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Abstract

A wishful property for metaprograms is that generated code is well-typed. Yet
type systems build context information with a top-down traversal of the AST
from a program, but code is generated bottom-up. We propose binding re-
quirements as an approach to build contextual information with a bottom-up
traversal. This allows the definition of a type system whose information flow
is bottom-up, enabling the integration of type systems in code generation. We
introduce operators for the union of multiple requirement sets and for the con-
straint generation for intersecting requirements from two sets. We transform a
type system with context for the Simply Typed Lambda Calculus and PCF into
a bottom-up typesystem without context. We use the approach on a subset of
the language Java, to evaluate the applicability to a real-world language.
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Chapter 1

Introduction

1.1 Motivation

A metaprogram is a program with the ability to treat other programs as data.
For example, a compiler takes a program written in a language and translates
it to an equivalent program of another language. Properties that are usefull for
a metaprogram to fulfill, are that the generated code is well-formed according
to the syntax of the target language and that it is well-typed according to the
type system of the target language. A developer can be sure when using a
metaprogram that fulfills these properties, that the generated code has no un-
sound behavior during its runtime. A solution for the guarantee that generated
code is well-formed accoring to a syntax definition is proposed in [EVMV14].

Code generators construct the abstract syntax tree (AST) of a program
bottom-up, which means that the construction starts at the leafs or the inner-
most fragment of a program. Type systems use usually a type context to keep
track of the bound variables of a program and that type context is filled with a
top-down traversal of the AST. A type derivation of a program would see first
the binding and afterwards the usage of a variable, so that it knows the type of
a variable before it may occure in the program.

We propose bottom-up typechecking of a program, that uses binding require-
ments instead of a type context. The binding requirements model the same
information as the type context, but they can be built with a bottom-up traver-
sal. A binding requirement maps a variable to the type we want that variable to
be bound. We use type variables as placeholders for actual types, when we can
not determine the type of a program fragment directly, e.g. when type checking
a variable. We use constraints on those type variables, when we get further
knowledge of the actual type, e.g. when we find the declaration of a variable,
we constrain the required type to be equal to the actual type of the variable. We
use unification to solve the generated constraints, to guarantee that the type
variables can either be unified or to detect type errors for the program.
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1.2 Contributions

In this thesis, we make the following contributions:

• We present an approach to eliminate the type context from a type sys-
tem for the Simply Typed Lambda Calculus. This approach allows us to
typecheck each subexpressions of a program in isolation from their corre-
sponding enclosing expression.

• We introduce binding requirements as the opposite of a type context. The
binding requirements express the type to which a variable must be bound
instead of making a proposition of the type to which a variable is actually
bound. We use type variables as placeholders if the actual type of an
expression can not directly be deducted in the current expression and
constraints on those type variables to unify them and obtain their actual
type.

• We propose intermediate unification, as the process of using unification
after each rule application to solve the constraints generated so far.

• We adapt this approach to PCF, to evaluate the applicability to a sligthly
more expressive language. We use this typing relation to show a type
derivation for a program with intermediate unification.

• We generalize the approach to be applicable to Java. We introduce new
constraints to support the features of the language and we extend the
unification for rules that solve these new constraint types. We add a new
set for class information to the signature of the typing relation, which
contains all information belonging to the public interface of a class.

1.3 Structure

The thesis is structure as follows. In chapter 2 we introduce preliminaries to
the contributions. We develop in chapter 3 a bottom-up type system for the
Simply Typed Lambda Calculus, starting with a naive approach of removing
the context from the type rules introduces in chapter 2 and proceeding with
the fixing of the problems that arose from this. We adapt the approach from
chapter 3 to the language PCF in chapter 4 und use it to demonstrate the usage
of the typing relation and the constrain solving. This is generalized to a subset
of Java in Chapter 5. We discuss related work in chapter 6 and conclude the
thesis in chapter 7.

5



Chapter 2

Preliminaries

2.1 Spoofax/IMP

The Spoofax language workbench [KV10] is an Eclipse plugin which can be
used to design programming languages. It integrates the syntax definition for-
malism (SDF) [HHKR89] e.g. used for providing basic editor support based
on the grammar such as syntax highlighting and code folding and the program
transformation language Stratego. Stratego/XT [Vis01] consists of the transfor-
mation language Stratego and the XT toolset used not exclusively for parsing
and pretty printing.
We use the following constructs of the Stratego language.

Transformation Rules can be used to rewrite the structure of the AST, for
example using term replacements.

Transformation Strategies define the traversal order of the AST and can be
used to combine transformation rules.

We use Stratego to give an implementation of the bottom-up typechecker
for PCF and Java. We use the predefined bottomup strategy in these imple-
mentations. This strategy applies the rule we pass to it first to the leafs of the
AST.

2.2 Down-up type checking

Type checking is often done by applying syntax oriented derivation rules to the
abstract syntax tree (AST) of the program to be checked starting at the root
node. In the following we present a type system for the Simply Typed Lambda
Calculus[Pie02] with natural numbers and addition.

2.2.1 Syntax

The syntax of the Simply Type Lambda Calculus consists of expressions and
types. An expression is either a variable, an abstraction or an application as
well as natural numbers and addition. A type is either the type N for natural
numbers or a function type from one type to another type.
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〈Expr〉 ::= 〈Var〉 | λ 〈Var〉:〈Type〉. 〈Expr〉 | 〈Expr〉 〈Expr〉
| 〈Num〉 | 〈Expr〉 + 〈Expr〉

〈Type〉 ::= N | 〈Type〉 → 〈Type〉

〈Num〉 ::= 0 | 1 | 2 | ...

Where an element created with the Var production is a character string
starting with a lower case letter and possibly ending with a natural number.

Example 2.1. a, x, x0, camelCase0 are productions from Var.

x is a variable.

λ x:t. e is stating that the variable x is bound to the type t in the enclosed
expression e.

e1 e2 is stating that the expression e2 is applied as an argument to the ex-
pression e2. The expression e1 must be a lambda abstraction to work
properly.

2.2.2 The Typing Relation

We now define a typing relation that associates types to expressions (e:T). In
order to assign a type to an expression with a variable we need to keep track
of the types to which those variables are bound. For this we introduce a typing
context Γ which stores variable names and their corresponding types.

Definition 2.2. Γ ::= ∅ | Γ,〈Var〉:〈Type〉

A context is either empty or a list of key-value pairs where the variable is
the key and the type is the value. To lookup the type of a variable in a context
Γ we write Γ(x) = T stating that the type of x in Γ is T .

Γ(x) = T
T-Var

Γ ` x : T

Γ, x : T1 ` e : T2
T-Abs

Γ ` λ.x : T1.e : T1 → T2

Γ ` e1 : T1 → T2 Γ ` e2 : T1T-App
Γ ` e1 e2 : T2

n is a number
T-Num

Γ ` n : N

Γ ` e1 : N Γ ` e2 : N
T-Plus

Γ ` e1 + e2 : N

The type rules shown above are syntax oriented. A syntax oriented type
rule is only applicable for one syntactic construct, we achieve this by matching
for a syntactic construct in the conclusion of the type rules.
We give a brief overview of the five rules and we will continue with some short
examples of the usage.
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T-Var
In order to check the type of a variable we must lookup the variable in
the typing context Γ. Note that this lookup will fail if the variable is not
bound in Γ.

T-Abs
The type of an abstraction is a function type with the type of the argument
as the parameter type and the type of the body as the return type. The
argument type is explicitly denoted within the syntax. Since the denoted
variable of an abstraction is bound in its body, the body will be checked
within a context extended by this binding.

T-App
An application expression is valid if the receiver (e1) has a function type
and the type of the provided argument (e2) matches the argument type
of the function type. The resulting type is then the return type of the
function type.

T-Num
The type of a number is N .

T-Plus
Since we only can add numbers, the subexpressions of an addition expres-
sion must be both of type N . And the addition of two numbers produce
another number, so the type of an addition expression is as well N .

Now that we have seen the typing relation we can start to use it to typecheck
some programs. We start with the pure additive program p1 = 1+(2+3). The
first node of the AST of this program is an addition expression. We have just
one rule whose conclusion matches and this rule is the rule T-Plus. This rule
has two premises, so in order to say that p1 is of type Nwe need to check that
the subexpressions 1 and 2 + 3 are of type N . The first subexpression is a
natural number and we have just one rule that matches, namely T-Num. This
rule does not have a premise and we directly know that 1 has type N . The
second subexpression is another addition expression and we need to apply again
the rule T-Plus with its two premises and we need to check that 2 and 3 are of
type N . Both 2 and 3 are natural numbers and we need to apply rule T-Num to
both to know that both expressions have type N . We have checked all premises
and we can conclude that p1 has type N .

T-Num ∅ ` 1 : N

T-Num ∅ ` 2 : N T-Num ∅ ` 3 : N
T-Plus ∅ ` 2 + 3 : N

T-Plus ∅ ` 1 + (2 + 3) : N

In the typechecking process for program p1 we have seen how typerules are
applied to an abstract syntax tree. What we have not seen so far is how the
context works. We have startet to check p1 within the empty context (∅) and
while we have checked all premises the context has remained unchanged.

We will now typecheck program p2 = λf : N → N .λx : N .(fx) and show
how the context is build. Lets first describe what the program does. It is
a lambda abstraction that takes a parameter f of function type N→Nand a
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x of type Nas arguments and then applies x to f. So we start to check the
program p2 within the empty context and the first node in the AST is an
abstraction. There is just one rule that matches namely T-Abs and we know
that the resulting type is some function type and that the first part of the
function type must be the denoted type of the parameter f which is N→N .
The T-Abs rule has one premise which we have to check and since the variable
f is bound in the subexpression of the abstraction we have to regard this fact
in the context. We check the subexpression λx : N .fx in the extended context
∅, f : N → N . There is an abstraction and we apply rule T-Abs again. In this
abstraction we bind x to Nand we must take this into account when we check
the subexpression fx, so we extend the context again to ∅, f : N → N , x : N
and we name it Γ. The expression fx is an application and checked within the
context Γ. The T-App rule has two premises. First we need to check that f
has a function type and second we need to check that x matches the argument
part of that function type. So we check f in the context Γ and since f is a
variable we use the T-Var rule to lookup the type of f in the context and we
know that f has type N → N because Γ(f) = N → N . We check x in the
context Γ next and again x is a variable and we use rule T-Var to lookup x
in the context and we know that x hast type N because Γ(x) = N . We have
checked all premises and must now deduce the type of the original program p2.
We have shown that f has type N → N which is indeed a function type and
that x has type N which indeed matches the argument part of the function
type of f . The resulting type of the application from x to f is then N and the
resulting type of the abstraction which bound x to N is then N → N because
we checked that the body of the abstraction has type N . We finally conclude
that p2 has type (N → N )→ N → N , because we checked that the body of p2
has type N → N .

Γ(f) = N → N
T-Var

Γ ` f : N → N
Γ(x) = N

T-Var
Γ ` x : N

T-App
Γ = ∅, f : N → N , x : N ` fx : N

T-Abs ∅, f : N → N ` λx : N .fx : N → N
T-Abs ∅ ` λf : N → N .λx : N .(fx) : (N → N )→ N → N

While we have checked program p2, we have seen two different information
flows through the AST. First we have build up the context while the type-
checking progresses from the root to the leaves of the AST and second we have
deduced the type of p2 the other way around starting with the type of the leaves
and ending with the type of the whole program. The context information flows
down and the types flow up the AST.

∅ `λf : N → N .: (N → N )→ N → N

∅, f : N → N `λx : N .: N → N

Γ = ∅, f : N → N , x : N `fx: N

Γ `f : N → N Γ `x: N

contexts flow
top-down

types flow
bottom-up
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Chapter 3

Bottom-up Typechecking

In the previous chapter we have seen a type system for the Simply Typed
Lambda Calculus (STLC). We have noticed that there are two different oriented
information flows while typechecking a program. The context information was
build up top-down from the root to the leaves and the deduction of the type
was bottom-up from the leaves to the root. To typecheck a program, we had
to traverse the AST two times in different directions. In this chapter, we want
to get rid of the top-down traversal that builds up the context information to
ensure that all information flow is bottom-up in the typechecking process and
we call this bottom-up typechecking.

3.1 Eliminating Context

We have used the context to keep track of the variable bindings of a program,
but as the context information has flown top-down we must get rid of it. If we
just remove the context from the typerules we have seen so far issues will arise.
So let us remove them and see what will happen.

T-Var
x :?

e : T2
T-Abs

λ.x : T1.e : T1 → T2

e1 : T1 → T2 e2 : T1T-App
e1 e2 : T2

n is a number
T-Num

n : N

e1 : N e2 : N
T-Plus

e1 + e2 : N

The first problem can be seen directly by looking at the T-Var rule. When
checking a variable we can not say what type the variable has, because there is
no context to look it up. Second, when we introduce a new variable binding in
an abstraction we loose that the variable is bound in the subexpression. The
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third issue arises when we previously duplicated the context in nodes with two
or more premises involving contexts like application. To fix the first problem,
we have to introduce type variables as placeholders for our actual types. When
we now check a variable x we generate a fresh type variable α and assign this
type variable as the type of the variable. We must require that x is somehow
bound later (above the current node) in the AST and we remember that we
have used α as the type for x. We lost the context and to compensate for the
information loss we introduce contextual requirements. The new typing relation
associates expressions with types and requirements (e : T |reqs).

α fresh
T-Var

x : α|{x : α}

The second problem can be fixed similar. When we typecheck an abstraction,
each time a variable is used in the subexpression we generate a requirement with
the T-Var rule shown above. We must ensure that this requirement equals the
denoted type. We access the requirements like we looked up in the context. For
requirements reqs we use reqs(x) to look up the variable x in reqs.

e : T2|reqs reqs(x) = T1
T-Abs

λ.x : T1.e : T1 → T2|reqs− (x : reqs(x))

Note that T1 is the denoted type of x in the abstraction and thus reqs(x) = T1
is a condition we need to fullfill.

What is left to fix is the third issue. In the previous type system with con-
text we have duplicated the context when checking an application, because both
subexpressions e1 and e2 obtained the bindings that were valid in the applica-
tion. Now this information is lost because we check e1 and e2 independend from
each other and contain two requirement sets reqs1 and reqs2. We must build
the union of these requirement sets and ensure type equality for all variables
that are required in both sets to reflect the previous behaviour. Since we ensure
the type equality is suffices to keep only one requirement per variable. We use
the operator ] for the union of requirements that only keeps one requirement
per variable. This operator will be defined in detail later. This step must be
repeated for rule T-Plus, because it also has two premises with contexts.

∀x ∈ dom(reqs1). x ∈ dom(reqs2) =⇒ reqs1(x) = reqs2(x)
e1 : T1 → T2|reqs1 e2 : T1|reqs2

T-App
e1 e2 : T2|reqs1 ] reqs2

∀x ∈ dom(reqs1). x ∈ dom(reqs2) =⇒ reqs1(x) = reqs2(x)
e1 : N|reqs1 e2 : N|reqs2

T-Plus
e1 + e2 : N|reqs1 ] reqs2

We changed all typerules except rule T-Num which remains as it was, be-
cause there is no interaction with the context in this rule. All other rules T-Var,
T-Abs, T-App and T-Plus have been modified to compensate the loss of context
and we altered the information flow for this context requirements to bottom-up.

