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Abstract

XSLT is a language for defining transformations between XML documents. Our goal is to statically know
the structure of output documents resulting from such transformations. To this end, we develop a static
analysis. Following the concept of abstract interpretation, our analysis is based on a concrete interpreter
for a large fragment of XSLT 1.0 and XPath 1.0, which we then modify to work with abstractions of
the involved data structures. Thus, we approximate the result of a given XSLT transformation without
knowing concrete input documents.

Since the abstractions have to be defined in terms of complete lattices in order to apply abstract
interpretation, we define and implement abstractions fulfilling this property for XPath values, XML nodes
and lists of XML nodes. An evaluation shows that these abstractions are expressive enough to encode
some important properties of the structure of XML documents. We allow the use of a user-defined
recursion limit to ensure termination of our analysis in the presence of recursive template invocations.
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1 Introduction

The eXtensible Markup Language (XML) is used in a wide variety of contexts for storing, exchanging
and processing structured data. Because different applications require different formats, transforming
XML documents from one structure into another is important, and XSLT is a language that is specifically
designed for that purpose.

As depicted in Figure 1.1, the task of an XSLT processor (or interpreter1) is to process an input docu-
ment according to the rules defined in a given XSLT stylesheet and produce an output document.

XSLT Stylesheet

Input Document

XML Tree

Output Document

XML Tree

XSLT

Processor/Interpreter

Figure 1.1: Schematic visualization of XSLT processing

Such an output document is usually required to have a specific structure, also called schema, which is
defined either informally by the application that will deal with the data, or formally by a Document Type
Definition (DTD) or an XML Schema Definition (XSD). Since XSLT works in a way that is independent
of such schema definitions, results of XSLT transformations do not necessarily adhere to the expected or
required schema. Therefore, static analysis of XSLT stylesheets with the aim of making statements about
the output schema without knowing concrete input documents is useful.

This thesis explores the feasibility of using abstract interpretation to approach this goal: We first imple-
ment an XSLT processor that transforms concrete inputs, and in a second step introduce abstractions of
the involved data structures, modifying the interpreter in such a way that it produces an abstract result
from an abstract input. Such an abstract input can represent the “set of all possible XML documents”, and
the result then describes the structure of a subset of documents that can result from a given stylesheet.

As abstract interpretation uses abstractions based on the mathematical concept of complete lattices,
we can not use existing XML schema definition formats such as DTDs directly. Instead, a large part of
our work deals with the definition and implementation of an abstract domain interface that encodes the
ways in which the abstract interpreter may operate on the aforementioned abstractions.

As far as the scope of this thesis is concerned, we aim to support a subset of XSLT 1.0 that is suffi-
ciently rich in features that our approach can be tested at least with some publicly available “real-world”
transformations. Although more recent versions of the XSLT standard exist, we decided to restrict our
attention to XSLT 1.0 for the following reasons:

• Later versions introduced substantially more complicated features and we wanted to keep the
implementation as simple as possible in order to explore the feasibility of abstract interpretation.

• XSLT 1.0 is still actively used because all major web browsers support it natively for client-side
processing. Later versions of XSLT, however, are not supported by any browser [1].

1 We will use the terms processor and interpreter interchangeably. The former is the usual term in the context of XSLT, the
latter becomes more fitting when we talk about abstract interpretation.
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While the performance of our implementation is generally not among our objectives, we will give
details about an optimization that increases the performance of our analysis for some inputs, thus im-
proving its usability.

The rest of this thesis is structured as follows: Chapter 2 introduces XSLT and the closely related XPath
language, as well as the concepts of abstract interpration. Chapter 3 presents our implementation of an
XSLT processor to be used with concrete input documents. Based on this concrete interpreter, Chapter 4
discusses our implementation of an abstract interpreter. In Chapter 5 we evaluate our implementation
by demonstrating analysis results of some real-world transformations in addition to smaller test cases.
Finally, Chapter 6 discusses other work related to static analysis of XML transformations.
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2 Background

This chapter gives some background information that is necessary to understand abstract interpretation
in the context of XSLT. First, we give an introduction into XSLT as well as XPath, which is closely re-
lated. After that, the essentials of abstract interpretation are covered, as far as they are mandatory to
understand the rest of this thesis.

2.1 XSLT and XPath

XSLT is the abbreviated name for eX tensible S tylesheet Language: Transformations and it was developed
and specified by the World Wide Web Consortium (W3C) as part of a wider set of technologies concerned
with styling and transforming XML documents, called XSL [2, 3]. XSLT is designed to transform one
XML document into another, with the original intention that the output document is more suitable for
presentation (e.g. (X)HTML) than the source document, but this does not have to be the case. In many
cases, XSLT is also used to convert between different XML-based formats from the same application
domain, e.g. office documents or pieces of music, or even between different versions or variations of the
same format (cf. the collection of various stylesheets presented in Section 5.2).

2.1.1 XML

Because XSLT transformations deal with XML data and are even written as XML documents themselves,
some understanding of XML is required, which shall be provided in this brief section.1

XML documents represent a tree of nodes. The root of this tree (root node) is not directly visible in
the textual representation, but rather describes the document as a whole. The root node has exactly
one child, which is an element node (actually there can also be a number of processing instructions and
comments, but our implementation does not support this). Element nodes have a name as well as an
arbitrary number of children and attributes (elements correspond to tags in the textual representation).
An element’s child can either be another element, a text node, a comment node, or a processing instruction
node. For simplicity, we do not support processing instructions at all, neither do we support namespaces
– which are prefixes of the names of elements and attributes – with the exception of the xls namespace
in stylesheets, which is needed to distinguish between XSLT instructions and literal output elements.

As we are mainly interested in the logical tree representation of XML documents, we do not deal with
specifics of the textual representation, such as input encodings, CDATA-sections, whitespace handling
and special character entities, which means that special characters such as ‘<’ and ‘>’ experience no
special treatment in our implementation and could be used within text nodes, for example.

