Z0-9\_\$]

context-free syntax
PLAIN-ID -> Id {"Id"}
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%%% Scala-Literals.sdf %%%

module Scala-Literals

imports
Scala-Identifiers

exports

lexical syntax
DECIMAL-NUMERAL ("L" | "l")? -> INTEGER

HEX-NUMERAL ("L" | "l")? -> INTEGER

OCTAL-NUMERAL ("L" | "l")? -> INTEGER {prefer}
"-" INTEGER -> INTEGER

[0] | NON-ZERO-DIGIT DIGIT* -> DECIMAL-NUMERAL

"0x" HEX-DIGIT+ -> HEX-NUMERAL

[0] OCTAL-DIGIT+ -> OCTAL-NUMERAL

[0-9] -> DIGIT

[1-9] -> NON-ZERO-DIGIT

[0-7] -> OCTAL-DIGIT

[0-9A-Fa-f] -> HEX-DIGIT

DIGIT+ "." DIGIT+ EXPONENT-PART? FLOAT-TYPE? -> FLOATING-POINT

"." DIGIT+ EXPONENT-PART? FLOAT-TYPE? -> FLOATING-POINT

DIGIT+ EXPONENT-PART -> FLOATING-POINT

DIGIT+ FLOAT-TYPE -> FLOATING-POINT

DIGIT+ EXPONENT-PART FLOAT-TYPE -> FLOATING-POINT

"-" FLOATING-POINT -> FLOATING-POINT

("E" | "e") ("+" | "-")? DIGIT+ -> EXPONENT-PART

"F" | "f" | "D" | "d" -> FLOAT-TYPE

"’" PRINTABLE "’" -> CHAR

"’" CHAR-ESCAPE-SEQ "’" -> CHAR

[\32-\126] -> PRINTABLE

[\0-\127] / [\"] -> CHAR-NO-DOUBLE-QUOTE

"\\b" | "\\t" | "\\n" | "\\f" |

"\\r" | "\\\"" | "\\’" | "\\\\" -> CHAR-ESCAPE-SEQ

"\\" [0-1]? [0-9]? [0-9] -> CHAR-ESCAPE-SEQ

"\\" DIGIT? DIGIT? DIGIT -> CHAR-ESCAPE-SEQ

UNICODE-ESCAPE -> CHAR-ESCAPE-SEQ

"\\" "u" HEX-DIGIT HEX-DIGIT HEX-DIGIT HEX-DIGIT -> UNICODE-ESCAPE

"\"" STRING-ELEMENT* "\"" -> STRING

"\"\"\"" MULTI-LINE-CHARS "\"\"\"" -> STRING

[\32-\126] / [\"\\] -> STRING-ELEMENT

CHAR-ESCAPE-SEQ -> STRING-ELEMENT

PLAIN-ID "\"" PROCESSED -STRING-ELEMENT* "\"" -> PROCESSED -STRING

PLAIN-ID "\"\"\"" MULTI-LINE-PROCESSED -STRING-ELEMENT "\"\"\""

-> PROCESSED -STRING
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[\32-\126] / [\"\$\\] -> PROCESSED -STRING-ELEMENT

CHAR-ESCAPE-SEQ -> PROCESSED -STRING-ELEMENT

PROCESSING -> PROCESSED -STRING-ELEMENT

"$$" -> PROCESSING

"${" PROCESSING -ELEMENT* "}" -> PROCESSING

"$" IPLAIN-ID -> PROCESSING

"{" PROCESSING -ELEMENT* "}" -> PROCESSING -ELEMENT

[\0-\127] / [\{\}\"] -> PROCESSING -ELEMENT

PROCESSED -STRING -> PROCESSING -ELEMENT

STRING -> PROCESSING -ELEMENT

([\"]? [\"]? CHAR-NO-DOUBLE-QUOTE)* [\"]* -> MULTI-LINE-CHARS

([\"]? [\"]? IMULTI-LINE-PROCESSED -STRING-ELEMENT)* [\"]*

-> MULTI-LINE-PROCESSED -STRING-ELEMENT

PROCESSING -> IMULTI-LINE-PROCESSED -STRING-ELEMENT

[\0-\127] / [\"\$] -> IMULTI-LINE-PROCESSED -STRING-ELEMENT

[\"] -> DOUBLE-QUOTE

[\"] [\"] -> DOUBLE-DOUBLE-QUOTE

"’" IPLAIN-ID -> SYMBOL

lexical restrictions
INTEGER -/- [0-9a-zA-Z]