We recall the example program p2 = λf : N → N .(λx : N .fx) from the
previous down-up typechecker and we typecheck it again with the changed type-
rules. The first things to check are the expressions f and x. We use for both
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expressions the rule T-Var and we generate two fresh typevariables α and β.
We assign them as the types for f and x and we also require that f will later
be bound to α and that x will later be bound to β.
Then we proceed to the application of x to f . We know from rule T-App that
the first expression must have a function type and that the argument type of the
function must be the type of the second expression. What we do not know is the
return type, so we generate a fresh typevariable γ as the return type. The type
of the first expression is α and the type of the second expression is β and we have
to ensure that α = β → γ. The required variables of the two subexpressions
are distinct, so we do not need to check for equalitiy at this point and merge
the both requirement sets {f : α} and {x : β} together to {f : β → γ, x : β}.
Note that we have replaced α with β → γ in the requirement set to respect our
new knowledge of the type. What is left to check are both abstractions and we
start with λx : N .f x and we use rule T-Abs. We discover the first variable
binding of x to N and we must ensure that the requirement of x which is β
equals N (β = N ). Since x was bound in this node, we must remove all binding
requirements of x and we obtain the new requirement set {f : N → γ}.
The next abstraction node is the whole program p2. We use rule T-Abs again
and we ensure that N → γ = N → N . Since f is bound in this abstraction we
remove all requirements of f and we end with the empty requirement set ∅ and
the type (N → N )→ N → N for program p2.
We observe that we have no more binding requirements to fullfill, because we
ended the typechecking with the empty requirement set. This means that we
do not have any unbound variables in the program. Every time we used the
rule T-Var, we have generated a new requirement and every time a variable was
bound, we removed the corresponding requirements with rule T-Abs.
We show the type derivation for p2 below. The first derivation is for the appli-
cation and the second derivation is for the two abstractions and uses the result
from the first derivation as a premise.

T-Var
f : α|{f : α} T-Var

x : β|{x : β} α = β → γ
T-App

f x : γ|{f : β → γ, x : β}

f x : γ|{f : β → γ, x : β} β = N
T-Abs

λx : N .f x : N → γ|{f : N → γ} N → γ = N → N
T-Abs

p2 : (N → N )→ N → N|∅
All the changes to the typerules were made to eliminate the top-down infor-

mation flow of the context. We examine the information flow of program p2 by
reference to the AST of p2 and we see that all information flows bottom-up.

λf : N → N .

λx : N .

fx

f x

: (N→N )→N→N|∅

: N→γ |{f:N→γ}

: γ |{f:β→γ, x:β}

: α |{f:α} : β |{x:β}

types and
context requirements
flow bottom-up
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When we typechecked program p2 we have noticed that in the application
node we introduced the type variable γ as the type of the application of x to f
and we changed the requirement of f from α to β → γ. This change was made
to respect the new knowledge of the types that we obtained from the T-App
rule. So we must be able to alter requirements, to interchange type variables
and to replace type variables with actual types.

3.2 Constraints

When we typechecked program p2 = λf : N → N .(λx : N .fx) we have done
some changes to the typevariables in the application case that were not explicit
statet in the T-App rule. We introduced a fresh type variable and used it as
the type of the application. We also changed the required type of f from α to
β → γ, because we knew that α which was the type of the first subexpression
of the application needed to be of some function type. We also have seen in the
abstraction nodes that we used the equality conditions of the T-Abs rule to do
the same e.g. when we had to ensure that the type variable β equals type N .
What we have actually done was to constrain the more general type variables
α and β to some specialized types. In order to be more explicit in typerules we
introduce equality constraints for types and we say for two types t1 and t2 that
t1

.
= t2 is the equality constraint for those types. This constraints can be used

to unify type variables.

3.3 Merging of requirements

Now that we have introduced constraints, we have to specify the merging of
two requirement sets. There are two things to do when we merge requirement
sets. We need to generate constraints for those variables that are required to
be bound in both sets, because a variable that is used multiple times in the
same scope can not be bound to different types. We generate a constraint for
all those intersecting requirements with the ∩c operator.

Definition 3.1 (Intersection constraints for requirements).
For each variable x that is bound to a type t in the first requirement set, if x is
bound in the second requirement set t is constrained to be equal to the required
type of x in the second set.

reqs1 ∩c reqs2 := {t .= reqs2(x) | (x : t) ∈ reqs1 ∧ x ∈ dom(reqs2)}

We also need to generate a new requirement set which contains for all vari-
ables of both sets only one occurence of the same variable, because we have
already generated constraints for the variables that occured more than once
which can be seen as the union of two requirement sets and we use the ] oper-
ator for it.

Definition 3.2 (Union of requirements).
Take all requirements from the first set and only those requirements from the
second set which are not required in the first set.

reqs1 ] reqs2 := reqs1 ∪ {x : t | (x : t) ∈ reqs2 ∧ x /∈ dom(reqs1)}
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3.4 Unification

We can build sets of constraints either by adding constraints directly or by the
previously introduced intersection operator for requirements (∩c). The con-
straints we have are type equality constraints which may contain typevariables.
These typevariables must be unified in order to solve the constraint set. Here,
an unifier is a substitution for type variables and we introduce a set of rules to
compute unifiers for a constraint set.

Definition 3.3 (Type mismatch). For types T1 and T2, we say T1 does not
match T2 (T1 6=Prod T2) if T1 and T2 were built with a different production.

For example N 6=Prod α→ β, because N and → are different. We need the
following six rules which associate an unifier to a constraint set.

{t .= t} ∪ C|σ
Trivial

C|σ

{t .= x} ∪ C|σ
Orient t /∈ Typevar

{x .
= t} ∪ C|σ

{s1 → s2
.
= t1 → t2} ∪ C|σ

Decompose
{s1

.
= t1, s2

.
= t2} ∪ C|σ

{s .
= t} ∪ C|σ

Clash s 6=Prod t>

{x .
= t} ∪ C|σ

Occur Check x occurs in t>

{x .
= t} ∪ C|σ x occurs not in t

Variable Elimination
C{x/t}|σ{x/t} ∪ {x/t}

Trivial
If we have a constraint T

.
= T we can omit it, because it is true.

Orient
If we have a constraint T

.
= x where T is not a type variable, we swap

T and x. So all type variables will be oriented left and because of this
orientation we have less work in the Variable Elimination rule.

Decompose
If we have a constraint S1 → S2

.
= T1 → T2 we need to check if S1

.
= T1

and S2
.
= T2 are solvable.

Clash
If we have a constraint T1

.
= T2 and the productions from which T1 and

T2 emerged from, do not match we have found an unsolvable constraint.
This is an error in the constraint set and we can break the unification at
this point. We have currently the constant N and for types T and T ′ the
binary T → T ′ productions. We will later introduce new types which will
be handled similar in the clash rule.
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Occur Check
If we have a constraint x

.
= T and x occurs in T we have found an unsolv-

able constraint, because we cannot substitute x with a type that contains
x.

Variable Elimination
If we have a constraint x

.
= T , a partial unifier σ, and x occurs not in T

we substitute x with T in the remaining constraint set and σ and we add
the substitution to σ.

The Robinson Algorithm [Rob65] is a particular application strategy for
those rules. It tries to apply the rules in the following order. Trivial, Decom-
pose, Clash, Orient, Occur Check, Variable Elimination. We use the Robinson
Algorithm for unification and constraint solving.

3.5 Typing Relation for STLC

We have introduced all techniques needed to fix the issues we had with the first
approach of the context elimination and we give a typing relation for STLC that
associates expressions with types, requirements and constraints (e : T |reqs|cs).

α fresh
T-Var

x : α|{x : α}|∅

e : T2|reqs|cs
T-Abs

λx : T1.e : T1 → T2|reqs− (x : reqs(x))|{reqs(x)
.
= T1} ∪ cs

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 α fresh
T-App

e1 e2 : α|reqs1 ] reqs2|{T1
.
= T2 → α} ∪ cs1 ∪ cs2 ∪ (reqs1 ∩c reqs2)

n is a number
T-Num

n : N|∅|∅

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 csnew = {T1
.
= N , T2

.
= N}

T-Plus
e1 + e2 : N|reqs1 ] reqs2|cs1 ∪ cs2 ∪ (reqs1 ∩c reqs2)

The only change in the T-Var rule is, that we now produce an additional
empty constraint set (∅) to respect the new signature of the relation. In the
T-Abs rule we remove the requirements for the newly bound variable x and we
constrain the required type of x to the actual bound type. The T-App rule
has changed the most. We now explicitly generate a fresh type variable and
constrain the type of the first subexpression to be a function type with the type
of the right subexpression as the argument part and the new type variable as
the return part. We also state explicitly that the variables required in both
subexpressions need to be constrained equal with the intersection operator ∩c.
The T-Plus rule is also affected by the second part of changes of the T-App
rule and we moved the check whether the subexpressions have type N into the
constraints, because a type can also be a type variable which first needs to be
unified. The changes in the T-Num rule are like in the T-Var rule just to respect
the signature of the relation.
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For STLC we can use unification already in intermediate steps, because all
constraints that are introduced are either solvable with the knowledge we have
when we generate them or are unsolvable even with future knowledge.

We check program p2 = λf : N → N .(λx : N .fx) again using the new rela-
tion with intermediate unification and we analyse the information flow through
the program.

We begin the type checking with the variable nodes f and x. We use for
both the T-Var rule and generate fresh typevariables. We generate α for f and
β for x and we require the variables to be of this types. In the application
node we use rule T-App and we generate a fresh typevariable γ as the type
of the application and we constrain α to β → γ. We merge the requirement
sets {f : α} and {x : β} together using ] and we get the new requirement set
{f : α, x : β}. We intersect the requirement sets using ∩c and since the variables
required in the sets are distinct we must not generate a new constraint. We unify
the constraint set α

.
= β → γ and we get the unifier {α/β → γ}. We apply

the unifier to the new requirement set and get {f : β → γ, x : β}. The next
node above is an abstraction which binds the variable x to the type N . We
remove the requirements of x and get {f : β → γ} as our new requirement
set. We constrain the requirement of x which was β to the denoted type Nand
we solve the constraint set {β .

= N} to get the unifier {β/N}. We apply the
unifier to the requirement set and get {f : N → γ} and we have N → γ as the
type for the abstraction. The final node is again an abstraction which binds f to
N → N . We remove f from the requirements and we get the empty requirement
set ∅. We constrain the previous requirement of f to N → N and we unify the
constraint set {N → γ

.
= N → N} and we obtain the unifier {γ/N} with

the use of the Decompose rule. We have checked program p2 to be of type
(N → N ) → N → N and since we have ended with an empty requirement set
we have no unbound variables and since unification succeeded in all cases we
had no unsolvable constraints.

λf : N → N .

λx : N .

fx

f x

: (N→N )→N→N|∅|∅

: N→γ |{f:N→γ}|∅

: γ |{f:β→γ, x:β} |∅

: α |{f:α} |∅ : β |{x:β} |∅

types,
context requirements
and constraints
flow bottom-up

Note that instead of checking the type to be equal to some type obtained
from the outside of the typing relation we have infered the type of the program
out of itself. This type inference works not only for this example program, but
for every program that can be written in STLC. If the program is not well-typed,
the unification would fail and we would know that the program is illtyped.
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3.6 Properties of the typing relation

We have presented a bottom-up typing relation for STLC. We want to adress
the three following properties of this relation.

• Intermediate unification

• Type inference

• Parallelizability

We can use unification at intermediate steps in a derivation to solve the
constraints generated so far.
We can solve the constraints for each rule application in isolation. When doing
so, we need to substitute the resulting unifier from the constraint solving to the
binding requirements and the type we produce as a result. The requirements
and the type could contain type variables which were unified and since we do
not pass the unifier to the next rule to apply we need to substitute all those type
variables that have already been unified. For example when we type checked
an expression e and resulted in a type T , requirements reqs and constraints
cs, we can use unification to solve the constraints cs which will either result in
an unifiert σ or will fail. If it fails we know that the program is illtyped. If
it succeeds we must substitute σ into T and reqs, because both could contain
type variables contained in σ. We would then pass the substituted type T and
the substituted requirements reqs and since all constraints have been solved
an empty constraint set to the following rule application. This would look as
follows in a rule application.

e : T | reqs | cs
Type-Rule σ = {some substitutions}

e : σ(T ) | σ(reqs) | ∅

We can infer the type of a program out of itself. There is no need to provide
external knowledge to the type rules. We could also omit the explicit type
annotation for the parameters of abstractions and infer them.

Implementations of the type relation could be parallelized easily. The type
rules do not depend on a global traversion of the abstract syntax tree of the
program and we can typecheck each subtree independent from each other.
In an implementation, we could spawn one processing entity per rule application.
Each process entity could start running, when the entities spawned for the
premises of the type rules have completed. So the first process entities that can
start running, are the entities spawned for rules without a premise. We use this
rules without premises for the leafs of the AST of a program.
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Chapter 4

PCF

We have used STLC as a language so far, but as this language is very limited
we extend it to Programming Computable Functions (PCF)[Mit96]. On top of
that we add boolean expressions to have more than just one base type in our
examples.

4.1 Syntax

All the expressions from STLC are available in PCF. So we still have variables,
abstractions and applications and we also keep numbers and addition except
numbers can now also be negative. New syntactic constructs are the boolean
constants True and False associated with the connectives for negation (¬)
and conjunction (&). We also have the greater (>) operator and conditional
statements (if-then-else). The last two new constructs are a fixpoint combinator
and let bindings. The type for numbers (N ) and function types (→) remain
and we add a new bool type (B).

〈Num〉 ::= ... | -2 | -1 | 0 | 1 | 2 | ...

〈expr〉 ::= 〈ID〉
| λ〈ID〉 : 〈Type〉. 〈expr〉
| 〈expr〉 〈expr〉
| 〈Num〉
| 〈expr〉 + 〈expr〉
| True

| False

| neg〈expr〉
| 〈expr〉 & 〈expr〉
| 〈expr〉 > 〈expr〉
| if 〈expr〉 then 〈expr〉 else 〈expr〉
| fix 〈ID〉 : 〈Type〉. 〈expr〉
| 〈ID〉 : 〈Type〉 = 〈expr〉; 〈expr〉

〈Type〉 ::= N
| B
| 〈Type〉 → 〈Type〉
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Instead of presenting a detailed reduction relation we will show the semantics
of the syntax with a few example programs to give a brief overview of the
behavior of the new language. We will show the reduction of those programs
and will state to what they will normalize. Reduction is the stepwise process
of evaluating a program and normalization is the repetition of that, until the
program can not be reduced anymore.