The following listing shows the textual representation of a simple XML document containing elements
(catalog, cd), attributes (artist, year) and text nodes (everything in between <cd>...</cd>):

1 <catalog>

2 <cd artist="Gary Moore" year="1990">Still got the blues</cd>

3 <cd artist="Eros Ramazotti" year="1997">Eros</cd>

4 <cd artist="Bee Gees" year="1998">One night only</cd>

5 </catalog>

Listing 2.1: Simple XML document with elements, attributes and text nodes2

1 In this thesis we use the terms as they are used in the XPath 1.0 specification [4, Section 5]. In later versions as well as
in the official XML document object model (DOM) some names differ slightly.

2 This example is inspired by http://www.w3schools.com/xml/cd_catalog.xml – accessed 2015-01-07
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The XPath specification also defines an order on the nodes in an XML document: The document order
is the order in which nodes appear in the textual representation of the document, which can be seen as
a depth-first ordering of the XML tree.

2.1.2 XSLT Stylesheets

As already mentioned and apparent from Listing 2.2, XSLT stylesheet definitions are written using XML
themselves. They consist of a number of template rules, also called just templates, that are used to
transform a single input node into a sequence of output nodes.
1 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

2 <xsl:template match="/">

3 <html>

4 <body>

5 <h2>Available CDs</h2>

6 <ul>

7 <xsl:apply-templates select="catalog/cd"/>

8 </ul>

9 </body>

10 </html>

11 </xsl:template>

12 <xsl:template match="cd">

13 <li>

14 <b><xsl:value-of select="text()"/></b> by <xsl:value-of select="@artist"/>

15 </li>

16 </xsl:template>

17 </xsl:stylesheet>

Listing 2.2: Simple XSLT stylesheet applicable to the document in Listing 2.1

Template rules are either invoked directly by name or selected by a process called matching where for
a given input node a template is chosen that fits that node best (details of this process are described in
Section 2.1.4). When a template has been selected, it is subsequently instantiated for the current input
node, which means that the content of the template is evaluated with respect to the input node, which
is then part of the evaluation context.

The content of a template is a mix of literal output nodes and elements from the XSLT namespace3 (e.g.
<xsl:value-of>), which we will be calling instructions. While we refer to the XSLT specification [3] for
a complete list of possible instructions, those instructions that are supported in our implementation are
explained in Section 3.3.

Each instruction can generate a sequence of XML nodes and may contain invocations of other templates
(again, either by name using <xsl:call-template> or by matching using <xsl:apply-templates>),
which are then instantiated in turn and the results are inserted at the position of the invocation.

The evaluation of an XSLT stylesheet starts with the root node of the input document: A matching
template rule is searched for that node and the resulting template is instantiated with the root node as
the context node. The output of that template must be a single element node (with arbitrary attributes
and children) because it will be made the (only) child of the root node that constitutes the output
document of the transformation.

If no user-defined template matches the root node, one of the built-in template rules is used [3, Section
5.8]: It recursively applies matching templates on the input’s children if the input is the root node or an
element. Other built-in rules are defined to copy text nodes as well as the values of attribute nodes to
the output, and to ignore comments (and processing instructions). Because of the built-in rules, it can
never happen that no rule matches a given node.
3 That namespace has the URI http://www.w3.org/1999/XSL/Transform. Though any prefix can be associated with this

namespace in a stylesheet definition, usually the xsl prefix is used for referring to elements within that namespace. We
follow this practice.

8

http://www.w3.org/1999/XSL/Transform


In the example presented in Listing 2.2, the first template matches the root node and generates an
XHTML page as a result. Inside the <ul> element, all <cd> elements from the input are selected and a
matching template is instantiated for each of those. The template rule that matches those elements will
be the second one, which outputs a list item for each of the <cd> elements, presenting some information
about that CD.

1 <html>

2 <body>

3 <h2>Available CDs</h2>

4 <ul>

5 <li><b>Still got the blues</b> by Gary Moore</li>

6 <li><b>Eros</b> by Eros Ramazotti</li>

7 <li><b>One night only</b> by Bee Gees</li>

8 </ul>

9 </body>

10 </html>

Listing 2.3: XHTML output of the transformation in Listing 2.2

In this case, the output is an XHTML document that can be viewed in a web browser, but the result
could also be in any other XML-based format. XSLT even allows the resulting document to be in plain
text format [3, Section 16], but for the purpose of our work we only consider XML output.

2.1.3 XPath

XPath [4] is another part of XSL and though its name-giving purpose is to describe paths in XML doc-
uments, it is used in various places in XSLT to express conditions and more general calculations and
computations involving strings, numbers, boolean values and (sets of) XML nodes.

In contrast to XSLT, the syntax of XPath is not based on XML. Instead, XPath is an expression-oriented
language, which is embedded into XSLT stylesheets in the form of attribute values. A simplified grammar
of XPath expressions is depicted in Figure 2.1 and we refer to the XPath specification for a precise formal
definition [4, Sections 2 and 3].

〈expr〉 ::= 〈expr〉 ‘+’ 〈expr〉 | 〈expr〉 ‘-’ 〈expr〉 | ‘-’ 〈expr〉
| 〈expr〉 ‘*’ 〈expr〉 | 〈expr〉 ‘div’ 〈expr〉 | 〈expr〉 ‘mod’ 〈expr〉
| 〈expr〉 〈rel-op〉 〈expr〉 | 〈expr〉 ‘and’ 〈expr〉 | 〈expr〉 ‘or’ 〈expr〉 | 〈expr〉 ‘|’ 〈expr〉
| 〈string-literal〉 | 〈number-literal〉 | 〈function-call〉 | 〈variable-reference〉 | 〈location-path〉

〈rel-op〉 ::= ‘=’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

〈function-call〉 ::= 〈identifier〉 ‘(’ ( 〈expr〉 (‘,’ 〈expr〉)* )? ‘)’

〈variable-reference〉 ::= ‘$’ 〈identifier〉

〈location-path〉 ::= ... explained below ...