FLOATING -POINT -/- [0-9a-zA-Z]

Literal -/- [0-9a-zA-Z]

"true" -/- [0-9a-zA-Z]

"false" -/- [0-9a-zA-Z]

DOUBLE-QUOTE -/- [\"]

DOUBLE-DOUBLE-QUOTE -/- [\"]

context-free syntax
INTEGER -> Literal {"Int"}

FLOATING -POINT -> Literal {"Float"}

CHAR -> Literal {"Char"}

STRING -> Literal {"String"}

SYMBOL -> Literal {"Symbol"}

"null" -> Literal {"Null"}

PROCESSED -STRING -> Literal {"ProcessedString"}

BooleanLiteral -> Literal

"true" -> BooleanLiteral {"True"}

"false" -> BooleanLiteral {"False"}
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%%% Scala-Macros.sdf %%%

module Scala-Macros

imports
Scala-BasicDeclsDefs

Scala-Identifiers

Scala-Types

exports

context-free syntax
FunSig (":" Type)? "=" "macro" StableId TypeArgs? -> FunDef {"MacroDef"}

%%% Scala-PatternMatching.sdf %%%

module Scala-PatternMatching

imports
Scala-Literals

Scala-Types

exports

lexical syntax
PLAIN-ID -> INFIX-PATTERN-OP

"|" -> INFIX-PATTERN-OP {reject}

context-free priorities
{

"_" -> SimplePattern {"WildcardPattern"}

%%VarId -> SimplePattern {"VariablePattern"}

Literal -> SimplePattern {"LiteralPattern"}

StableId "(" Patterns ")" -> SimplePattern {"ConstructorPattern"}

"(" Patterns ")" -> SimplePattern {"TuplePattern"}

StableId "(" (Patterns ",")? (VAR-PLAIN-ID "@")? "_" "*" ")"

-> SimplePattern {"PatternSequence"}

StableId -> SimplePattern

}

> {

Pattern3 INFIX-PATTERN-OP Pattern3 -> Pattern3 {left, "InfixPattern",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

SimplePattern -> Pattern3

}

> {

VAR-PLAIN-ID "@" Pattern3 -> Pattern2 {"PatternBinder"}

Pattern3 -> Pattern2

}

> {

VAR-PLAIN-ID ":" Type -> Pattern1 {"TypedPattern"}

"_" ":" Type -> Pattern1 {"WildcardTypedPattern"}

Pattern2 -> Pattern1

}
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> {

Pattern1 -> Pattern {longest-match}
Pattern "|" Pattern -> Pattern {"DisjunctPattern", left}

}

context-free syntax
{Pattern ","}* -> Patterns {"Patterns"}

%%% Repeat priorities in context-free syntax for correct PPTable generation %%%

context-free syntax
"_" -> SimplePattern {"WildcardPattern"}

Literal -> SimplePattern {"LiteralPattern"}

StableId "(" Patterns ")" -> SimplePattern {"ConstructorPattern"}

"(" Patterns ")" -> SimplePattern {"TuplePattern"}

StableId "(" (Patterns ",")?

(VAR-PLAIN-ID "@")? "_" "*" ")" -> SimplePattern {"PatternSequence"}

Pattern3 INFIX-PATTERN-OP Pattern3 -> Pattern3 {left, "InfixPattern",

layout("1.last.line == 2.first.line && 3.first.line - 2.last.line < num(2)")}

VAR-PLAIN-ID "@" Pattern3 -> Pattern2 {"PatternBinder"}

VAR-PLAIN-ID ":" Type -> Pattern1 {"TypedPattern"}

"_" ":" Type -> Pattern1 {"WildcardTypedPattern"}

Pattern "|" Pattern -> Pattern {left, "DisjunctPattern"}

%%% Scala.sdf %%%

module Scala

imports
Scala-Annotations

Scala-BasicDeclsDefs

Scala-ClassesObjects

Scala-Expressions

Scala-Identifiers

Scala-Literals

Scala-Macros

Scala-PatternMatching

Scala-TopLevelDefinitions

Scala-Types

Scala-Whitespace

exports

context-free start-symbols
Annotation

Block

CompilationUnit

Dcl

Def

Expr

Id

Import

NoLExpr

Path

Pattern
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StableId

TemplateBody

TemplateStat

TmplDef

Type

TypeParamClause

%%% Scala-TopLevelDefinitions.sdf %%%

%% Chapter 9 - Top-Level Definitions

module Scala-TopLevelDefinitions

imports
Scala-BasicDeclsDefs

Scala-ClassesObjects

Scala-Identifiers

Scala-Whitespace

exports

context-free syntax
-> CompilationUnit {"EmptyCompilationUnit"}

PackageDeclarationSemi* TopStatSemi+ -> CompilationUnit {"CompilationUnit"}

TopStat EOL -> TopStatSemi {"TopStatSemi",

enforce-newline, longest-match, prefer}
TopStat SEMI -> TopStatSemi {"TopStatSemi"}