We start with a program of a pure boolean expression (True & !False) which
would normalize to True, because !False reduces to True and True & True then
reduces to True. In the next program we look at the conditional statement.
The program (if 1 > 2 then True else False) normalizes to False because 1 is
not greater as 2 and therefore the second branch is evaluated. Now that we
have more than one base type we can easily write programs that would not
behave well. If we change one of the previous expression to (2 & !False) the
program can not be normalized to a value because we can not further reduce 2
& True, because 2 is a number and True is a boolean constant. So we must be
sure that the typing relation respects that. This problem occurs not only in the
conjunction connective. We now look at the fixpoint combinator. We provide a
program that sums up all numbers below a given number towards zero. We call
that program fixsum to reuse it in the next example. fixsum = fix f:N→N . (λ
x:N . if n > 0 then 0 else n+(f (n+(-1))))))
In the last program we will look at the let binding construct. We bind the
previously defined fixsum program to a variable sum and then use the sum
variable in the body to call the fixsum program with the value 5.
sum : N→ N= fixsum; sum 5.
This program would normalize to the number 15. We can use the fixpoint
combinator to write recursive programs and the let binding construct helps
with the reuse of expressions because instead of duplicating an expression we
can bind it to a variable and then use the variable multiple times.

4.2 Typing Relation for PCF

Now that we have seen the idea of bottom-up typechecking we define a bottom-
up typing relation for PCF. We split the syntax into three categories and discuss
the typerules for each category. We split the syntax on the basis of the differ-
ences to the syntax we already knew from STLC. The first category contains
the syntactic constrcuts that we kept from STLC, which are variables, abstrac-
tions, applications, numbers and additions. The second category consists of the
boolean constants True and False, the logical connectives negation and con-
junction and the greater operator. The third category is made up of conditional
statements, the fixpoint operator and the let binding construct.

For the typerules for the first partition we can reuse the typerules introduced
in the previous chapter, because the syntactic constructs are unmodified and
therefore we do not have to change the typerules.

The second partition contains the boolean expressions and expressions that
are related to the type bool (B). As there are no contextual requirements and
constraints for the constants True and False we can statically assign B as the
type for both expressions.

T-True
True : B|∅|∅
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T-False
False : B|∅|∅

The negation expression has one subexpression which must be of type B, because
we can only negate boolean expressions. Like in the T-Plus rule we need to
move this into the constraints because of type variables. This holds true for
all other expressions with such restrictions. Apart from this there are no new
requirements or constraints.

e : T |reqs|cs
T-Not

!e : B|reqs|cs ∪ {T .
= B}

The conjunction connective has two subexpressions which must be both of type
B. And since we have two subexpressions we must merge the requirements and
constraints together using the operators ] for the union of requirements and ∩c
for the intersection constraints of requirements. For the greater operator which
has also two subexpressions we must do the same, except that the subexpressions
must be of type N , because we can only compare numbers.

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 csnew = {T1
.
= B, T2

.
= B}

T-And
e1&e2 : B|reqs1 ] reqs2|cs1 ∪ cs2 ∪ csnew ∪ (reqs1 ∩c reqs2)

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 csnew = {T1
.
= N , T2

.
= N}

T-Gt
e1 > e2 : B|reqs1 ] reqs2|cs1 ∪ cs2 ∪ csnew ∪ (reqs1 ∩c reqs2)

We have seen all typerules for the second partition and we adapted the methods
we used in the type rules for application and addition to other expressions with
two subexpressions. Now we look at the third partition and we start with
conditional statements. When we want to typecheck conditionals we have three
subexpressions from which we must merge the requirements- and constraints
sets together and our operators for this are just binary operators. We can
exploit the properties of this operators to merge the three sets together. The
union of requirement sets is a new requirement set and it removes duplicate
variables. So we can use it in an associative way and build the union of the first
two requirement sets and use the resulting set to build the union with the third
requirement set. The intersection constraints for requirements can not be used
in this way, because they generate constraints instead of a new requirement set.
What it generates, are equality constraints and as equality is transitive it suffices
that we use the operator pairwise. So we generate the intersection constraints
for the requirement sets of the first and second subexpression and for the second
and third subexpression. We further need to check that the first subexpression
of a conditional expression must be of type B and we must constrain the types
of the second and third subexpression to be equal.

cs = {T1
.
= B, T2

.
= T3} ∪ cs1 ∪ cs2 ∪ cs3 ∪ ((reqs1 ∩c reqs2) ∪ (reqs2 ∩c reqs3))

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 e3 : T3|reqs3|cs3
T-Cond

if e1 then e2 else e3 : T2|(reqs1 ] reqs2) ] reqs3|cs

Now we look at the fixpoint combinator. The fixpoint combinator is similar
as the abstraction we already knew except it can be used to write recursive
programs. It also introduces a new variable binding which is valid in its body.
The difference is that the type subexpression for which we try to find a fixpoint
must be the same as the denoted type which stands for the fixpoint.
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e1 : T1|reqs1|cs1 cs2 = {T .
= T1, reqs1(x)

.
= T}

T-Fix
fix x : T.e1 : T |reqs1 − (x : reqs1(x))|cs1 ∪ cs2

The final sort of expression to look at is the let binding construct. A let binding
has two subexpressions. The first subexpression introduces a new variable bind-
ing, which is valid in the second subexpression. So we must constrain the type of
the first subexpression to be equal to the denoted type of the argument. As the
first subexpression initializes the variable binding we must constrain only the
requirements of the second subexpression to the denoted type, because we must
not initialize a variable with itself. Further we must merge the requirement sets
together like we did in the other expressions with two subexpressions and we
must remove the requirements of the newly introduced binding like we did with
the abstraction and fixpoint combinator.

cs = {T .
= T1, reqs2(x)

.
= T} ∪ cs1 ∪ cs2 ∪ (reqs1 ∩c reqs2)

e1 : T1|reqs1|cs1 e2 : T2|reqs2|cs2 reqs = reqs1 ] reqs2
T-Let

x : T = e1; e2 : T2|reqs− (x : reqs(x))|cs

4.3 Properties of the typing relation

The properties for the typing relation for STLC hold also for the typing relation
for PCF.

We still have intermediate unification. Since the signature of the typing
relation is unchanged from the one for STLC, we use the same method for the
constraint solving after a rule application.
The typing relation for PCF, like the typing relation which we presented for
STLC, can be used for type inference. We do not need to give some external
knowledge of the type of a program to the relation in order to infer the type
of that program. We could also omit the type denotation in abstractions, fix
points and let bindings and infer them.
Implementations of the typing relation can be parallelized as well, using the
same approach as in STLC.

4.4 Usage of the typing relation

We now infer the type of the program p3 = λx : N . if x > 0 then x else x
to show the usage of the typing relation with intermediate unification. Program
p3 consists of a conditional expression with an comparison as the condition and
variables in the branches enclosed by an abstraction. We begin with the condi-
tion which is a comparison and as the greater operator has two subexpressions
we first check them. The first subexpression is the variable x and we use rule T-
Var. We generate a fresh typevariable α as the type of the expression (TGt1 = α),
we require x to be of type α (reqsGt1 = {x : α}) and there are no constraints
that need to be generated (csGt1 = ∅). The second subexpression is a number
and we use rule T-Num to get TGt2 = N , reqsGt2 = ∅ and csGt2 = ∅. We then
use rule T-Gt and generate new constraints csGtnew

= {α .
= N ,N .

= N}. We
merge the requirements together reqsGt1 ] reqsGt2 = {x : α} and we generate
the constraints from intersecting requirements reqsGt1 ∩c reqsGt2 = ∅. Since
there are no intersecting requirements we solve the constraint set csGtnew and
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get the unifier σGt = {α/N}. We substitute σGt to the merged requirements
to get reqsCond = {x : N} and from rule T-Gt we know that the type of the
expression TCond = B. The expression in the then branch is the variable x and
we use rule T-Var to get TThen = β, reqsThen = {x : β} and csThen = ∅. We
repeat this for the else branch which is again the variable x and get TElse = γ,
reqsElse = {x : γ} and csElse = ∅. Now we have checked all subexpressions of
the conditional expression and we can use rule T-Cond to check the conditional
itself. The type of the conditional expression is the type of the then branch
which was β. We merge the requirement sets together to get

reqsIf = (reqsCond ] reqsThen) ] reqsElse

= ({x : N} ] {x : β}) ] {x : γ}
= {x : N} ] {x : γ} = {x : N}.

We generate the new constraints csnew = {TCond
.
= B, TThen

.
= TElse} = {B .

=
B, β .

= γ} and the constraints of the intersecting requirements

csisect = {(reqsCond ∩c reqsThen) ∪ (reqsThen ∩c reqsElse)}
= ({x : N} ∩c {x : β}) ∪ ({x : β} ∩c {x : γ})
= {N .

= β} ∪ {β .
= γ} = {N .

= β, β
.
= γ}

and we build csIf = csnew ∪ csisect = {B .
= B, β .

= γ,N .
= β}. The next step

is to solve csIf to get the unifier σIf = {β/N , γ/N} and to substitute σIf to
β toget TIf = N . We finally check the abstraction which binds x to N with
rule T-Abs. We know that the type of the abstraction is T = N → N , because
the parameter x is bound to N and the subexpression hast type TIf = N .
We remove all requirements of x, because it is now actually bound and get
reqs = reqsIf − (x : reqsIf (x)) = ∅. What is left is to check if the bound
variable has been used correctly. Therefore we generate the new constraints
{reqsIf (x)

.
= N} = {N .

= N}. We have in fact generated just one constraint
which is trivially solved and produces an empty unifier and T contains no type
variables so we have unified all type variables generated while type checking.
And since reqs = ∅ we know that there are no unbound variables in the program.
The derivation for this program is split into two parts. The first part contains
the typing of the comparison. The second part contains the typing of the whole
program and the first part is reused as cond in it.

T-Var
x : α|{x : α}|∅ T-Num

0 : N|∅|∅
T-Gt

x > 0 : B|{x : α}|{α .
= N ,N .

= N}
σ = {α/N}

x > 0 : B|{x : N}|∅

cond
T-Var

x : β|{x : β}|∅ T-Var
x : γ|{x : γ}|∅

T-Cond
if ... : β|{x : N}|{B .

= B, β .
= γ,N .

= β}
σ = {β/N , γN}

if x > 0 then x else x : N|{x : N}|∅
T-Abs

λx : N . if x > 0 then x else x : N → N|∅|{N .
= N}

σ = ∅
λx : N . if x > 0 then x else x : N → N|∅|∅
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4.5 Implementation of the typing relation

An implementation in Stratego of the type system using intermediate unification
is available in Appendix A.1. The syntax definition in SDF of this Grammar is
provided in A.1.1.

The type rules are implemented with the transformation rule generateConstraints
in A.1.3. As each type rule matches for concrete syntax in the conclusion, the
transformation rule matches for abstract syntax. The merging of the results
from the premises with integrated unification is implemented in the transforma-
tion rule mergeUnify.

Helper rules and rules for accessing the results of the constraint generation
are available in A.1.2.

The implementation is also available via Github in the repository bottomup-
pcf 1.

1https://github.com/gnush/bottomup-pcf
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Chapter 5

Java

In the previous chapter, we adapted the methods of bottom-up typechecking
introduced for STLC to PCF. We presented PCF as an extension for STLC and
we have seen that we could reuse the patterns used in the typing relation for
STLC. Now we want to look at Java, a language that is actually used for writing
large programs.

The Java grammar and the semantics of it is defined in the Java Language
Specification. [GJSB05] The grammar contains an expression language, state-
ments and classes. We will present a typing relation for the stated parts of
the grammar, but we will omit some constructs which will be mentioned in the
sections that correspond to the sort of the construct.

5.1 Types

In Java we have two different kind of types, namely primitive types and reference
types. Primitive types are boolean and the numeric types. The numeric types
are divided into two families, the integral- and the floating point types. Integral
types are byte, short, int, long and char. The floating point types are float and
double.

Definition 5.1 (Primitive type families).
We define sets for the numerical types, the integral types, the floating point
types and the boolean type.

TNum :={byte, short, int, long, char, float, double}
TInt :={byte, short, int, long, char}
TFloat :={float, double}
TBool :={boolean}

The reference types are divided into three kinds, class types, interface types
and array types. The type of a class- or interface is the class- or interface name
and an array type is a type followed by empty brackets ([ ]).

Example 5.2 (Types).

• int[ ] is an array type with the base type int.
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• C is the typename of class C.

• I is the typename of interface I.

• C[ ] is an array type wit the base type C.

Java expressions with two or more subexpressions allow type widening for
the subexpressions. We can for example add a value of type int to a value of
type long, which will result in a value of type long. The value of type int which
is 32-bit is widened to a value of type long which is 64-bit. So we do not loose
any information, because all values of the int type can be represented as a value
of the long type. We define a widening relation for primitive types:

Definition 5.3 (Primitive type widening).
Primitive types can be widened as follows:

• byte to short, int, long, float, double

• short to int, long, float, double

• char to int, long, float, double

• int to long, float, double

• long to float, double

• float to double

Type widening for reference types is based on subtyping and in Java sub-
typing is based on class inheritance. If a class C1 with type T1 inherits from
another class C2 with type T2, then T1 is a subtype of T2 and T2 is a supertype
of T1. We write T1 <: T2 for subtyping and T1 :> T2 for supertyping. The same
holds for interfaces and the subtyping relation is the reflexive transitive closure
of the direct inheritance. We define type widening for reference types as follows.

Definition 5.4 (Reference type widening).
A reference type T1 can be widened to another reference type T2, if T1 is a
subtype of T2.

Expressions do not support only type widening, they support also boxing
and unboxing. We do not conver that in our typing relation, but we describe
the process briefly. In Java each primitive type has a corresponding reference
type. For example the appropiate reference type for the primitive type boolean
is Boolean. Boxing is the process of converting primitive types to their corre-
sponding reference type and unboxing vice versa.

5.2 Expressions

The functionality of a Java program is based upon expressions, because they
can cause side effects such as variable assignments. We present a relation that
associates an expression with a type, binding requirements, binding declara-
tions, constraints and class requirements. We note that we now have binding
declarations in the relation. This is because variable declarations can be in the
scope of not just the current subtree. We will see this when we typecheck block
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statements. When we typecheck an expression with more than one subexpres-
sion, we need to merge the declarations together. Since all declarations are valid
in the node above the current expression, because an expression can not define
a new scope we can just build the normal set union for the declarations. The
set union will remove duplicates and we need to check if a single variable has
been declared more than once and if so, we must generate a constraint for that.
Note that this constraint will be unsolvable.

Definition 5.5 (Constraint for multiple declarations).
For a variable x and a set of types T , x declared T is the unsolvable constraint
which states that x has been declared to the types in T .

Definition 5.6 (Constraints for intersecting declarations).
For each variable x that is declared to some type T1 in the first declaration
set and for each variable y that is declared to some type T2 in the second
declaration set. If x = y, then we generate a multiple declaration constraint
x declared {T1, T2}.

decls1 ∩decl decls2 := {x declared {T1, T2} | y : T1 ∈ decls1∧
x : T2 ∈ decls2∧
x = y}

We already stated in the previous section that Java Expressions support type
widening, but we can only constrain types to be equal. Since type widening can
not be translated into equality we need new constraints. We need two new
sorts of constraints. First we need a constraint that states that two types can
be primitive widened. Second we need a constraint that states that two types
can be widened and that constraints another type to be equal to the widening
of those two types. We can restrict the type widening to primitive widening,
because the expressions that need them, work only on primitive types.

Definition 5.7 (Constraints for type widening).
The new constraints are:

• For types T1 and T2: T1 widenprim T2.