Figure 2.1: Simplified XPath expression grammar

XPath has string and number literals (instead of boolean literals, the parameter-less functions true()
and false() are used), operators to combine them, and predefined functions that allow more complex
operations, for example data type conversion (number(...), etc.) or string manipulation (concat(...),
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substring(...), etc). There is no way to define custom functions, but the specification allows
implementation-defined extension functions.4

Variable references can be used to refer to the value of variables, but the assignment of values to vari-
ables is only possible outside of XPath (using the <xsl:variable> instruction or template parameters).
The definition and usage of variables in XSLT/XPath follows static scoping rules.

The evaluation of XPath expressions is basically side-effect free, but because XPath is not statically
typed, there is the possibility of run-time type errors, although most operations just convert their input
to the required data type. Apart from run-time errors, every XPath expression evaluates to a result of one
of the following data types [2]: String (a sequence of unicode characters), Number (a double-precision
floating point number as defined in IEEE 754), Boolean (true or false) or Node-set (an ordered set of
nodes in the source tree). There is one additional data type called Result Tree Fragment that is not
defined by XPath itself, but by XSLT. However, a Result Tree Fragment behaves mostly like a node-set
containing a single root node5 , with some restrictions on the permitted operations [3, Section 11.1]. For
this reason, in our implementation we can treat Result Tree Fragments as if they were node-sets, making
the simplifying assumption that the prohibited operations are never used.

The distinctive syntactical feature of XPath is the ability to use (location) path expressions in order
to obtain a set of XML nodes from the input document [4, Section 2]. For example, a location path
expression might look like the one in Listing 2.4, that, when applied to the document in Listing 2.1,
selects the ‘year’ attributes of all <cd> elements.

/child::catalog/child::cd/attribute::year

Listing 2.4: Location path that selects the ‘year’ attributes in the example above

Location paths are built from location steps, separated by the ‘/’ character (the example path is made
of three such steps). Every step then contains an axis-specifier and a node test seperated by ‘::’, as well
as (optionally) a number of predicates.

• The axis specifies the relationship between the nodes selected by the current step and the ones
selected by the previous step, for example whether we are interested in children, descendants,
parents or attributes of the nodes selected in the preceding step. There is a total of 13 possible
axes.

• The node test specifies the type and (optionally) name of the selected nodes. For example,
child::text() selects all children that are text nodes. It is noteworthy that children and at-
tributes are distinguished by their axis, not by their type, so child::* selects all child nodes while
attribute::* selects all attributes (the ‘*’ character is used as a wildcard to match any name).
The node test node() is true for all nodes.

• A predicate6, syntactically specified in square brackets at the end of a step, limits the selection to
only a subset using an arbitrary boolean XPath expression. If that expression evaluates to true, a
given node is included in the result. If it evaluates to false, it is not included.

If a path starts with the ‘/’ character, it is said to be absolute and the evaluation of the path starts with
the root node of the input document. The evaluation of paths that are not absolute (i.e. relative) starts
with the current context node.

There are a number of syntactic abbreviations for commonly used location steps:

4 Extensions such as EXSLT (http://exslt.org) define some commonly used extra functionality and are implemented by
various XSLT processors, but these exceed the scope of this work.

5 In the case of a Result Tree Fragment, the root node may have arbitrary children instead of only a single element child,
because such a root node represents not a complete document, but an arbitrary fragment of an XML document.

6 Predicates are only mentioned here for the sake of completeness. We decided to skip them in our implementation in
order to simplify both XPath evaluation and template pattern matching (for the latter, cf. Section 2.1.4).
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• When the axis specifier is left out, the child axis is used implicitly.

• The ‘@’ prefix can be used as an abbreviation for the attribute axis.

• ‘//’ is a shorthand for /descendant-or-self::node()/ and selects the node itself and all of its
descendants.

• The step ‘.’ is short for self::node().

• The step ‘..’ is short for parent::node().

• In the position of a predicate, a numeric literal can be used instead of a boolean expression. In
that case, it is equivalent to the expression position() = <num>, which checks the current node’s
position among the selected nodes.

The path from Listing 2.4 can therefore also be written as /catalog/cd/@year. We will prefer this short
notation in the rest of this thesis.

When a location path is evaluated, the result will be a node-set containing all the selected nodes. Two
node-sets can be joined with the union operator ‘|’, but every source tree node will appear at most once
in the result, as it is a set. Additionally, because in various places node-sets need to be traversed in
document order, node-sets can be regarded as ordered sets, although this is not explicitly prescribed by
the XPath specification.

2.1.4 Patterns and Matching

XSLT template rules identify the nodes to which they apply by using patterns. Syntactically, patterns
form a subset of XPath location paths, which is evidence of how closely related these two technologies
are. In patterns, steps may only use the child and attribute axes. Additionally, the ‘//’ operator is
allowed (as noted above, this is a shorthand for /descendant-or-self::node()/, but other uses of the
descendant-or-self axis are not allowed in patterns).

According to the specification, “a pattern is defined to match a node if and only if there is possible
context such that when the pattern is evaluated as an expression with that context, the node is a member
of the resulting node-set” [3, Section 5.2].

This means that the location path in Listing 2.4, which is also a valid pattern, matches any node that
would be in the resulting node-set when that path were evaluated (because it is an absolute path, the
context node does not matter here), i.e. it matches any node that is an attribute named ‘category’ and a
child of the ‘item’ element, which must itself be a child of the root node (the only child, to be precise,
because the root node can only have one element child).