TopStat EOF -> TopStatSemi {longest-match, "TopStatSemi"}

TopStat EOB -> TopStatSemi {longest-match, avoid, "TopStatSemi"}

AnnotationSeq? Modifier* TmplDef -> TopStat {"TopTmplDef"}

Import -> TopStat

Packaging -> TopStat

PackageObject -> TopStat

"package" QualId EOL -> PackageDeclarationSemi {"PackageDeclaration",

enforce-newline}
"package" QualId SEMI -> PackageDeclarationSemi {"PackageDeclaration"}

{Id "."}+ -> QualId {"QualId"}

"package" QualId "{" TopStatSemi+ "}" -> Packaging {"Packaging",

layout("3.first.line - 2.last.line < num(2)")}

"package" "object" ObjectDef -> PackageObject {"PackageObject"}

%%% Scala-Types.sdf %%%

module Scala-Types

imports
Scala-Annotations

Scala-BasicDeclsDefs

Scala-Identifiers

Scala-Whitespace
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exports

%% §3.1 Paths

context-free syntax
Id -> Path {prefer}
{PathElem "."}+ -> Path {"Path"}

PLAIN-ID -> PathElem

"this" -> PathElem {"This"}

"super" ClassQualifier? "." PLAIN-ID -> PathElem {"Super"}

PLAIN-ID -> StableIdElem

"this" -> StableIdElem {"StableThis"}

"super" ClassQualifier? -> StableIdElem {"StableSuper"}

Id -> StableId

{StableIdElem "."}+ "." PLAIN-ID -> StableId {"StableId"}

"[" PLAIN-ID "]" -> ClassQualifier {"ClassQualifier"}

PREFIX -> Path {reject} %% not 100% sure this is correct

context-free restrictions
StableId -/- [\.] . [\33-\126] / [\{\,\_]

%% §3.2 - Value Types

context-free syntax
%% §3.2.1 - Singleton Types

Path "." "type" -> SimpleType {"SingletonType"}

%% §3.2.2 - Type Projection

SimpleType "#" Id -> SimpleType {"TypeProjection"}

%% §3.2.3 - Type Designators

StableId -> SimpleType {"Type"}

%% §3.2.4 - Parameterized Types

SimpleType TypeArgs -> SimpleType {"ParameterizedType"}

"[" {Type ","}+ "]" -> TypeArgs {"TypeArgs"}

%% §3.2.5 - Tuple Types

"(" {Type ","}+ ")" -> SimpleType {"TupleType"}

%% §3.2.6 - Annotated Types

SimpleType -> AnnotType

SimpleType Annotation+ -> AnnotType {"AnnotType",

layout("1.last.line == 2.first.line")}
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%% §3.2.7 - Compound Types

AnnotType -> CompoundType

Refinement -> CompoundType

AnnotType Refinement -> CompoundType {"RefinedType"}

AnnotType With+ Refinement? -> CompoundType {"CompoundType",

layout("3.first.line - 2.last.line < num(2)")}

"with" AnnotType -> With {"With"}

"{" RefineStatSemi* "}" -> Refinement {"Refinement"}

RefineStat EOL -> RefineStatSemi {"RefineStatSemi",

enforce-newline, longest-match, prefer}
RefineStat SEMI -> RefineStatSemi {longest-match, "RefineStatSemi"}