• For types T1, T2 and T3: T1
.
= (T2 widenprim T3)

The type widening works for both directions.

Since we introduced new constraints we must adapt the constraint solving
to support them. So we add the following new rules for unification.

Definition 5.8 (Unification for widening constraints).

{T1widenprimT2} ∪ C | σ
T1, T2 are widenable

C | σ

{T1
.
= (T2widenprimT3)} ∪ C | σ

T2 is widenable to T3{T1
.
= T3} ∪ C | σ

{T1
.
= (T2widenprimT3)} ∪ C | σ

T3 is widenable to T2{T1
.
= T2} ∪ C | σ
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We have defined constraints for type widening, but some Java expressions
can operate only with some type families. Multiplication for example works
only with values of numeric type and results again in a value of a numeric type.
So we must be able to constrain types to a specific type family. We again define
a new kind of constraint and the corresponding rule for unification.

Definition 5.9 (Type family constraint).
For a type T and a set of types F : T ε F is the constraint that is solvable if T
is a member of F .

{T ε F} ∪ C | σ
T ∈ F

C | σ

We define a typing relation for Java expressions which associates Java Ex-
pressions with a type, binding requirements, binding declarations, constraints
and class information (e : T | reqs | decls | cs | clzz). The class information are
used to track members of classes, whereas the binding requirements are used to
track variables.

5.2.1 Literals

We start with type rules for literals. In Java a literal is a representation of a
value of a primitive type, the string type or the null type. We can differ those
literals by their syntactic form. We have the following literals for primitive
types: integer, floating point, boolean and character. If an integer literal is
suffixed with the letter L or l is of type long and otherwise if the literal is not
suffixed it is of type int. For floating point literals this is similar. If a floating
point literal is suffixed with F or f it is of type float and otherwise if it is not
suffixed or it is suffixed with D or d it is of type double.

i is integer literal i has no suffix
T-Int

i : int | ∅ | ∅ | ∅ | ∅

i is integer literal i has suffix L or l
T-Long

i : long | ∅ | ∅ | ∅ | ∅

f is floating point literal f has suffix F or f
T-Float

f : float | ∅ | ∅ | ∅ | ∅

f is floating point literal f has suffix D, d or none
T-Double

f : double | ∅ | ∅ | ∅ | ∅

We do not have such restrictions for boolean and character literals, because each
of them can be only of a single type. There are exact two values we can represent
with a boolean literal, true and false which have type boolean. Character literals
can represent a single Unicode letter and have type char.

T-True
true : boolean | ∅ | ∅ | ∅ | ∅

T-False
false : boolean | ∅ | ∅ | ∅ | ∅
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T-Char
’c’ : char | ∅ | ∅ | ∅ | ∅

We have the string- and the null literal left. The string literal represents a
constant sequence of Unicode characters and has the type of class String. The
null type is somewhat special, because it has no name, but it can be cast to any
reference type. The only syntactic construct that is of the null type is the null
literal and because of its characteristics we generate a fresh type variable for it.

T-String
”s” : String | ∅ | ∅ | ∅ | ∅

α fresh
T-Null

null : α | ∅ | ∅ | ∅ | ∅

5.2.2 Names

Names are used to refer to entities that are declared in a program. Such a
declared entity can be a package, class type, interface type, member of a ref-
erence type or local variable. A name is either a simple name or a qualified
name. A simple name is a single identifier and a qualified name is a sequence
of identifiers separated with “.”. A declaration that introduces a name has a
scope. The scope is that part of the program text within the declared entity
can be referred by a simple name. Packages and reference types have members
which can be referred to with a qualified name N.x, where N is a simple- or
qualified name and x is an identifier. If N names a package, then x is a member
of that package which is a class or interface type or a subpackage. If N names
a reference type, then x is a class, an interface, a field, or a method. We define
a class requirement for membership.

Definition 5.10.
For types T1, T2 and identifier x

T1 hasMember x : T2

requires that type T1 has a member x with type T2.

Names are syntactically classified and we cover expression names and method
names. Expression names are used for refering to local variables or field in
the scope of the name. Method names are used fo refering to methods and
can appear only in method invocation expressions. We split the typing for
expression- and method names into two type rules for each of them. One for
simple names and one for qualified names.

We begin with the type rules for expression names. If an expression name
is a single identifier, it refers to a local variable or field. So we generate a fresh
type variable as the type for the name and we add a binding requirement from
the name to the type variable.

α freshT-ExprName
x : α | {x : α} | ∅ | ∅ | ∅

For the type rule for expression names that are qualified names, we have to
generate class requirements for the sequence of identifiers in the name. The first
identifier in the sequence must be a local variable or a field and we generate a
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fresh type variable for it. We require the identifier to be bound to that type
variable. The type of the expression name is the type of the last identifier of
the sequence, which is the member we want to access.

clz = {αi hasMember xi+1 : αi+1 | i ∈ [1, n− 1]}

αi for i ∈ [1, n] fresh
T-QExprName

x1.x2. · · · .xn : αn | {x1 : α1} | ∅ | ∅ | clz

Method names act similar as expression names, except that they do not
refer to local variables or fields but to methods. So we first define a new class
requirement for methods.

Definition 5.11.
For types T1, T2 and identifier x

T1 hasMethod x : T2

requires that type T1 has a method x with type T2.

For method names with a single identifier, we generate two fresh type vari-
ables, one for the current class and one for the type of the method. We require
the first type variable to be bound to “this”, which is a special keyword refering
to the current object.

α, β fresh
T-MethodName

x() : β | {this : α} | ∅ | ∅ | {α hasMethod x : β}

For qualified method names, we generate membership requirements for the se-
quence, except for the last pair for which we generate a method requirement.

clz = {αi hasMember xi+1 : αi+1 | i ∈ [1, n− 2]}
∪ {αn−1 hasMethod xn : αn}

αi for i ∈ [1, n] fresh
T-QMethodName

x1.x2. · · · .xn() : β | {x1 : α1} | ∅ | ∅ | {clz

5.2.3 this

The keyword this refers to the current instance under observation. The type of
this is the type of the class within it occured.
Since we do not know in which class we currently are, when typechecking a this
reference, we have to generate a fresh type variable as the type for it. We then
require that the “this” is bound to that type variable. This is safe, because we
can not declare a variable or field with the name “this”. We can fullfill this
requirement when we come to the point of typechecking a class declaration,
because we learn the actual class name from that declaration.

α fresh
T-This

this : α | {this : α} | ∅ | ∅ | ∅
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5.2.4 Operators

We have defined type rules for literals and names and we proceed with the
operators and we have already stated that Java expressions may support type
widening. The operators are mostly the expressions for which this holds true. So
when we typecheck an operator we will most likely generate widening- instead
of equality constraints.

We first look at the comparison operators (<, <=, > and >=) which act on
numeric values. So both subexpressions must be of some numeric type and the
two types must be compatible in the way that a type widening is possible. The
comparison operators results in a value of type boolean. We merge the binding
requirements as we did in the previous chapters and we build the union of the
binding declarations and generate a new failure constraint if a variable has been
declared more than once with the new intersection operator for declarations
(∩decl).

cs = {T1widenprimT2, T1εTNum, T2εTNum}
∪ (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Less

e1 < e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

cs = {T1widenprimT2, T1εTNum, T2εTNum}
∪ = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-LessEq

e1 <= e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

cs = {T1widenprimT2, T1εTNum, T2εTNum}
∪ = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Gt

e1 > e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

cs = {T1widenprimT2, T1εTNum, T2εTNum}
∪ = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-GtEq

e1 >= e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

There are two comparison operates we have not covered yet, namely the
equality (==) and inequality (! =) operators. These operators are not restricted
to act on numeric types, but we have still type widening for the operands. So we
do not generate constraints that limit the types to a numeric one, but generate
a type widening constraint.
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cs = {T1 widenprim T2}
∪ (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Eq

e1 == e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

cs = {T1 widenprim T2}
∪ (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-NEq

e1! = e2 : boolean | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

Example 5.12.
We use the already defined type rules to typecheck the expression

1.0f < 5

We check the literal 1.0f with rule T-Float, because it is a floating point value
suffixed with f. We obtain type float and no requirements, declarations and
constraints. We then use rule T-Int to check 5, because it is an integer literal
with no suffix. We obtain type int and again no requirements, declarations and
constraints. We finally use rule T-Less and generate new constraints csnew =
{float widenprim int, float ε TNum, int ε TNum} and since we generated no
requirements and declarations for the subexpressions we have no constraints
from the merging csmerge = ∅. We end with the type boolean and the constraints
csnew. What is left to do is to solve the constraints. We take the first constraint
float widenprim int and since int can be widened to float this constraint is
fullfilled. The next constraint float ε TNum requires that float is a numeric
type which holds true. The final constraint int ε TNum requires that int is a
numeric type which holds again. There are no constraints left and since we had
no type variables we have an empty unifier and the type of 1.0f < 5 has type
boolean.

1.0f is float value
T-Float

1.0f : float | ∅ | ∅ | ∅ | ∅
5 is int value

T-Int
5 : int | ∅ | ∅ | ∅ | ∅

T-Less
1.0f < 5 : boolean | ∅ | ∅ | csnew | ∅

σ = ∅
1.0f < 5 : boolean | ∅ | ∅ | ∅ | ∅

We knew that the comparison operators resulted in a value of type boolean,
so we were fine generating constraints that just check if the operand types could
be widened. When type checking numerical operators like multiplication we do
not know the resulting type of the operator directly, because the resulting type
depends on the operand types. The multiplication of an int value to a float
value will for example result in a float value, because int can be widened to
float. So we generate the combination of the widening- and equality constraints
for these operators.

For multiplication we generate a fresh type variable α as the resulting type.
We then constrain α to be equal as the widening of the operand types and the
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operand types to be some numeric types. We proceed with the merging of the
requirements and declarations with the already known operators. We omit the
freshness condition for type variables in the type rules from now on and keep in
mind that this condition is there implizitly for each type variable introduced in
a type rule.

csnew = {α .
= (T1 widenprim T2), T1 ε TNum, T2 ε TNum}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Mul

e1 ∗ e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2

We can reuse this pattern for all numeric operators except plus, because plus
can be used also to concatenate strings. So we need a special treatment for plus.
Since plus can be used as a numeric operator or as string concatenating, we need
a new constraint which checks for primitive type widening if the operants are
not of type String. The string concatenation functionality can also be mixed
with primitive types, this is the case when one of the operants is of type String.

Example 5.13 (Usage of “+”).
We present some examples of the proper usage of the plus operator.

• 1+2 will be evaluated to 3.

• ”foo” + ”bar” will be evaluated to ”foobar”

• ”foo” + 2 will be evaluated to ”foo2”

• 2.2 + ”foo” will be evaluated to ”2.2foo”.

We define a new constraint widenString which will model these properties.
Since we do not know the resulting type of plus statically the constraint will also
be combined with equality as we have seen with the widened equality constraint
introduced for the numerical operators (e.g. in the multiplication rule).

Definition 5.14.
For types T1, T2 and T3: T1

.
= (T2 widenString T3) is the constraint that is

solvable either if T2 and T3 are primitive types and can be widened or if T2 or
T3 is String.

{T1
.
= (T2 widenPrim T3)} ∪ C | σ

T2 or T3 is String
{T1

.
= String} ∪ C|σ

{T1
.
= (T2 widenPrim T3)} ∪ C | σ

T2 is widenable to T3{T1
.
= T3} ∪ C|σ

{T1
.
= (T2 widenPrim T3)} ∪ C | σ

T3 is widenable to T2{T1
.
= T2} ∪ C|σ
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Now we reuse the pattern from the multiplication operator. We use the new
constraint to handle string concatenation for the types of both operants and
we generate a fresh type variable as the resulting type. We also constrain the
operant types to be of a numeric type or String. The merging of the requirements
and declarations is handled as in the previous rules.

TSNum = {String} ∪ TNum

csnew = {α .
= (T1 widenString T2), T1 ε TSNum, T2 ε TSNum}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Plus

e1 + e2 : α | rqs1 ] rqs2 | dcls1 ∪ dcls2 | csnew ∪ csmerge | clz1 ∪ clz2
We have seen the idea of type checking numeric operators in the rule T-Mul

and the specially treated plus operator in T-Plus. We reuse these directly for
the type checking of the binary numeric operators division (/), remainder (%),
minus (−)

csnew = {α .
= (T1 widenprim T2), T1 ε TNum, T2 ε TNum}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Div

e1/e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2

csnew = {α .
= (T1 widenprim T2), T1 ε TNum, T2 ε TNum}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Rem

e1 % e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2

csnew = {α .
= (T1 widenprim T2), T1 ε TNum, T2 ε TNum}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Minus

e1 − e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2
and the integer bitwise operators (&, |, ∧) with the extend of type boolean as a
possible operant type and we define TBN := TBool ∪TNum as the set containing
the numeric types and boolean.

csnew = {α .
= (T1 widenprim T2), T1 ε TBN , T2 ε TBN}

csmerge = (reqs1 ∩c reqs2) ∪ (decls1 ∩decl decls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-BitAnd

e1 & e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2
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csnew = {α .
= (T1 widenprim T2), T1 ε TBN , T2 ε TBN}

csmerge = (reqs1 ∩c reqs2) ∪ (decls1 ∩decl decls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-BitOr

e1 | e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2

csnew = {α .
= (T1 widenprim T2), T1 ε TBN , T2 ε TBN}

csmerge = (reqs1 ∩c reqs2) ∪ (decls1 ∩decl decls2) ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-BitXOr

e1 ∧ e2 : α | rqs1 ] rqs2 | dcls1 ∪ dlcs2 | csnew ∪ csmerge | clz1 ∪ clz2

We also can adapt this pattern for the unary operators as increments and
decrements. Since we have just one subexpression we do not need type widening
for the one operant type. As in the binary numeric operators we do not know
the resulting type and we generate a fresh type variable for it. There is no
merging involved, again due to the fact that there is just one subexpression.

e : T | reqs | decls | cs | clz csnew = {α .
= T, T ε TNum}

T-PreIncr
++e : α | reqs | decls | cs ∪ csnew | clz

e : T | reqs | decls | cs | clz csnew = {α .
= T, T ε TNum}

T-PostIncr
e++ : α | reqs | decls | cs ∪ csnewclz |

e : T | reqs | decls | cs | clz csnew = {α .
= T, T ε TNum}

T-PreDecr
--e : α | reqs | decls | cs ∪ csnew | clz

e : T | reqs | decls | cs | clz csnew = {α .
= T, T ε TNum}

T-PostDecr
e-- : α | reqs | decls | cs ∪ csnew | clz

Java also knows a conditional expression (e1 ? e2 : e3) which evaluates
similar to the conditional expression we had in PCF, except that the types of
the subexpressions e1 and e2 can be widenable now. So we constrain the type
of e1 to boolean and we generate a type widening constraint for the types of e2
and e3. Since we do not know the resulting type statically we generate a fresh
typevariable for it. The requirement merging and the constraint generation for
intersecting declarations is done pairwise.

csnew = {T1
.
= boolean, α

.
= (T2 widenprim T3)}

csrqs = (rqs1 ∩c rqs2) ∪ (rqs2 ∩c rqs3)

csdcls = (dcls1 ∩decl dcls2) ∪ (dcls2 ∩decl dcls3)

cs = cs1 ∪ cs2 ∪ cs3
reqs = (rqs1 ] rqs2) ] rqs3
decls = dcls1 ∪ dcls2 ∪ dcls3
clz = clz1 ∪ clz2 ∪ clz3
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ei : Ti | rqsi | dclsi | csi | clzi for i ∈ {1, 2, 3}
T-CondExpr

(e1 ? e2 : e3) : α | rqs | dcls | csnew ∪ csrqs ∪ csdcls ∪ cs | clz

Now we look at primitive casts. The cast operator can convert an integral
value to a value of any numeric type. The type in which we want to cast is
enclosed by parantheses followed by the expression we want to cast.