The intuitive way to understand a pattern and check whether it matches a given node is to evaluate
the steps from right to left: The rightmost step must match the given node and the parent of that node
(or any ancestor in case of the ‘//’ operator) must match the rest of the pattern.

Multiple patterns can also be combined with the union operator ‘|’. A template rule where this is the
case is treated as if it was defined multiple times, once for each single pattern. This effectively means
that the template matches any of the given patterns.

Furthermore, template rule definitions can specify a mode, so that there can be different sets of rule
definitions for the same patterns. When templates are applied, one can select one of those modes with the
optional mode attribute in the <xsl:apply-templates> instruction. Whenever this attribute is missing,
the default (“empty”) mode is used.

When multiple template rules match a given node (which is usually the case because the built-in rules
already match any node), an order is defined for choosing the template that will actually be instantiated
[3, Section 5.5]:7

7 The specification states this as a matter of eliminating all templates with lower precedence/priority and allows, but does
not require, to signal an error when multiple templates remain after that elimination.
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• The templates are first ordered by import precedence, so templates with higher import precedence
are preferred over templates with lower import precedence. We do not support imports, but built-
in templates are defined to have lower import precedence than user-defined ones, so this ensures
that the latter are preferred.

• Templates with equal import precedence are then ordered by their priority. Custom priorities can
be assigned, but by default the priority is calculated from the specificity of the pattern, in such a
way that more specific patterns are assigned a higher priority.

• If this still leaves templates with equal import precedence and equal priority, the templates are
ordered by the position of their definition in the stylesheet, in such a way that the template is
preferred that is defined last.

These rules in conjunction with the fact, that the built-in templates already cover all possible nodes
(in every possible mode), ensure that exactly one template is chosen whenever a matching template for
any given input node is requested.

2.2 Abstract Interpretation

Abstract interpretation is a theory and formal method of static analysis of computer programs. It was
first introduced by Patrick Cousot and Radhia Cousot in 1977 [5].

Static analysis in general tries to make statements about the execution behavior (semantics) of a
given program without actually executing it. There are various ways to achieve this goal, and abstract
interpretation approaches it by approximating the execution using abstractions of the program input,
output and intermediate states. This means that instead of dealing with concrete objects, an abstract
interpreter uses abstract objects that are modeled in such a way that they represent those properties of
the concrete objects that one is interested in.

For example, when analyzing a program that deals with integer computations, we might only be
interested in the parity of the values (whether a number is even or odd). Therefore, instead of concrete
integers from the domain Z, we are now using abstract objects from the domain P = {even,odd}. Given
a program that takes any integer as an input, multiplies it by 2 and returns the result, a suitable abstract
interpreter that uses a domain like P could statically determine that this program will always return an
even number. However, if the interpreter does not know about a program whether its result will be even
or odd, it can not express such an “unknown” value within P. This reveals that P is not actually sufficient
as a domain and we need to extend it to be a complete lattice, which is the formal mathematical structure
that the concept of abstract interpretation is based on.

A complete lattice is a set L with a partial ordering ≤, such that all subsets have least upper bounds as
well as greatest lower bounds. For any two elements a, b ∈ L, we write a t b for the least upper bound
(also called supremum or join) of a and b, and likewise a u b for the greatest lower bound (also called
infimum or meet). The supremum of the entire set >=

⊔

L gives us the greatest element, also called top
element. The infimum of the entire set ⊥=

⊔

L is the least element, also called bottom element.
Our domain P can be turned into a complete lattice by adding top and bottom elements, e.g. > =

any = event odd and ⊥ = none = evenu odd. The top element now represents a number that is even
or odd, and this is exactly what we were missing to express a number with unknown parity. The bottom
element would represent any number that is both even and odd, but no such number exists. Hence, ⊥ as
the result of an abstract computation signifies that any corresponding concrete computation would have
had no result at all, for instance because of an error or exception.

For such an abstract domain, we can also define a mapping that maps each abstract object to a set of
concrete objects. This mapping is commonly known as the concretization function γ [6, Section 4.3], and
we mention this because it is helpful to think of abstract objects as the sets of concrete objects that they
represent. Figure 2.2 visualizes the concretization function of our (extended) domain P.
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any

even odd

none

Z

{...,−4,−2, 0,2, 4, ...} {...,−3,−1, 1,3, 5, ...}

;

≤ ≥

≥ ≤

⊆ ⊇

⊇ ⊆

γ

Figure 2.2: Lattice P with concretization function γ

It is noteworthy that the structure on the right also forms a complete lattice with the subset relation ⊆
as partial ordering, and γ upholds the partial ordering in such a way that if a ≤ b then γ(a) ⊆ γ(b) for
any a, b ∈ P. The partial ordering also conveys a notion of precision: Greater elements in the lattice are
less precise, because they represent a larger set of concrete objects. Consequently, the greatest element
> is the least precise, which is also apparent from the fact that it represents the entire set of possible
concrete values.

In order to be useful, the approximation that is computed by an abstract interpreter must be correct,
i.e. given some abstract object a as input, the result of every run of the concrete program on any concrete
input c ∈ γ(a) must be included in the abstract result. On the other hand, the abstract result will most
probably be an over-approximation of the set of concrete results that are actually possible.

The precision of the abstract interpretation depends on the granularity of the abstract domain: If the
domain is too coarse, it might not be able to convey the amount of information that one is interested
in. However, if the domain is too fine-grained, the analysis might be too expensive or even impossible
to compute. For example, one could try to use the power set P (Z) as an abstract domain for Z, but it
contains infinite sets that are not even representable within software that has only a finite amount of
memory available.