RefineStat EOB -> RefineStatSemi {longest-match, avoid, "RefineStatSemi"}

Dcl -> RefineStat

"type" TypeDef -> RefineStat {"TypeRefineStat"}

%% §3.2.8 - Infix Types

InfixType -> Type

CompoundType -> InfixType

InfixType PLAIN-ID InfixType -> InfixType {left, "InfixType",

layout("3.first.line - 2.last.line < num(2)")}

%% §3.2.9 - Function Types

FunctionArgTypes "=>" Type -> Type {prefer, "FunctionType"}

InfixType -> FunctionArgTypes

"(" {ParamType ","}* ")" -> FunctionArgTypes {prefer, "FunctionArgType"}

%% §3.2.10 - Existential Types

InfixType ExistentialClause -> Type {"ExistentialType"}

"forSome" "{" ExistentialDclSemi+ "}" -> ExistentialClause {"ExistentialClause"}

ExistentialDcl SEMI -> ExistentialDclSemi {longest-match, "ExistentialDclSemi"}

ExistentialDcl EOL -> ExistentialDclSemi {"ExistentialDclSemi",

enforce-newline, longest-match, prefer}
ExistentialDcl EOB -> ExistentialDclSemi {longest-match, "ExistentialDclSemi"}

"type" TypeDcl -> ExistentialDcl {"ExistentialType"}

"val" ValDcl -> ExistentialDcl {"ExistentialVal"}

"_" TypeBounds? -> SimpleType {avoid, "WildcardType"}

">:" Type -> TypeBounds {"LowerTypeBound"}

"<:" Type -> TypeBounds {"UpperTypeBound"}

">:" Type "<:" Type -> TypeBounds {"LowerAndUpperTypeBound"}
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%%% Scala-Whitespace.sdf %%%

%% Part of the definitions and restrictions are taken from

%% bobd91’s JavaScript syntax

%% (https://github.com/bobd91/sugarjs/blob/master/

%% language -libraries/javascript/src/org/sugarj/languages/JavaScript.def)

module Scala-Whitespace

exports

lexical syntax
[\ \t\n\r] -> LAYOUT
"//" ~[\n]* [\n] -> LAYOUT
BLOCK-COMMENT -> LAYOUT

"/*" BLOCK-COMMENT-PART* "*/" -> BLOCK-COMMENT

~[\/\*] -> BLOCK-COMMENT-PART

ASTERISK -> BLOCK-COMMENT-PART

SLASH -> BLOCK-COMMENT-PART

BLOCK-COMMENT -> BLOCK-COMMENT-PART

-> EOL

-> EOF

-> EOB

-> EOP

";" -> SEMI

[\n] -> NL

[\*] -> ASTERISK

[\/] -> SLASH

lexical restrictions
ASTERISK -/- [\/]

SLASH -/- [\*]

context-free restrictions
LAYOUT? -/- [\ \t\n\r]

LAYOUT? -/- [\/].[\*]

LAYOUT? -/- [\/].[\/]

EOF -/- ~[]

EOB -/- ~[\}]

EOP -/- ~[\)]
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B Additional Plots for Grammar Evaluation

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●
●

●
●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●

●

●

●
●●●●●

●

●●●●●●●●●

●

●●
●

●●●
●

● ●●
●●●●●

●

●

●

●

●●●●●●
●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●
●●●● ●●

●
●●●

●

●●

●

●

●
●

●

●
●●●● ●●

●

●

●●
●● ●●●

●●
●●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●●●

●

● ●●

●

●

●

●

●

● ●●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●
●

●

●
● ● ●

●

●

● ●●●

●

●

●

●

●

●
●●●●
●●●●
●
●

●
●●●

●
●●●●●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●●●●
●
●●●

●●

●
●

●

●

●

●●

●
●●
● ●● ●
●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●
●

●●

●
●

●

● ●

●
●

●

●

●

●●

●
●

●

●●●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●●●
●●
●●●

●

●●
●

●●●●●●
●●

●

●●
●

●

●
●●

●

●

●●

●

●
●

●
●

●

●● ●●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●● ●●●●

●

●

●

●
●

●
●

●
●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●

●

●

●

● ●●

● ●

●

●
●

●

●

●
●

●

●
● ●

●●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●●
●

●●

●

●

●

●●●●●●●●●● ●●●●

●

●

●

●

●
●

●●●
●

●●●●●●

●

●●

●

●
● ●

●

●
●

●

●● ●●●

●
●

●

●
●

●

●

●●
●

●

● ●●

●●

●●

●

●

●

●

●

●●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

LOC

P
ar

se
 T

im
e 

[m
s]

Figure B.1.: Parse times for the 1471 successfully parsed files with LOC ď 1000 and parse
time ď 1s — lines mark medians and resulting gradient through origin
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Figure B.2.: Parse times for the 1196 successfully parsed files with LOC ď 200 and parse
time ď 200ms — lines mark medians and resulting gradient through origin
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