Example 5.15 (Usage of casts).
The cast operator can be used to explicitly convert numeric types.

• (long) 10 casts the value of type int (10) to a value of type long. This is
a type widening.

• (int) 10L casts the value of type long (10L) to a value of type int. This
can not be done with type widening, because the long type has a wider
value range than the int type. This can lead to a loss of information if the
value we want to cast is bigger than what the destinated type can hold.

• (char) 65 casts the int value 65 to a value of type char (’A’).

• (int) 1.4f casts the float value 1.4f to the int value 1. Here we loose
precision, because the float value will be floored to fit into the int type.

As we have seen in the examples, casts can be used also to narrow down a
type instead of just widen it. A type narrowing is the opposite of a type widening
and luckily the widening constraint we have already checks for widening in both
directions. So we generate a widening constraint for the denoted type and the
type of the expression to cast. The resulting type of a cast is the denoted type.

e1 : T1 | reqs1 | decls1 | cs1 | clz csnew = {T widenprim T1}
T-PrimCast

(T ) e1 : T | reqs1 | decls1 | cs1 ∪ csnew | clz

The next expressions we want to look at are assignments. We only cover
normal assignments (=), as the functionality of the other kinds of assignments
(+=, -=, ...) can be achieved by combining them with the corresponding oper-
ators. E.g. x += x is semantically equivalent to x = x + x. Assignments also
support type widening, but as the evaluation of an assignment is directed the
widening is allowed in one direction only. This also was the case with casts,
but as casts additionally allowed us to narrow down a type we were able to use
the widening constraint we already had. Yet another property of an assignment
is, that it can be used with reference types, which is also not supported in the
existing widening constraint. So we define a new widening constraint, that is
directed and allows both, primitive and reference types.

Definition 5.16. For types T1 and T2, T1 widen T2 is the constraint that is
solvable if T1 can be primitive widened to T2 or if T1 is a subtype of T2. The
unification rules for this are:

{T1 widen T2} ∪ C | σ
T1 is widenable to T2

C | σ

{T1 widen T2} ∪ C | σ
T1 <: T2

C | σ
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Now that we have defined the new constraint, we use it in the type rule for
assignments. Assignments have two subexpressions, first the expression denot-
ing the variable to which we want to assign and second the expression whose
value we want to assign to that variable. For the assignment to succeed, we
have to widen the type of the expression to the type of the variable.

csnew = {T2 widen T1}
csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2)

cs = csnew ∪ csmerge ∪ cs1 ∪ cs2

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Assign

e1 = e2 : T1 | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2
The last family of expressions we look at are the expressions involving arrays,

such as array access and array creation. An array can be accessed with brackets
and an integral number. Arrays can either be created by a new array expression
or with an array initialization.

Example 5.17. For an array arr of type int.

• arr = new int[3] initializes arr with an empty array of type int with the
length 3. Note that int values are initialized with 0, so empty means that
all elements are 0. For reference types, all elements would be the null
value.

• arr = {1, 2, 3} initializes arr with an array of type int with the length 3.
The elements of the array are initialized with 1, 2 and 3 in that order.

• arr[2] accesses the third element of arr.

We begin with the type rule for array access. We have two subexpressions.
First the expression which denotes the array we want to access and second
is the position of the element in that array which we want to get. We must
ensure that the type of the first expression is some array type. So we generate
a fresh type variable and constrain the type of the first expression to an array
type whose element type is the generated type variable. The resulting type
of an array access is the element type of the array for which we generated a
typevariable. As we can only use integer values for the position declaration,
we have to constrain the type of the second expression to be widenable to int.
This widening is directed and we reuse the widen constraint we introduced for
assignments.

csnew = {T1
.
= α[ ], T2 widen int}

csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2)

cs = csnew ∪ csmerge

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 e2 : T2 | rqs2 | dcls2 | cs2 | clz2
T-Access

e1[e2] : α | rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs ∪ cs1 ∪ cs2 | clz1 ∪ clz2
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Now that we know how to typecheck an array access, we inspect the creation
of an array. We already have seen that there are two possibilities to create an
array. First, with the new keyword which creates an array with the denoted
dimensions and length and initializes the elements with the default values of
that type. Second, providing a concrete initialization for the elements from
which the length of the array is deducted. These concrete initialization creates
a one dimensional array, but the initializations can be nested to create multi-
dimensional ones.

We start with the type rule for the first possibility, the new array construct.
The resulting type of such an array creation is an array type, whose dimension
fits to the length of the provided dimensions list. The provided dimensions list
is a non empty list, so we have at least a one dimensional array.

Example 5.18. The type of “new int[1][1][1]” is int[ ][ ][ ].

For a dimension list of length n we have n subexpressions denoting the length
of the corresponding dimensions of the array. The types of this subexpression
must be widenable to the type int, because the length of an array can be only
an integral (32-bit) number. So we generate for the type of each subexpres-
sion a directed widening constraint from that type to int. For the merging
of the requirements and declarations we have to adapt what we did for the
conditional with three subexpressions. Since the union of the requirements is
left-associative, we can build the union of many requirements by using the oper-
ator ] linear. The intersection constraints of the requirements and declarations
need again to be build pairwise with the operators ∩c and ∩decl.

csnew = {Ti widen int | i ∈ [1, n]}

csmerge =
( ⋃

i∈[1,n−1]

rqsi ∩c rqsi+1

)
∪
( ⋃

i∈[1,n−1]

dclsi ∩decl dclsi+1

)
rqs =

⊎
i∈[1,n]

rqsi

dcls =
⋃

i∈[1,n]

dclsi

cs =
⋃

i∈[1,n]

csi

clz =
⋃

i∈[1,n]

clzi

ei : Ti | rqsi | dclsi | csi | clzi for i ∈ [1, n]
T-ArrNew

new T [e1]...[en] : T [ ]...[ ]︸ ︷︷ ︸
n times

| reqs | decls | csnew ∪ csmerge ∪ cs | clz

The array creation using an initialization provides a list of expressions which
define the elements of the array. These types have to be equal, so we constrain
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the type of each subexpression to be equal to the type of the following subex-
pression except for the last type. With the transitivity of equality we get that
all types are constrained equal. The resulting type is then an array type with
the type of one subexpression as the element type. Since we have constrained
the types of all subexpressions to be equal, we can pick the type of the first
subexpression as element type.

csnew = {Ti
.
= Ti+1| i ∈ [1, n− 1]}

csmerge =
( ⋃

i∈[1,n−1]

rqsi ∩c rqsi+1

)
∪
( ⋃

i∈[1,n−1]

dclsi ∩decl dclsi+1

)
rqs =

⊎
i∈[1,n]

rqsi

dcls =
⋃

i∈[1,n]

dclsi

cs =
⋃

i∈[1,n]

csi

clz =
⋃

i∈[1,n]

clzi

ei : Ti | rqsi | dclsi | csi | clzi for i ∈ [1, n]
T-ArrInit {e1...en} : T1[] | reqs | decls | csnew ∪ csmerge ∪ cs | clz

Example 5.19.
We previously stated that the type of “new int[1][1][1]” is int[ ][ ][ ]. Now that
we have defined the type rules for array creation, we want to show that this is
indeed the type of the expression.

We typecheck each subexpression 1 with rule T-Int. This results in the type
int and no requirements, declarations and constraints.

T-Int
1 : int | ∅ | ∅ | ∅ | ∅

As there is no interaction with the requirements, declarations or constraints
involved in the typing of a constant number, we check it once only and use the
result as a premise in the T-ArrNew rule application. We have int as the type
of the three subexpressions and we generate the new constraints int widen int,
int widen int and int widen int to ensure that we use only integer numbers for
the length definition of the array. Since we have no requirements, declarations
or constraints in the premises, there are no new constraints from merging. We
combine the newly generated constraints to a set to obtain {int widen int}.

1 : int | ∅ | ∅ | ∅ | ∅ 1 : int | ∅ | ∅ | ∅ | ∅ 1 : int | ∅ | ∅ | ∅ | ∅
T-ArrNew

new int[1][1][1] : int[ ][ ][ ] | ∅ | ∅ | {int widen int} | ∅
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We have ended the type checking with no requirements, so there are no un-
bound variables in the expression. What is left to do, is to solve the constraint
int widen int. Since the types are actually equal this constraint holds true and
we know that the type of the expression “new int[1][1][1]” is in fact int[ ][ ][ ].

5.3 Statements

In the previous section we have discussed expressions, which where responsible
for the behavior of programs e.g. for their side effects. We now look at state-
ments, which control the execution order of a program. Statements do not have
values and as they have no values they do not need a type assignment. We define
a typing relation that associates statements with binding requirements, binding
declarations, constraints and class requirements (stm ` rqs | dcls | cs | clz).

We begin with the type rules for two simple statements, the empty statement
(;) and the expression statement (e;). Afterwards we proceed with conditional
statements, loops and blocks.

5.3.1 Simple Statements

We start with the empty statement, which does nothing. Since it does nothing
we create an empty result in the type rule for it.

Empty
; ` ∅ | ∅ | ∅ | ∅

Expressions can be enclosed by a statement. These expression statements join
the behavior with the execution order of a program. Expression statements have
exact one subexpression and the result of the typing of that subexpression is
used as the result of the statement, except the type which is dropped.

e : T | rqs | dcls | cs | clz
Expr

e; ` rqs | dcls | cs | clz

5.3.2 Conditional statements

The conditional statement “if”, either allows the control if a particular state-
ment will be executed or not or the branching of two statements, executing one
branch but not both. We have two syntactic constructs for this. First, the
if-then statement, which executes its substatement if the condition holds true
or skips the execution of the substatement if the condition holds false. Second,
the if-then-else statement, which allows the choice of execution between two
statements. If the condition holds true, it evaluates the first branch and the
second branch vice versa.

Since the condition is an expression and we evaluate it to make a binary
choice, we must constrain the type of the expression to boolean or the corre-
sponding reference type Boolean. We then must merge the requirements and
declarations together. We have used the same sort of requirements and decla-
rations for statements and expressions and we can therefore reuse the existing
operators to merge requirements for statements and expressions together.
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csnew = {T ε {boolean,Boolean}}
csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2)

cs = csnew ∪ csmerge

e : T | rqs1 | dcls1 | cs1 | clz1 stm ` rqs2 | dcls2 | cs2 | clz2
If

if e then stm ` rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs ∪ cs1 ∪ cs2 | clz1 ∪ clz2

csnew = {T ε {boolean,Boolean}}
csmerge = (rqse ∩c rqs1) ∪ (rqs1 ∩c rqs2)

∪ (dclse ∩decl dcls1) ∪ (dcls1 ∩decl dcls2)

rqs = rqse ] rqs1 ] rqs2
dcls = dclse ∪ dcls1 ∪ dcls2
cs = csnew ∪ csmerge ∪ cse ∪ cs1 ∪ cs2
clz = clze ∪ clz1 ∪ clz2

e : T | rqse | dclse | cse | clze stmi ` rqsi | dclsi | csi | clzi, i ∈ {1, 2}
IfElse

if e then stm1 else stm2 ` rqs | dcls | cs | clz

5.3.3 Local Variable Declarations

Local variable declaration statements can be used to declare one or more local
variable names. A local variable declaration statement can only occur directly
in a block or in the head of a for statement, this is a syntactical restriction. The
scope of a so declared variable is the rest of the block in which it occured. A local
variable declaration consists of the type to which the variables are bound and
a list of declarators. A declarator is an identifier and optionally an expression
used as the initialization for the variable. The name of a local variable is the
identifier that appears in the declarator.

Example 5.20 (Local variable declarations).
We show two blocks which both define the variables i, j and k of type int. The
variables i and j are initialized to 1 and the variable k is not initialized at all.
The first block uses three local variable declaration statements and each of them
declare one variable. The second block uses just one local variable declaration
statement for the same task.

{
int i = 1 ;
int j = 1 ;
int k ;

}
{

int i =1, j =1, k ;
}
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We will not cover the mixed initialization of variables in the type rules for
local variable declaration statements. So if we want to declare two initialized
variables and one not initialzed variable as in the previous example, we have
to write at least two local variable declaration statements. One statement for
the variables with initializations and one statement for the variable without
initialization.

We begin with the type rule for a local variable declaration statement with-
out initializations for the variables. We have a denoted type and a list of iden-
tifiers. We declare each identifier to be bound to the denoted type. Note that
we now declare new variables, so we do not need to use the binding require-
ments, instead we add them to the binding declarations. Since we do not have
subexpressions we do not need any constraints.

dcls = {xi : T | i ∈ [1, n]}
LocDclNoInit

T x1, · · · , xn;` ∅ | dcls | ∅ | ∅

If we want to typecheck a local variable declaration statement with initial-
izations for the declared variables, we can extend the previous rule. We now
have a denoted type and a list of pairs of identifiers and expressions. We still
declare each identifier to be bound to the denoted type. In addition we constrain
the type of each subexpression to be equal to the denoted type, because we can
only initialize a variable with an expression of the same type as the type of the
variable. We then merge the multiple results from the subexpressions together.

csnew = {T .
= Ti | i ∈ [1, n]}

csmerge =
( ⋃

i∈[1,n−1]

rqsi ∩c rqsi+1

)
∪
( ⋃

i∈[1,n−1]

dclsi ∩decl dclsi+1

)
cs = csnew ∪ csmerge ∪

( ⋃
i∈[1,n]

csi

)
dcls = {xi : T | i ∈ [1, n]} ∪

( ⋃
i∈[1,n]

dclsi

)
ei : Ti | rqsi | dclsi | csi | clzi for i ∈ [1, n]

LocDclInit
T x1 = e1, · · · , xn = en;`

⊎
i∈[1,n] rqsi | dcls | cs |

⋃
i∈[1,n] clzi

5.3.4 Loops

Loops can be used to repeatedly execute a program fragment. We will cover
while statements, do statements and basic for statements. We do not cover
abrupt completion with break or continue.