Multiple abstract domains like P can be combined to form new abstractions [6, Chapter 4.4]: Different
abstractions of the same concrete data can be combined to obtain a more useful and precise abstraction
of the concrete domain. For example, for Z one could also use an abstract domain that ignores everything
but the signs of the values. Then, this domain could be combined with P in order to analyze both the signs
and the parities in a single step. Moreover, another kind of combination allows multiple abstractions of
individual components of a composite structure to be combined in order to obtain an analysis for the
whole structure. These techniques enable us to build complex abstract domains from simple ones in a
way that does not greatly complicate reasoning about them.

The last issue we want to consider is that of control flow in the analyzed program. What happens in
the presence of conditional branches, or even loops or recursive function calls? The former can be dealt
with easily by analyzing every possible branch independently and then joining the result. In the case of
P, if we do not know which branch will be taken, and the first one yields an even result while the other
returns an odd one, the result will be >. Loops and recursion, however, are more difficult because they
may introduce cases where our analysis is not guaranteed to terminate any more. For instance, consider
the domain P again and a program that contains a function that calls itself with doubled input until the
value is greater than 10, as shown in Listing 2.5.

1 def f(x: Int): Int = {

2 if (x > 10) x

3 else f(x * 2)

4 }

Listing 2.5: Example program with recursion (Scala syntax)

13



Furthermore, assume that this function is called in a context where x is known to be odd. The analysis
does not know which branch will be taken, because it does not know whether x > 10 holds, so it has
to evaluate both branches. The first one will result in an odd value, because x is directly returned. The
second one will result in a recursive call where x is now known to be even, but it is still impossible for
the analysis to find out whether x is greater than 10, so both possibilities have to be evaluated again.
Using a naive approach, this will lead to infinite recursion in the abstract interpreter.

One solution to this problem is to search for a fixed point for the abstract value of x, i.e. a value
that does not change after repeated application of f. In this case, the abstract interpreter should find
out that after the first recursive call, the input to f will always be even and therefore the output will
always be even. So the result of the outermost call to f will be even or odd, which is expressed as
even t odd = any = >. As > is also the least fixed point in this case, the result can not be any more
precise than this, but it is still better than a non-terminating analysis.

However, when the function call is analyzed in a context where x is known to be even, for the reasons
stated above the analysis can actually conclude that the result will also be even.
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3 Implementation of a Concrete Interpreter

As a first step of our work, we implemented an XSLT processor that transforms concrete XML documents
with the intention that we would understand the details of the specification and the requirements that
it imposes on an implementation. It was also meant to serve as a basis for the abstract interpreter, if
possible (cf. next chapter).

Our implementation was done in Scala and we made heavy use of algebraic data types (e.g. case
classes) and pattern matching. We also tried to maintain a functional programming style, preferring
recursion over loops and immutable variables and data structures over mutable ones.

First, we will now cover our implementation of the object model of the data that we are dealing with:
XML documents, or rather the nodes that they consist of. We will then continue with the parsing and
evaluation of XPath expressions and finally we will put it all together and see how XSLT stylesheets are
parsed and processed in our implementation.

3.1 Parsing and Representing XML Documents

Because XML documents are used as input and output of our XSLT processor, we need a way to represent
and manipulate those documents in Scala. Fortunately, there is the scala-xml library1 that is capable
of parsing XML documents and even allows to use XML literals directly inside of Scala source code.
However, we did not want to use it as our XML representation directly, as the full XML standard is quite
complex and we do not need many of the more arcane features.

Therefore we designed our own XML node classes for representing XML data in a simple way that is
fully under our control. We ended up with the following class hierarchy that closely resembles what we
presented in Section 2.1.1:

abstract class XMLNode extends Ordered[XMLNode] { /* ... */ }

case class XMLRoot(children: List[XMLNode]) extends XMLNode { /* ... */ }

case class XMLElement(name: String,

attributes: MutableList[XMLAttribute],

children: MutableList[XMLNode],

var parent: XMLNode) extends XMLNode { /* ... */ }

case class XMLAttribute(name: String,

value: String,

var parent: XMLNode) extends XMLNode { /* ... */ }

case class XMLTextNode(value: String,

var parent: XMLNode) extends XMLNode { /* ... */ }

case class XMLComment(value: String,

var parent: XMLNode) extends XMLNode { /* ... */ }

Figure 3.1: Class hierarchy of the XML data representation

We provide the xml.XMLParser class to transform a document from scala-xml’s representation into
our own.
1 It was originally part of the Scala distribution but has become a separate library as of Scala 2.11 and is now available via
https://github.com/scala/scala-xml – accessed 2015-01-08.
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The following list presents some observations about our implementation, supplementing Figure 3.1:

• We use a mutable data structure because we need to model the recursive relationship between
nodes: Element nodes need to know their children and attributes, and every node (except the
root) needs to know its parent. This is required because the XML tree needs to be traversed in both
directions, upwards and downwards. Therefore, the parent field of a newly created node will be
null initially. We call such a node that is not a root node and does not have an associated parent
node (and therefore no associated root node) a fragment. Fragments appear in XSLT during the
building up of the output document, because the document is generated bottom-up and the root
node is created last.

• We allow root nodes to have arbitrary children instead of just a single element child. This is
required to support Result Tree Fragments. (Note that Result Tree Fragments are not fragments
in the sense of the definition above. They do represent only a part of a document, but they are
wrapped in a “synthetic” root node.) For root nodes that represent complete XML documents, the
list of children will always consist of just a single element node.

• We implemented the Ordered trait for our nodes, in such a way that two nodes are compared
regarding their position in the document order. Positional comparison of two nodes is only possible
if the nodes are not fragments, because fragments have no relationship between each other as they
do not belong to the same document – in fact, they do not belong to any document (yet).

• Relatedly, node equality is implemented in two different ways, depending on whether the node is
a fragment or not: If both nodes are not fragments and belong to the same document (i.e. have the
same root node), they are compared using reference equality. Fragment nodes are compared using
structural equality, ignoring the parent to prevent infinite recursion. It would be wrong to compare
non-fragment nodes structurally, because two nodes with the same structure but from different
positions in the same document should not be considered equal.