The while statement contains an expression and a statement. The expression
is evaluated first. If the value of the expression is true, the statement is executed.
This will be repeated until the value of the expression is false. So the expression
is the condition which decides if we break the loop or not and we therefore
constrain it to be of type boolean or Boolean.
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csnew = {T ε {boolean,Boolean}}
csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2)

cs = cs1 ∪ cs2 ∪ csnew ∪ csmerge

e : T | rqs1 | dcls1 | cs1 | clz1 stm ` rqs2 | dcls2 | cs2 | clz2
While

while (e) stm ` rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

The do statement contains a statement and an expression. We notice that
this is the reverse order as in the while statement. The statement is executed
first and the decision if we repeat it, is done afterwards by the evaluation of the
expression. We again constrain the type of the expression to be of type boolean
or Boolean.

csnew = {T ε {boolean,Boolean}}
csmerge = (rqs1 ∩c rqs2) ∪ (dcls1 ∩decl dcls2)

cs = cs1 ∪ cs2 ∪ csnew ∪ csmerge

stm ` rqs1 | dcls1 | cs1 | clz1 e : T | rqs2 | dcls2 | cs2 | clz2
Do

do stm while (e) ` rqs1 ] rqs2 | dcls1 ∪ dcls2 | cs | clz1 ∪ clz2

The basic for statement consists of a variable declaration for initialization,
an expression used as condition, some expressions used for updating and a state-
ment. The variable declaration is executed first and just once. Then the condi-
tion is evaluated. If the condition is evaluated to true, the statement is executed
followed by the update expression. This is repeated until the expression is eval-
uated to false. We constrain the type of the condition to boolean or Boolean.

This is the first statement in which a variable declaration can occur. The
variable declaration can occur in the initialization of the for statement and the
scope of the declared variables are the remaining expressions and the statement.
We first build the union for requirements (]) and generate the constraints of
intersecting requirements (∩c) of the requirement sets obtained from the subex-
pressions and the substatement. We obtain a new requirement set, which con-
tains all requirements from the scope of the variable declaration. We obtain
also a set of constraints containing the type equality constraints for variables
required in more than one set. We then generate the final requirement set with
the requirement union of the requirements of the scope with the requirements
from the declaration. This order is to ensure, that the newly declared variables
are not used to initialize itself.
The next step is to remove all requirements that are now actually declared and
to constrain the required type to be equal to the declared type of a variable.
We remove all that requirements from the obtained set that are declared in
the declaration set from the initialization part of the for statement. Since the
elements of the declaration set are of the same form than the elements of the
requirement set, we can reuse the ∩c operator to generate the needed equality
constraints.
Since there can not flow any declarations from a subexpression or statement to
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the statement enclosing this one, we generate an empty set for the declarations
of the for statement. So we do not keep the declared variables from this state-
ment, which means that we can currently not detect if one of these variables is
declared by a statement enclosing the current one. This holds for all statements
that can introduce new variable declarations.

rqsdcl = {x : T | (x : T ) ∈
( ⊎

i∈[0,n]

rqsi︸ ︷︷ ︸
rqsscope

)
∧ x /∈ dom(dclsd)}

rqs = rqsd ] rqsdcl
csnew = {T0 ε {boolean,Boolean}}

csmerge =
( ⋃

i∈[0,n−1]

rqsi ∩c rqsi+1

)
∪
( ⋃

i∈[0,n−1]∪{d}

dclsi ∩decl dclsi+1

)
∪ (rqsscope ∩c dclsd)

cs = csnew ∪ csmerge ∪
( ⋃

i∈[0,n]∪{d}

csi

)
dcl ` rqsd | dclsd | csd | clzd ei : Ti | rqsi | dclsi | csi | clzi, i ∈ [0, n]

For
for (dcl; e0; e1, · · · , en) stm ` rqs | ∅ | cs |

⋃
i∈[0,n]∪{d} clzi

Example 5.21.
We typecheck the basic for statement:

for ( int i =0; true ; i++) ;

The statement declares a variable of type int and initialized it to zero. Since
the condition is true it will repeat infinitely long, increasing each time the value
of the variable by one. The body of the statement is the empty statement.

We start with the type checking of the subexpressions. We have a local
variable declaration, the constant true, an increment and the empty statement.
We then use the results of this to typecheck the for statement.

Since the variable declaration has an initialization, we use rule LocDclInit.
The variable i is initialized to 0 and we use rule T-Int to obtain the type int. We
then generate a new constraint int

.
= int for the denoted type of the declaration

and the type of the initialization and we add the declaration i : int. We can
solve the constraint int

.
= int and remain with an empty constraint set.

T-Int
0 : int | ∅ | ∅ | ∅ | ∅

LocDclInit
int i = 0;` ∅ | {i : int} | {int .= int} | ∅

∅
int i = 0;` ∅ | {i : int} | ∅ | ∅︸ ︷︷ ︸

dcl

We use rule T-True for the constant true, which results in the type boolean
and no requirements, declarations, constraints, or class information.
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T-True
true : boolean | ∅ | ∅ | ∅ | ∅︸ ︷︷ ︸

cond

The subexpression of the increment is a variable and we use T-ExprName
to typecheck it. We generate a fresh type variable α and require that the name
i is bound to α.
We then use rule T-PostIncr to typecheck the increment with the result from
the subexpression in the premise. We generate a fresh type variable β as the
resulting type of the increment. We constrain β to be equal to the resulting
type of the subexpression α and that β is some numeric type.
We solve the constraints and obtain the unifier {β/α}. We substitute the unifier
to the requirements to obtain {i : β}. We remain the constraint β ε TNum,
because we can not solve it yet.

T-ExprName
i : α | i : α | ∅ | ∅ | ∅

T-PostIncr
i++ : β | i : α | ∅ | {β .

= α, β ε TNum} | ∅ {α/β}
i++ : β | i : β | ∅ | {β ε TNum} | ∅︸ ︷︷ ︸

update

We use rule Empty for the empty statement.

Empty
; ` ∅ | ∅ | ∅ | ∅︸ ︷︷ ︸

stm

We have checked all subexpressions and statements and we use rule For to
typecheck the for statement. We use the previous derivations as the premises
of the rule.
We first generate the constraint boolean ε {boolean,Boolean} for the type of
condition.
What is left to do, is to merge the requirements and declarations together. We
build the union of all requirements from the premises which were not the variable
declaration and obtain {i : β}. We then remove all newly declared variables from
this set and since i is declared in the for statement, we obtain the empty require-
ments (∅). Since all requirements except one are empty, we do not generate new
equality constraints for variables that are required more than once, but we have
to generate equality constraints for the variables required in the scope of the dec-
laration. The union of requirements of the scope is {i : β} and the declarations
are {i : int}, so we generate the equality constraint β

.
= int. We build the union

of the newly generated constraints and the constraints from the premises and
obtain the constraints cs = {β ε TNum, boolean ε {boolean,Boolean}, β

.
= int}.

dcl cond update stm
For

for (int i = 0; true; i++) ; ` ∅ | ∅ | cs | ∅

We have ended the type checking with a set of constraints which we need
to solve. We can solve the constraint boolean ε {boolean,Boolean}, because
boolean ∈ {boolean,Boolean}. The next constraint we can solve is β

.
= int.

We add the substitution β/int to the unifier and apply the substitution to the
constraint β ε TNum. We obtain int ε TNum which we solve next, because
int ∈ TNum. We have solved all constraints and obtained the unifiert {β/int}.
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{boolean ε {boolean,Boolean}} ∪ {β ε TNum, β
.
= int} | ∅

{β .
= int} ∪ {β ε TNum} | ∅
{int ε TNum} | {β/int}

∅ | {β/int}

5.3.5 Blocks

A block is a sequence of statements within braces. This sequence will be exe-
cuted from first to last. The side effects and variable declarations that occured
in the execution of the first statements are visible in all statements that will be
executed accordingly.

Since variable declarations are visible in statements that will be later exe-
cuted in the sequence, we must respect this in the type rule.
We obtain all binding requirements, binding declarations, constraints and class
information from the substatements and we have to merge them together in the
right order, because each statement can be a local variable statement.
We process the sequence from last to first, because we process then the require-
ments of a variable before its declaration. We take the last result from the
sequence and merge it to the forelast result, we then remove both of them and
put the newly generated requirements and constraints in the place of them. We
repeat this until we only have one result left, which will then be the result for
the block. If the sequence of the block is empty, we generate an empty result
for it.

Definition 5.22.
We define an operation mergeblock. This operation processes a sequence of
results (res1, · · · , resn−1, resn) in the above described order. Each result resi
of this sequence consists of binding requirements (rqsi), binding declarations
(dclsi), constraints (csi) and class information (clzi).
Each step of this merging includes the following operations.

• The union for requirements rqsn−1 ] rqsn.

• The generation of equality constraints for variables that are required in
both sets (rqsn−1 ∩c rqsn).

• The generation of equality constraints for variables that are required in
rqsn which are declared in dclsn−1. The declarations of dclsn are omitted,
to detect self declarations. This is safe even for statements which are no
local variable declarations, because the declarations of these statements
are empty since they can not introduce new variables.

Afterwards we must remove all variables which are declared from the newly
generated requirements, to keep just the requirements that are not already de-
clared.
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mergeblock() := ∅ | ∅ | ∅ | ∅
mergeblock(res) := res

mergeblock(res1, · · · , resn) := mergeblock(res1, · · · , resn−2, (rqs | dcls | cs | clz))
rqs = rqsn−1 ] rqsn
dcls = ∅
cs = (rqsn−1 ∩c rqsn) ∪ (dlcsn−1 ∩c rqsn)

clz = clzn−1 ∪ clzn

We use this operation in the type rule for blocks. We do not have to generate
additional constraints, as blocks have no further restrictions.

stmi ` rqsi | dclsi | csi | clzi for i ∈ [1, n]
Block {stm1 · · · stmn} ` mergeblock(rqsi | dclsi | csi | clzi for i ∈ [1, n])

5.4 Fields

A field is a member of a class. They are variables which are globally visible in
the entire class, so the scope of a field is the class in which it is declared. We
assume all fields to be public. This means, that all fields are also visible from
the outside of the class in which they were defined.

5.4.1 Field Access

A field access is an expression. We can access fields of objects or arrays, so we
can only use field accesses on reference types. We have already seen that it is
possible to refer to a field with a simple name and that we can not be sure if we
access a field or a local variable when doing so. We will treat these field accesses
with a simple name when we typecheck field declarations.

A field access has one subexpression and an identifier, separated with “.”.
The subexpression denotes an object or array. The identifier is the name of the
field we want to access in this object or array. The type of the object or array
must have a field with the denoted name.
Since a field is a special kind of member, we define a new class requirement for
fields.

Definition 5.23.
For types T1, T2 and identifier x

T1 hasField x : T2

requires that type T1 has a field x with type T2.

In the type rule for field access, we have to generate a hasF ield requirement.
We know from the syntax the name of the field we want to access and from the
premise the type of the object that needs to have the field. What we do not
know is the type of the field, so we generate a fresh type variable as the type of
the field and generate a hasF ield requirement for these information.
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e : T | rqs | dcls | cs | clz α fresh
T-Field

e.x : α | rqs | dcls | cs | {T hasField x : α} ∪ clz

We can also access fields from the class we inherited from with the special
keyword super. Such a super field access has no subexpression. As the instance
from which we want to access the field is already known, we do not get the type
of the instance from the super field access expression.
We have already seen the special keyword this and we will treat the keyword
super similar. We generate a fresh type variable and require super to be bound
to that type variable. We adapt the previous type rule for field access. We
interchange the type of the subexpression with the generated type variable for
the keyword super in the hasF ield requirement.

α, β fresh
T-SuperField

super.x : β | {super : α} | ∅ | ∅ | {α hasField x : β}

5.4.2 Field Declaration

A field declaration introduces a new variable of a class and we can not have two
fields with the same name.
The syntax of a field declaration is similar to the syntax of a local variable
declaration. A field declaration can define a visibility, but we assume all fields
to be public visible. We further restrict field declarations that we can declare
only one field per field declaration. Field declarations may be directly initialized.
A field declaration must occur only in the body of a class declaration.
Fields belong to the public interface of a class, so we have to remember which
fields are declared in a class. We already have a class information hasF ield, but
we used this to require a field to be present in a class. We define a new class
information for fields provided by a class.

Definition 5.24.
For types T1, T2 and identifier x

T1 providesField x : T2

states that type T1 provides a field x with type T2.

We begin with the type rule for field declaration without an initialization.
We have to generate an information stating that the current class provides a
field with the denoted name and type. As we do not know the name of the
class when typechecking a field declaration, we generate a fresh type variable
and require it to be bound to this instance. We then use this type variable as
the class type in the providesF ield information.

clz = {α providesField x : T} α fresh
FieldDcl

public T x;` {this : α} | ∅ | ∅ | clz

We adapt this for the type rule for field declarations with an initialization.
We now have a subexpression whose type we constrain to be equal to the denoted
type of the field declaration. We have to merge the requirements from the
subexpression to the new requirement for this.
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cs = {T .
= T1} ∪ ({this : α} ∩c rqs1) ∪ cs1

clz = {α providesField x : T} ∪ clz1

e1 : T1 | rqs1 | dcls1 | cs1 | clz1 α fresh
FieldDclInit

public T x = e1;` {this : α} ] rqs1 | dcls1 | cs | clz

5.5 Constructors

Objects are instances of classes and we use constructors to create them. We
have constructor declarations and instance creations.

5.5.1 Instance Creation

We can create instances of a class with the new keyword. The syntax of an
instance creation is the keyword new followed by an identifier and a list of
expressions. The identifier is the name of the class from which we want to
create an instance. The class must have a constructor whose number and types
of parameters match the length and types of the list of expressions.
We define a new class information for constructors.

Definition 5.25.
For a natural number n and types T , T1, · · · , Tn

T hasConstructor [T1, · · · , Tn]

requires type T to have a constructor with n parameters with types T1 to Tn.

We have to generate a hasConstructor requirement in the type rule for
instance creation. The class the constructor must have is denoted, the number
of parameters is the number of subexpressions and the types of the parameters
are the types of the subexpressions.

rqs =
⊎

i∈[1,n]

rqsi

csmerge =
( ⋃

i∈[1,n−1]

rqsi ∩c rqsi+1

)
∪
( ⋃

i∈[1,n−1]

dclsi ∩decl dclsi+1

)
cs = csmerge ∪

( ⋃
i∈[1,n]

csi

)
clz = {C hasConstructor [T1, · · · , Tn]} ∪

( ⋃
i∈[1,n]

clzi

)
ei : Ti | rqsi | dclsi | csi | clzi

T-New
new C(e1, · · · , en) : C | rqs |

⋃
i∈[1,n] dclsi | cs | clz
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5.5.2 Constructor Declaration

A constructor declaration has a head and a body. The head contains a modifier
for the visibility of the constructor, the name of the current class and a param-
eter list. As we assume all constructors to be public, the access modifier will be
always “public”. The body of a constructor can contain an explicit constructor
invocation and a block statement. An explicit constructor invocation can be
the invocation of another constructor of the current class or the invocation of a
constructor of the superclass.

We have to remember the declared constructors, to be able to check if a
constructor that is required by an instance creation indeed exists. We define a
new class information for the constructors provided by a class.

Definition 5.26.
For a natural number n and types T , T1, · · · , Tn

T providesConstructor [T1, · · · , Tn]

states that the type T provides a constructor with n parameters with the types
T1 to Tn.

We have to consider two things in the type rule for constructor declarations.
First, that the scope of the parameters of the constructor is the body of the
constructor. Second, that the current class provides a constrcutor with the
denoted number and types of parameters.

We start with the type rule for a constructor declaration without an explicit
constructor invocation.
We create a new set of pairs for the parameters and each pair contains the
name and the type of one parameter. We use this set as a declaration set and
generate equality constraints for the intersecting variables in this set and the
requirement set from the body. We further remove all requirements that are
bound as a parameter.
For the information that the current class provides a new constructor, we gen-
erate a providesConstrcutor information. The type of the class is denoted as
the name of the constructor and the types of the parameters are denoted in
the parameter list. We further require the current instance to be bound to the
denoted type of the class, because we can declare only a constructor with the
same type as the current class.

param = {xi : Ti | i ∈ [1, n]}
csmerge = (param ∩c rqs1) ∪ (param ∩decl dcls1)

cs = csmerge ∪ cs1
rqs = {x : T | (x : T ) ∈ rqs1 ∧ x /∈ dom(param)}
clz = {C providesConstructor [T1, · · · , Tn]} ∪ clz1

stm ` rqs1 | dcls1 | cs1 | clz1
Cons

public C(T1 x1, · · · , Tn xn){stm} ` {this : C} ] rqs | ∅ | cs | clz
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We adapt this approach for the type rules for constructor declarations with
an explicit constructor invocation. We have a constructor invocation of the cur-
rent (this) or the super class in the body before the statement. This constructor
invocation has a list of expressions providing the values of the parameters. These
subexpressions are also in the scope of the parameters from the constructor dec-
laration.
We begin with the type rule for an explicit invocation of a constructor from the
current class. We modify the two steps from the previous typerule.
We have to require the existence of a constructor from the current class, with
the appropriate number and types used in the invocation. Since we do not in-
voke the constructors with the class names, we generate a fresh type variable
for the type of the class and require the current class to be bound to that type
variable. We further have to build the requirements from the scope of the pa-
rameters, before we generate equality constraints for parameters whose variables
are required in the scope.

param = {xk : Tk | k ∈ [1, n]}

scope =
⊎

l∈[0,m]

rqsl

csmerge = (param ∩c scope) ∪
( ⋃

l∈[0,m−1]

rqsl ∩c rqsl+1

)
∪ (param ∩decl dcls0) ∪

( ⋃
l∈[0,m−1]

dclsl ∩decl dclsl+1

)
cs = csmerge ∪

( ⋃
l∈[0,m]

csl

)
rqs = {this : α} ] {x : T | (x : T ) ∈ scope ∧ x /∈ dom(param)}
clz = {C providesConstructor [T1, · · · , Tn]

, α hasConstructor [S1, · · · , Sm]} ∪
( ⋃

l∈[0,m]

clzl

)

ej : Sj | rqsj | dclsj | csj | clzj stm ` rqs0 | dcls0 | cs0 | clz0
ConsThis

public C(Ti xi︸ ︷︷ ︸
i∈[1,n]

){this( ej︸︷︷︸
j∈[1,m]

); stm} ` rqs | ∅ | cs | clz

We repeat this for the type rule for the constructor declaration with an
explicit constructor invokation from the superclass. We now have to require the
fresh type variable to be bound to the superclass instead of the current one.
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param = {xk : Tk | k ∈ [1, n]}

scope =
⊎

l∈[0,m]

rqsl

csmerge = (param ∩c scope) ∪
( ⋃

l∈[0,m−1]

rqsl ∩c rqsl+1

)
∪ (param ∩decl dcls0) ∪

( ⋃
l∈[0,m−1]

dclsl ∩decl dclsl+1

)
cs = csmerge ∪

( ⋃
l∈[0,m]

csl

)
rqs = {super : α} ] {x : T | (x : T ) ∈ scope ∧ x /∈ dom(param)}
clz = {C providesConstructor [T1, · · · , Tn]

, α hasConstructor [S1, · · · , Sm]} ∪
( ⋃

l∈[0,m]

clzl

)
ej : Sj | rqsj | dclsj | csj | clzj stm ` rqs0 | dcls0 | cs0 | clz0

ConsSuper
public C(Ti xi︸ ︷︷ ︸

i∈[1,n]

){super( ej︸︷︷︸
j∈[1,m]

); stm} ` rqs | ∅ | cs | clz

5.6 Classes

A class declaration defines a new reference type. All classes, except Object, are
extensions from a single other class.
Fields, methods and constructors are declared in the body of a class. The
declared fields and methods are the members of that class. The scope of a
member of a class is the entire class body.
We do not cover abstract classes, enums, interface implementations and generics.
We assume all classes to be declared public.

The syntax of the head of a class declaration contains a visibility modifier,
the name of the class and the name of the superclass. The name of the su-
perclass is optional, but we assume it to be present at all times. This is no
restriction, because each class without this annotation implicitly inherits from
the class Object. Since we assumed all classes to be public, the visibility modi-
fier will always be “public”.
The body of a class consists of a list containing field declarations, method dec-
larations, constructor declarations and also nested class declarations. Not all of
these elements may be present in every class body and we do not cover method
declarations.

We have to take multiple actions in the type rule for class declarations.
We gained knowledge of the current- and the superclass names, so we can re-
solve all requirements that we made to this and super in the body of the class
declaration.
We are also at the point where we can merge class information from the body
together. We have to bring the required fields together with the provided fields
and we have to do this for the constructors as well.
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We first show the basic type rule and proceed with the evolution of the
resulting requirements, declarations, constraints and class informations.

bodyi ` rqsi | dclsi | csi | clzi for i ∈ [1, n]
Class

public class C extends E{ body1, · · · , bodyn } ` rqs | dcls | cs | clz
For the references to this and super, we have to first merge the requirements

from the scope of the class. The scope of the class is the body. We generate
equality constraints for occurences of this and super with the requirements from
the scope. Afterwards, we have to remove all requirements for both keywords,
because we have found the declaration of this and the denoted type for super.

scope =
⊎

i∈[1,n]

rqsi

class = {this : C, super : E}
csclass = class ∩c scope
rqsclass = {x : T | (x : T ) ∈ scope ∧ x /∈ {this, super}}

For the merging of provided- and requested fields from the body, we have to
generate equality constraints in a similar way as for the binding requirements
and declarations. We have to constrain the types of field names that are both,
provided and requested, to be equal, because each field can only have one type.
If a name is both, requested and provided, as a field of the same type, then we
constrain the types of the names to be equal. We remember that we can access
fields from the current class also with a simple name and that we were not able to
distinguish the field access with a simple name from the access to a local variable.
Since we are now on the class level, each remaining requirement must be a
field access, because we have no local variables directly in a class declaration.
So we add a field requirement to the current class for each unresolved binding
requirement. We remove all field requirements from the current class afterwards.

clzbody =
⋃

i∈[1,n]

clzi

fields = {C hasField x : t | (x : t) ∈ rqsclass}
csfields = {T1

.
= T2 | (T hasField x : T1) ∈ (clzbody ∪ fields)

∧ (T providesField x : T2) ∈ clzbody}
clzfields = {c | c ∈ clz ∧ c 6= (C hasField x : T )}

We repeat this step for constructors, but we have to constrain the types of
the parameters to be equal. Since constructors do not have names, we can only
differ between constructors by the class to which they belong and the number
of parameters they got.

cscons = {Ti
.
= Si | (T hasConstructor [T1, · · · , Tn]) ∈ clzfields

∧ (T providesConstructor [S1, · · · , Sn]) ∈ clzfields
∧ i ∈ [1, n]}

clzcons = {c | c ∈ clzfields ∧ c 6= (C hasConstructor [T1, · · · , Tn])}
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We have resolved the this and super references and we have generated con-
straints for the fields and the constructors. We now can bring these information
together and merge the remaining results from the body.
Since we treated all unresolved binding requirements as a field access, the re-
sulting binding requirements set is empty. This means that we can not use the
binding requirements to detect unbound variables, but we can use the unre-
solved hasF ield information to detect unbound fields.
We generate constraints for the requirements from the body, like we have done
it in all type rules so far. We build the union of these constraints with the
constraints generated in the previous steps.

rqs = ∅

dcls =
⋃

i∈[1,n]

dclsi

csmerge =
( ⋃

i∈[1,n−1]

rqsi ∩c rqsi+1

)
cs = csclass ∪ csfields ∪ cscons ∪ csmerge

∪
( ⋃

i∈[1,n]

csi

)
clz = clzcons

We have merged all information together and we obtain rqs, dcls, cs, and
clz as the result of the type rule. We have already noted, that the requirements
rqs are empty and we need to use the remaining field requirements from clz to
detect unbound (global) variables.
We can get the set of unbound variables, by filtering the remaining hasF ield
information of the current class.

Definition 5.27.
The set of unbound variables of a class C, can be determined from the resulting
class information clz of the typechecking of C.

unbound = {x : T | (C hasField x : T ) ∈ clz}

Note that the set unbound includes not only the names of the unbound
variables, but also the types from the context they are used.
We can further assume the resulting set dcls to be empty, otherwise we would
have some invalid syntax, because we have used a local variable declaration
outside of a block- or a for statement and the syntax does not allow such a
usage.

5.7 Properties of the typing relation

If we have typechecked a class declaration and the set unbound is empty, we
obtain the following knowledge about the program.

• The public interface of the class we have typechecked.

53



• Minimal requirements to the public interfaces of classes used in the body
of the class we have typechecked.

The public interface of the class we have typechecked, consists of all fields
and constructors of that class. These information are preserved in the type rule
for class declarations Class.
If we typecheck a class C, we have to filter all provided fields and constructors
of class C from the class information we obtain with the rule Class

Example 5.28.
We typecheck class C with the following declaration.

public class C{
int i ;
f loat j ;

public C( int i , f loat j ){
this . i = i ;
this . j = j ;

}
}

We obtain the following class information from rule Class

{ C providesField i : int,

C providesField j : float,

C providesConstructor [int, float] }

which is the public interface of class C.

We get the minimum requirements for other classes in a similar way. Instead
of filtering the class information for the provided fields and constructors of the
typechecked class C, we have to filter for the required fields and constructors of
the other classes.

Example 5.29.
We typecheck class E with the following declaration.

public class E extends C{
public E( int i , f loat j ){

super ( i , j ) ;
}

}

We obtain the following class information from rule Class

{ E providesConstructor [int, float],

C hasConstructor [int, float] }

The public interface of E is {E providesConstructor [int, float]} and the mini-
mum requirements to the public interface of C is {C hasConstructor [int, float]}.
We can validate that the previous shown class C indeed fullfills these require-
ments.
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We can also use intermediate unification for Java. It may happen that
we can not solve all the constraints generated so far, but we can distinguish
between unsolvable constraints and constraints that may be solvable with future
knowledge. If we find an unsolvable constraint, we have found an type error. If
we find a constraint for which we can not decide at the moment if it is solvable
or not, we skip it in the unification process and keep it for future solving.

5.8 Implementation of the typing relation

An implementation of the presented typing relation for Java can be found on
Github in the JavaLang repository1.

1https://github.com/gnush/JavaLang
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Chapter 6

Related Work

Modular Specification and Dynamic Enforcement of Syntactic
Language Constraints when Generating Code
In [EVMV14] Erdweg et al. propose dynamic checking of language-specific
invariants on generated code at construction time. They introduce type-
smart constructors to dynamically enforce the well-formedness of gener-
ated code according to the syntax of the language. Typesmart constructors
can be used with any metaprogramming system and typesmart construc-
tors can be derived automatically from the syntax definition of a language.

Erdweg et al. also integrated support for typesmart constructors into the
runtime system of Stratego, allowing the direct usage of typesmart con-
structors in place of regular constructors. This achieves the global invari-
ant that all generated code is well-formed, without the need of adapting
the transformations to explicitly use typesmart constructors.

Polymorphic Bytecode: Compositional Compilation for Java-
like Languages
Ancona et al. define in [ADDZ05] compositional compilation as the abil-
ity to compile source code fragments in isolation for Java-like languages.
A polymorphic form of bytecode is introduced to obtain compositional
compilation for Java. Polymorphic bytecode contains type variables and
is equipped with a set of constraints on those type variables. Standard
bytecode can be obtained by substituting the type variables with class
names satisfying the coressponding constraints.
They develop a typing and linking algorithm to illustrate compositional
compilation for Java. In the typing algorithm, a class is compiled in iso-
lation, generating polymorphic bytecode for the class and constraints in
the depending classes. The linking algorithm either produces standard
bytecode from a collection of polymorhic bytecode fragments or fails.
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Chapter 7

Summary

7.1 Conclusion

In this thesis we have presented a way to eliminate the context from a type
system, in order to ensure that all information flows bottom up.

We have introduced binding requirements as the opposite to a typing context.
Where a typing context provides information about the types of variables, the
binding requirements were used to ask the variables to be “later” bound to a
specific type. We have used type variables as placeholders, when we have not
known the specific type of a variable or expression. We have used constraints
on these type variables for unification.

We have used these tools to define bottom-up typing relations for the Simply
Typed Lambda Calculus, PCF and a subset of Java.

7.2 Future Work

We have two main goals for the future. First, we want to evaluate the perfor-
mance of the Stratego implementation of the bottom-up typechecker for PCF
with a Stratego implementation of a regular typechecker with context, as well
as implementing a parallelized version. Second, we want to extend the typing
relation for Java. Possible extensions are method invocations, method declara-
tions, interfaces and static fields as well as allowing more than the public access
modifier.