• For every node we provide methods to obtain not only its root, but also the lists of descendants
and ancestors, as well as the string-value, which is defined by the XPath specification for each node
type [4, Section 5].

• Every node has a copymethod to create a copy of itself (and of all of its attributes and descendants
in the case of an element node). It is implemented in such a way that it ignores the node’s parent
and thus turns the copy into a fragment, which can then be inserted into the output document of a
transformation.

• Adjacent text nodes are merged into a single text node whenever they are added as children to an
element, because this is required by the XSLT specification [3, Section 7.2].

3.2 XPath Evaluation

3.2.1 Syntax

Since XPath is a separate language from XML and defines its own grammar, we needed a way to parse
XPath expressions in order to evaluate them.

Similar to the way we treated XML, we found an existing library, Jaxen2, that is able to parse XPath 1.0
expressions, but transform the result into an AST (abstract syntax tree) model that we defined ourselves.
This transformation is implemented in the XPathParser class. We did not use the Jaxen AST, because

2 See http://jaxen.codehaus.org – accessed 2015-01-08
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Jaxen is a Java library that was built without Scala in mind and we did not want to give up the ability to
pattern match on our syntax trees.

The base class of our AST model is called XPathExpr and various AST node types extend this class –
roughly one for each case of the 〈expr〉 production rule in Figure 2.1.

Note that, even though we do not support some features in the interpreter, our AST supports the full
feature set of XPath 1.0.3

3.2.2 Data Representation

Before we can start to look at the semantics of XPath evaluation, we need a way to represent the result of
such an evaluation. We defined the type XPathValue as an algebraic data type with four possible cases,
one for each XPath type. This definition is shown in Figure 3.2.

abstract class XPathValue { /* ... */ }

case class StringValue(value: String) extends XPathValue

case class NumberValue(value: Double) extends XPathValue

case class BooleanValue(value: Boolean) extends XPathValue

case class NodeSetValue(nodes: TreeSet[XMLNode]) extends XPathValue

Figure 3.2: Class hierarchy of XPath values

While string, number and boolean values are trivial, node-sets are somewhat more interesting: They
are implemented as ordered sets of XMLNodes. This way we make sure that no node is contained twice
and nodes are automatically kept in document order.

The XPathValue class also implements methods for converting between the types. How these conver-
sions work is defined by the specification of the XPath functions number(...) (conversion to number),
string(...) (conversion to string) and boolean(...) (conversion to boolean) [4, Section 4]. Conver-
sion to node-sets is not possible.

3.2.3 Semantics

The actual interpreter that implements the semantic of XPath evaluation is defined in XPathEvaluator.
It exposes one function, evaluate, which is outlined in Listing 3.2. It takes an XPath expression and
returns a XPath value. Additionally it requires an evaluation context, which is provided by the XSLT
processor. The XPathContext class is defined in Listing 3.1 and wraps four values, corresponding to the
definition found in the XPath specification [4, Section 1]:

• The current context node. This designates the node that is currently transformed by the XSLT
transformation. It is used as a starting point for evaluating relative location paths.

• The context position and context size. These refer to the list of nodes that is currently processed by
XSLT. For example, when a template is applied to all children of a node, this list contains exactly
all child nodes of the given node and the context node is one of those. The context position then is
the position of the context node in that list, and the context size is the number of nodes in the list.
Those values are needed to evaluate the functions position() and last().

3 This was necessary in order to be able to parse and analyze arbitrary XPath expressions in our evaluation of used features
in real XSLT stylesheets, cf. Section 5.2.
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• Finally, there is a set of variable bindings that are currently in scope and therefore accessible from
XPath expressions. They are stored as a mapping from variable names to XPath values.

case class XPathContext(node: XMLNode, position: Int, size: Int, variables: Map[String, XPathValue])

Listing 3.1: Definition of XPath context class

1 /** Evaluates a given XPath expression using a specified context and returns the result. */

2 def evaluate(expr: XPathExpr, ctx: XPathContext): XPathValue = expr match {

3 case PlusExpr(lhs, rhs) => NumberValue(evaluate(lhs, ctx).toNumberValue.value +

4 evaluate(rhs, ctx).toNumberValue.value)

5 /* ... several more arithmetic operators ... */

6 case RelationalExpr(lhs, rhs, relOp) =>

7 // evaluation is specified in the XPath spec section 3.4

8 BooleanValue(evaluate(lhs, ctx).compare(evaluate(rhs, ctx), relOp))

9 case StringLiteralExpr(literal) => StringValue(literal)

10 case NumLiteralExpr(num) => NumberValue(num)

11 case VariableReferenceExpr(name) => ctx.variables.get(name) match {

12 case Some(value) => value

13 case None => throw new ProcessingError(f"Variable $name is not defined")

14 }

15 case UnionExpr(lhs, rhs) => (evaluate(lhs, ctx), evaluate(rhs, ctx)) match {

16 case (NodeSetValue(left), NodeSetValue(right)) => NodeSetValue(left | right)

17 case (left, right) => throw new ProcessingError(f"Wrong types for union expression, must be node-

sets ($left | $right)")

18 }

19 case FunctionCallExpr(None, name, params) =>

20 evaluateFunctionCall(name, params.map(p => evaluate(p, ctx)), ctx)

21 case LocationPath(steps, isAbsolute) =>

22 NodeSetValue(evaluateLocationPath(ctx.node, steps, isAbsolute))

23 /* ... some more operations ... */

24 }

Listing 3.2: Evaluation function for XPath expressions

The evaluation function is a large match expression with cases for each AST node. While some cases
are left out in Listing 3.2, the most important cases are these:

• PlusExpr and other arithmetic expressions are evaluated by first evaluating their operands, con-
verting the resulting values to NumberValues and then applying the operation (e.g. addition) on the
underlying floating-point numbers. Arithmetic operations will never result in a type error, because
any operand value can be converted to a number.