Furthermore, we could try to generalize the presented approach to transform
a given typing relation with context automatically into a bottom-up typing
relation.
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Appendix A

Type system
implementations

A.1 PCF

A.1.1 Language Specification

module TypedLambda
imports Common

export s
context−f r e e s ta r t−symbols

Module

l e x i c a l syntax
” Fal se ” −> ID { r e j e c t }
”True” −> ID { r e j e c t }
”and” −> ID { r e j e c t }
”module” −> ID { r e j e c t }
”Bool” −> ID { r e j e c t }
”Num” −> ID { r e j e c t }
” i f ” −> ID { r e j e c t }
” then ” −> ID { r e j e c t }
” e l s e ” −> ID { r e j e c t }
” f i x ” −> ID { r e j e c t }

context−f r e e syntax
”module” ID {Expr ” ,”}∗

−> Module { cons (” Module ”)}
ID

−> Expr { cons (” Var ”)}
Expr Expr

−> Expr { cons (”App”) , l e f t }
”\\” ID ” :” Type ” .” Expr

−> Expr { cons (”Abs”)}
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”True”
−> Expr { cons (” True ”)}

” Fal se ”
−> Expr { cons (” Fa l se ”)}

”˜” Expr
−> Expr { cons (” Not ”)}

Expr ”and” Expr
−> Expr { cons (”And”) , l e f t }

INT
−> Expr { cons (”Num”)}

Expr ”+” Expr
−> Expr { cons (”Add”) , l e f t }

” i f ” Expr ” then ” Expr ” e l s e ” Expr
−> Expr { cons (”Cond”)}

Expr ”>” Expr
−> Expr { cons (”Gt”) , l e f t }

” f i x ” ID ” :” Type ” .” Expr
−> Expr { cons (” Fix ”)}

ID ” :” Type ”=” Expr ” ;” Expr
−> Expr { cons (” Let ”)}

”(” Expr ”)”
−> Expr { bracket }

”Bool”
−> Type { cons (” Bool ”)}

”Num”
−> Type { cons (”TNum”)}

Type ”−>” Type
−> Type { cons (” Function ”) , r i g h t }

context−f r e e p r i o r i t i e s
{ ID −> Expr } >
{ ”˜” Expr −> Expr } >
{ Expr ”and” Expr −> Expr

Expr ”+” Expr −> Expr
Expr ”>” Expr −> Expr } >

{ ”\\” ID ” :” Type ” .” Expr −> Expr
” f i x ” ID ” :” Type ” .” Expr −> Expr
ID ” :” Type ”=” Expr ” ;” Expr −> Expr } >

{ Expr Expr −> Expr } >
{ ” i f ” Expr ” then ” Expr ” e l s e ” Expr −> Expr }

A.1.2 Helpers

module typecheckBase

imports
i n c lude /TypedLambda

s i g n a t u r e c o n s t r u c t o r s
CEq : Type ∗ Type ∗ St r ing −> Constra int
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TVar : STRING −> Type

r u l e s
// a p p l i e s an mgu to a type
// ( t , mgu) −> t
app mgu : ( t , [ ] ) −> t
app mgu : ( t , [ ( x , t ’ ) |mgu ] )

−> <app mgu> ( t1 , mgu)
where t1 := <tSubst> (x , t , t ’ )

// s u b s t i t u t e x in t with t ’
tSubst : (x , Bool ( ) , t ’ ) −> Bool ( )
tSubst : (x , TNum( ) , t ’ ) −> TNum( )
tSubst : (x , Function ( t1 , t2 ) , t ’ ) −>

Function ( t1 ’ , t2 ’ )
where t1 ’ := <tSubst> (x , t1 , t ’ ) ;

t2 ’ := <tSubst> (x , t2 , t ’ )
tSubst : (x , TVar( x ) , t ’ ) −> t ’
tSubst : (x , TVar( y ) , t ’ ) −> TVar( y )

// i f var occurs in term true , e l s e f a l s e
occurs : ( var , Bool ( ) ) −> < f a i l >
occurs : ( var , TNum( ) ) −> < f a i l >
occurs : ( var , TVar( var ) ) −> <id>
occurs : ( var , TVar( ) ) −> < f a i l >
occurs : ( var , Function ( t , t ’ ) )

−> < i f <occurs> ( var , t )
then id
e l s e <occurs> ( var , t ’ ) end>

// union o f b inding requi rements
bUnion : ( xs , ys ) −> <bUnion> (<conc> ( xs , ys ) )
bUnion : [ ] −> [ ]
bUnion : [ ( x , t ) | bs ] −> [ ( x , t )|<bUnion> bs ’ ]

where bs ’ := < f i l t e r ( not ( ? ( x , )))> bs
bUnion = debug ( ! ” bUnion : ” ) ; f a i l

// f o r a l l x in l i s t . ( elem , x )
mk−t u p l e s : ( elem , l i s t )

−> <map(\ x −> ( elem , x ) \)> l i s t

// l i s t o f b ind ings −> l i s t o f t u p l e s o f b ind ings
mk−i s e c t C a l l L i s t : [ ] −> [ ]
mk−i s e c t C a l l L i s t : [ x | xs ]

−> <conc> (<mk−tup le s> (x , xs ) ,
<mk−i s e c t C a l l L i s t> xs )

// i n t e r s e c t i n g binding requi rements
i s e c t C o n s t r a i n t s : ( [ ] , ys ) −> [ ]
i s e c t C o n s t r a i n t s : ( [ ( x , t ) | xs ] , ys )
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−> <union> ( c , < i s e c t C o n s t r a i n t s> ( xs , ys ) )
where c := < f i l t e r ( ? ( x , ) ; \ ( , t ’ )

−> <mk−err> ( t , t ’ ,
<conc−s t r i n g s> (” binding ” , x ) ) \)> ys

c o n s t r a i n t s : ( cs , ) −> cs
c o n s t r a i n t s : ( cs , , , ) −> cs
b ind ings : ( , bs ) −> bs
b ind ings : ( , bs , , ) −> bs
mgu : ( , , mgu , ) −> mgu
e r r s : ( , , , e r r s ) −> e r r s
f i l t e r −bind ings = map( b ind ings )
f i l t e r −c o n s t r a i n t s = map( c o n s t r a i n t s )
f i l t e r −mgu = map(mgu)
f i l t e r −e r r s = map( e r r s )

// type , type , s t r i n g −> CEq
mk−e r r : ( expected , actua l , node )

−> CEq( expected , actua l , e r r )
where e r r := <concat−s t r i n g s> [ ” Expected ” ,

<type−to−s t r i ng> expected ,
” but got ” ,
<type−to−s t r i ng> actual ,
” in ” , node ]

type−to−s t r i n g : Bool ( ) −> ”Bool”
type−to−s t r i n g : TNum( ) −> ”Num”
type−to−s t r i n g : Function ( t1 , t2 )

−> <concat−s t r i n g s> [ ” ( ” , <type−to−s t r i ng> t1 , ” −> ” ,
<type−to−s t r i ng> t2 , ” ) ” ]

type−to−s t r i n g : TVar( t ) −> t

// l i s t o f t u p l e s −> s t r i n g
mk−unbound−vars−message : b ind ings

−> <conc−s t r i n g s> (”Unbound v a r i a b l e s ” ,
< f o l d l (\ (x , xs )
−> <concat−s t r i n g s> [ xs , ” ” , <Fst> x ] \)> ( b indings , ””) )

A.1.3 Constraint generation

module typecheckIntermediate

imports
i n c lude /TypedLambda
semantic / typecheckBase

r u l e s
t y p e i n f e r : Module (x , e ∗) −> <map( t y p e i n f e r )> e∗
t y p e i n f e r : e −> < i f equal (|< l ength> b , 0)

then i f equal (|< l ength> e r r s , 0)
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then ! ( t , c , b , mgu)
e l s e ! e r r s

end
e l s e ![<mk−unbound−vars−message> b | e r r s ] end>
where ( t , ( c , b , mgu , e r r s ) )

:= <bottomup ( try ( gene ra t eCons t ra in t s ))> e ;
c := <map(\ CEq( t1 , t2 , e r r ) // map mgu

−> CEq(<app mgu> ( t1 , mgu) , // over cs
<app mgu> ( t2 , mgu) , e r r ) \)> c

gen = bottomup ( try ( gene ra t eCons t ra in t s ) )

gene ra t eCons t ra in t s : True ( )
−> ( Bool ( ) , ( [ ] , [ ] , [ ] , [ ] ) )

g ene ra t eCons t ra in t s : Fa l se ( )
−> ( Bool ( ) , ( [ ] , [ ] , [ ] , [ ] ) )

g ene ra t eCons t ra in t s : Num( )
−> (TNum( ) , ( [ ] , [ ] , [ ] , [ ] ) )

g ene ra t eCons t ra in t s : Not ( ( t , ( c , b , mgu , e r r ) ) )
−> ( Bool ( ) , ( cs , b , mgu , <union> ( err , e r r s ) ) )
where ( cs , mgu , e r r s ) :=
<uni fy> ( [ CEq( t , Bool ( ) , ”Not arg ” ) | c ] , [ ] , mgu , [ ] ) ;
b := <map(\ (x , t ) −> (x , <app mgu> ( t , mgu) ) \)> b

gene ra t eCons t ra in t s : And( ( t1 , c1 ) , ( t2 , c2 ) )
−> ( Bool ( ) , cRes )
where cs := [<mk−err> ( Bool ( ) , t1 , ”And 1 s t arg ”) ,

<mk−err> ( Bool ( ) , t2 , ”And 2nd arg ” ) ] ;
cRes := <mergeUnify> ( [ c1 , c2 ] , c s )

gene ra t eCons t ra in t s : Add( ( t1 , c1 ) , ( t2 , c2 ) )
−> (TNum( ) , cRes )
where cs := [<mk−err> (TNum( ) , t1 , ”Add 1 s t arg ”) ,

<mk−err> (TNum( ) , t2 , ”Add 2nd arg ” ) ] ;
cRes := <mergeUnify> ( [ c1 , c2 ] , c s )

gene ra t eCons t ra in t s : Gt ( ( t1 , c1 ) , ( t2 , c2 ) )
−> ( Bool ( ) , cRes )
where cs := [<mk−err> (TNum( ) , t1 , ”Gt 1 s t arg ”) ,

<mk−err> (TNum( ) , t2 , ”Gt 2nd arg ” ) ] ;
cRes := <mergeUnify> ( [ c1 , c2 ] , c s )

gene ra t eCons t ra in t s :
Cond ( ( tCond , cCond ) , ( tThen , cThen ) , ( tElse , cE l se ) )
−> ( tRes , cRes )
where c1 := <mk−err> ( Bool ( ) , tCond , ” cond i t i on o f I f ” ) ;

c2 := <mk−err> ( tThen , tElse , ”branch o f I f ” ) ;
cRes := <mergeUnify> ( [ cCond , cThen , cE l se ] , [ c1 , c2 ] ) ;
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tRes := <app mgu> ( tThen , <mgu> cRes )

gene ra t eCons t ra in t s : Var ( x ) −> ( ty , ( [ ] , [ ( x , ty ) ] , [ ] , [ ] ) )
where ty := TVar(<newname> ”T”)

gene ra t eCons t ra in t s : App( ( t1 , c1 ) , ( t2 , c2 ) ) −> ( tRes , cRes )
where t := TVar(<newname> ”T” ) ;

cs := [<mk−err> ( t1 , Function ( t2 , t ) , ” a p p l i c a t i o n ” ) ] ;
cRes := <mergeUnify> ( [ c1 , c2 ] , c s ) ;
tRes := <app mgu> ( t , <mgu> cRes )

gene ra t eCons t ra in t s : Abs (x , t1 , ( t2 , c ) )
−> ( Function ( t1 , t2 ) , cRes )
where cRes := <mergeUnify> ( [ c ] , [ ] , (x , t1 ) ) ;

t1 := <app mgu> ( t1 , <mgu> cRes ) ;
t2 := <app mgu> ( t2 , <mgu> cRes )

gene ra t eCons t ra in t s : Fix (x , t1 , ( t2 , c ) ) −> ( t1 , cRes )
where cRes := <mergeUnify> ( [ c ] , [ ] , (x , t1 ) ) ;

t1 := <app mgu> ( t1 , <mgu> cRes )

gene ra t eCons t ra in t s : Let (x , t , ( t1 , c1 ) , ( t2 , c2 ) ) −> ( t2 , cRes )
where cs := [<mk−err> ( t , t1 , ” b inding o f Let ” ) ] ;

cRes := <mergeUnify> ( [ c1 , c2 ] , cs , (x , t ) ) ;
t2 := <app mgu> ( t2 , <mgu> cRes )

un i fy : ( [ CEq( t , t , ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , e r r s ) // t r i v i a l

un i fy : ( [ CEq( Function ( t1 , t1 ) , Function ( t2 , t2 ) , e r r ) | cs ] ,
mCs, mgu , e r r s )

−> <uni fy> ( cs , mCs, mgu , e r r s ) // decompose
where cs := <concat> [ [ CEq( t1 , t2 , e r r ) , CEq( t1 , t2 , e r r ) ] , c s ]

un i fy : ( [ CEq( Bool ( ) , Function ( , ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] ) // c l a sh

un i fy : ( [ CEq( Function ( , ) , Bool ( ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )

un i fy : ( [ CEq(TNum( ) , Bool ( ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )

un i fy : ( [ CEq( Bool ( ) , TNum( ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )

un i fy : ( [ CEq( Function ( , ) , TNum( ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )

un i fy : ( [ CEq(TNum( ) , Function ( , ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )

un i fy : ( [ c@CEq(TVar( x ) , TVar( y ) , e r r ) | cs ] , mCs, mgu , e r r s )
−> <uni fy> ( cs , [ c |mCs] , mgu , e r r s ) // skip , f o r in t e rmed ia t e

un i fy : ( [ CEq( t , TVar( x ) , e r r ) | cs ] , mCs, mgu , e r r s ) // o r i e n t
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−> <uni fy> ( [ CEq(TVar( x ) , t , e r r ) | cs ] , mCs, mgu , e r r s )

un i fy : ( [ CEq(TVar( x ) , t , e r r ) | cs ] , mCs, mgu , e r r s )
−> < i f <occurs> (x , t ) // v a r i a b l e e l i m i n a t i o n

then <uni fy> ( cs , mCs, mgu , [ e r r | e r r s ] )
e l s e <uni fy> ( cs , mCs, mgu , e r r s )

end>
where cs := <map(\ CEq( t1 , t2 , e r r )

−> CEq(<tSubst> (x , t1 , t ) ,
<tSubst> (x , t2 , t ) , e r r ) \)> cs ;

mCs := <map(\ CEq( t1 , t2 , e r r )
−> CEq(<tSubst> (x , t1 , t ) ,

<tSubst> (x , t2 , t ) , e r r ) \)> mCs;
mgu1 := <map(\ (y , t1)−> (y , <tSubst> (x , t1 , t ) ) \)> mgu ;
mgu := [ ( x , t ) |mgu1 ]

un i fy : ( [ ] , mCs, mgu , e r r s ) −> (mCs, mgu, e r r s )

// l i s t , l i s t −> r e s u l t S e t
mergeUnify : ( c , c s ) −> ( c o n s t r a i n t s , b indings , mgu , e r r s )

where b ind ings := < f i l t e r −bind ings ; f l a t t e n− l i s t ; bUnion> c ;
c o n s t r a i n t s := <conc> ( cs , < f i l t e r −bind ings ;

mk−i s e c t C a l l L i s t ; map( i s e c t C o n s t r a i n t s ) ; f l a t t e n− l i s t > c ) ;
e r r o r s := < f i l t e r −e r r s ; f l a t t e n− l i s t > c ;
( c o n s t r a i n t s , mgu , e r r s ) :=
<uni fy> ( c o n s t r a i n t s , [ ] , [ ] , e r r o r s ) ;

b ind ings :=
<map(\ (x , t ) −> (x , <app mgu> ( t , mgu) ) \)> bind ings

// l i s t , l i s t , ( var , type ) −> r e s u l t S e t
mergeUnify : ( c , cs , (x , t ) )
−> ( c o n s t r a i n t s , b indings , mgu , e r r s )
where cNew := ( [ ] , [ ( x , t ) ] , [ ] , [ ] ) ;

c := [ cNew | c ] ;
b ind ings := < f i l t e r −bind ings ; f l a t t e n− l i s t ; bUnion> c ;
b ind ings := <remove−a l l ( ? ( x , ))> bind ings ;
c o n s t r a i n t s := <conc> ( cs , < f i l t e r −bind ings ;

mk−i s e c t C a l l L i s t ; map( i s e c t C o n s t r a i n t s ) ; f l a t t e n− l i s t > c ) ;
e r r o r s := < f i l t e r −e r r s ; f l a t t e n− l i s t > c ;
( c o n s t r a i n t s , mgu , e r r s ) :=
<uni fy> ( c o n s t r a i n t s , [ ] , [ ] , e r r o r s ) ;

b ind ings :=
<map(\ (x , t ) −> (x , <app mgu> ( t , mgu) ) \)> bind ings
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