• A RelationalExpr is evaluated by delegating to the compare function defined for XPathValue.

• StringLiteralExpr and NumLiteralExpr just wrap the literal value in an XPathValue.

• Variable references are looked up in the variable bindings that are contained in the context. If no
variable with the requested name is defined, an error is thrown.

• A UnionExpr is evaluated by evaluating both operands and taking the union of the containing
ordered sets, if the evaluation resulted in two NodeSetValues. If not, an error is thrown.

• A FunctionCallExpr is evaluated by delegating to the helper function evaluateFunctionCall af-
ter the parameters are evaluated. In this helper function, which is not listed here, we implemented
some, but not all of the functions defined in the Core Function Library [4, Section 4].

• A LocationPath is evaluated by delegating to another helper function, evaluateLocationPath,
and the current context node is passed as a starting node to be used for evaluating the first (i.e.
leftmost) step.
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The definition of evaluateLocationPath is shown in Listing 3.3.

1 private def evaluateLocationPath(node: XMLNode, steps: List[XPathStep], isAbsolute: Boolean):

TreeSet[XMLNode] = {

2 (steps, isAbsolute) match {

3 case (_, true) => evaluateLocationPath(node.root, steps, false) // absolute path -> handle as

relative but start with root node

4 case (Nil, false) => TreeSet(node) // no steps left -> just return input node

5 case (first :: rest, false) =>

6 val nodes: TreeSet[XMLNode] = first.axis match {

7 // "the child axis contains the children of the context node"

8 case ChildAxis => node match {

9 case XMLRoot(children) => children.to[TreeSet]

10 case XMLElement(_, _, children, _) => children.to[TreeSet]

11 case _ => TreeSet()

12 }

13 // "the descendant axis contains the descendants of the context node

14 // a descendant is a child or a child of a child and so on"

15 case DescendantAxis => node.descendants.to[TreeSet]

16 // "the attribute axis contains the attributes of the context node; the axis will be

17 // empty unless the context node is an element"

18 case AttributeAxis => node match {

19 case XMLElement(_, attrs, _, _) => TreeSet[XMLNode]() ++ attrs

20 case _ => TreeSet[XMLNode]()

21 }

22 /* ... some axes not listed ... */

23 }

24 val testedNodes = nodes.filter { n => first.test match {

25 case NameTest(Some(_), _) => throw new NotImplementedError("Prefixed names are not

implemented.")

26 case NameTest(None, "*") => XPathAxis.isPrincipalNodeType(first.axis, n)

27 case NameTest(None, testName) => XPathAxis.isPrincipalNodeType(first.axis, n) && (n match {

28 case XMLElement(name, _, _, _) => name == testName

29 case XMLAttribute(name, _, _) => name == testName

30 case _ => false

31 })

32 case TextNodeTest => n.isInstanceOf[XMLTextNode]

33 case CommentNodeTest => n.isInstanceOf[XMLComment]

34 case AllNodeTest => true

35 }}

36 if (first.predicates.nonEmpty) throw new NotImplementedError("Predicates are not supported")

37 testedNodes.flatMap { n => evaluateLocationPath(n, rest, false)}

38 }

39 }

Listing 3.3: Evaluation function for location paths

This function recursively evaluates the path from left to right. If the path is absolute, the root node
of the current context node is retrieved and evaluation continues with that node as the context node as
if the path was relative (Line 3). If the list of steps is empty, i.e. no more steps are left to evaluate, a
singleton set containing the input node is returned. This is the base case of the recursion.

The usual case – when the list is not empty – is handled as follows (Lines 5 ff.): According to the axis
of the first (i.e. leftmost) step of the remaining path, a set of nodes is selected from the current context
node, e.g. its children, descendants or attributes. This set is then filtered using the node test of the same
step.4 For every node that passes the test, the rest of the location path is recursively evaluated relative to
that node and the resulting sets are accumulated into a single set using flatMap (Line 37). So the result

4 The specification defines the notion of principal node type, which is required here: The principal node type of the
attribute and namespace axes is attribute and namespace, respectively; for all other axes, the principle node type is
element [4, Section 2.3].
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will be a single ordered set that contains all the nodes from the source document that are reachable via
the given path, relative to the context node.

3.3 XSLT Processing

As XSLT stylesheets are XML documents, we could have used the object model of scala-xml or the one
we defined in Section 3.1 to process a stylesheet in one of those representations. For the sake of under-
standability, we decided to introduce another layer of abstraction in the form of some classes that model
stylesheets (XSLTStylesheet), templates (XSLTTemplate) and instructions (XSLTInstruction) and dis-
miss the underlying XML representation. Again, we provide an XSLTParser to transfer a stylesheet from
scala-xml’s representation into our own.

The XSLTTemplate class (Figure 3.4) is very simple. It contains a sequence of instructions that
will be executed when the template is instantiated as well as a (possibly empty) set of parameter
definitions, stored as a list of pairs, where the first element is the parameter’s name and the sec-
ond is the unevaluated default value of the parameter. A list of pairs is used instead of a Map,
because the order in which the parameters are evaluated must be the one in which they are de-
fined, and an associative data structure would not maintain that order. Furthermore, we use the type
Either[XPathExpr, Seq[XSLTInstruction]] wherever we are dealing with unevaluated variable val-
ues, because those can either be declared as an XPath expression directly, or as instructions to generate
a Result Tree Fragment [3, Section 11]. Each of the template’s parameters can be overwritten when the
template is instantiated and its value must then be evaluated with respect to the current context.

1 case class XSLTTemplate(

2 content: Seq[XSLTInstruction],

3 defaultParams: List[(String, Either[XPathExpr, Seq[XSLTInstruction]])] = Nil

4 )

Listing 3.4: Definition of XSLTTemplate class

When template rules are defined, they also have a name and/or a match-clause (with optional mode).
At least one of those is required and we refer to those with a name as named templates and those with
a match-clause as matchable templates. Neither of these appear in the XSLTTemplate class, because we
delegate the management of templates, including the division into named and matchable templates, to
the XSLTStylesheet class, which is outlined in Listing 3.5.

1 class XSLTStylesheet(

2 templates: List[(XSLTTemplate, Option[String], Option[XPathExpr], Option[String])],

3 val globalVariables: List[(String, Either[XPathExpr, Seq[XSLTInstruction]])],

4 disableBuiltinTemplates: Boolean

5 ) {

6 val namedTemplates: Map[String, XSLTTemplate] = Map() ++ templates.collect {

7 case (tmpl, Some(name), _) => (name, tmpl)

8 }

9

10 val matchableTemplates: Map[Option[String], List[(LocationPath, XSLTTemplate)]] =

11 /* ... extract matchable templates for each mode, add built-in templates, and sort them ... */

12 }

Listing 3.5: Definition of XSLTStylesheet class

The constructor of the class receives a list of all template definitions in the stylesheet as tuples compris-
ing the XSLTTemplate itself, the (optional) name, the XPath expression found in the (optional) match-
clause and the (optional) match mode. The match clause must be a valid pattern, which means that it is
either a LocationPath, following the restrictions laid out in Section 2.1.4, or a UnionExpr consisting of
multiple patterns that are subsequently split into single LocationPaths.
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All named templates are then collected into the field namedTemplates. The matchable templates
are similarly extracted and – together with the built-in templates5 – put into a map that maps each
mode occurring in the stylesheet (at least the default mode, represented here as None) to a list that
contains pairs of LocationPaths and their associated templates. This list is sorted in descending order
by precedence and priority according to the rules presented in Section 2.1.4. User-defined priorities are
not supported in our implementation, hence each template is assigned its default priority.

Additionally, the XSLTStylesheet contains a list of global variable definitions that correspond to the
top-level <xsl:variable> and <xsl:param> definitions found in the original stylesheet [3, Section 11.4].

The parsed stylesheet object can now be used to transform an XML document. This is implemented in
XSLTProcessor, which constitutes the actual interpreter and is outlined in Listing 3.6.

1 def transform(sheet: XSLTStylesheet, source: XMLRoot): XMLRoot = {

2 val globalVariables = evaluateVariables(sheet, sheet.globalVariables,

3 XSLTContext(source, List(source), 1, Map(), Map()))

4 applyTemplates(sheet, List(source), None, globalVariables, Map(), Map()) match {

5 case List(elem: XMLElement) => XMLRoot(List(elem))

6 case x => throw new ProcessingError("Transformation result must be a single XMLElement")

7 }

8 }

9

10 def applyTemplates(sheet: XSLTStylesheet, sources: List[XMLNode], mode: Option[String],

globalVariables: Map[String, XPathValue], localVariables: Map[String, XPathValue], XPathValue],

params: Map[String, XPathValue]): List[XMLNode] = {

11 sources.zipWithIndex.flatMap { case (n, i) =>

12 val tmpl = chooseTemplate(sheet, n, mode)

13 val context = XSLTContext(n, sources, i + 1, globalVariables, localVariables)

14 instantiateTemplate(sheet, tmpl, context, params)

15 }

16 }

17

18 def chooseTemplate(sheet: XSLTStylesheet, node: XMLNode, mode: Option[String]): XSLTTemplate = {

19 sheet.matchableTemplates(mode).find { case (path, _) => XSLTPatternMatcher.matches(node, path) }

match {

20 case Some((_, tmpl)) => tmpl

21 case None => throw new ProcessingError(f"Found no matching template for input node ‘${XMLNode.

formatPath(node)}‘ [NOTE: this can only happen when builtin templates are disabled]")

22 }

23 }

24

25 def instantiateTemplate(sheet: XSLTStylesheet, tmpl: XSLTTemplate, context: XSLTContext, params: Map

[String, XPathValue]): List[XMLNode] = {

26 val evaluatedParams = tmpl.defaultParams.foldLeft(Map[String, XPathValue]()) {

27 case (current, (name, _)) if params.contains(name) => current + (name -> params(name))

28 case (current, (name, value)) => current + (name -> evaluateVariable(sheet, value, context.

addLocalVariables(current)))

29 }

30 processAll(sheet, tmpl.content, context.replaceLocalVariables(evaluatedParams))

31 }

32

33 def processAll(sheet: XSLTStylesheet, instructions: Seq[XSLTInstruction], context: XSLTContext):

List[XMLNode] = /* ... process each instruction in turn and collect variable definitions, so

they are available in subsequent instructions (in the same scope) ... */

34

35 def process(sheet: XSLTStylesheet, instruction: XSLTInstruction, context: XSLTContext):

36 Either[List[XMLNode], (String, XPathValue)] = /* ... match on instruction type ... */

Listing 3.6: Functions within XSLTProcessor
5 We incorporated the disableBuiltinTemplates constructor parameter here as an option to not include the built-in

templates. This can be used to simplify the results and is especially useful when we proceed to abstract interpretation.
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The entry point of the interpreter is the transform function, that takes a stylesheet definition and
a source document in the form of its root node. This root node is put in a list and – after all global
variables have been evaluated – is passed on to the applyTemplates function (Line 4). The purpose
of this function is to apply matching templates to each node in the given list, which entails selecting a
template for each node, instantiating it, and finally concatenating all results (which is implicitly done
here by flatMap).

The chooseTemplate function chooses, out of the stylesheet’s matchable templates with the correct
mode, the first one that matches the given node. The task of determining whether the location path of a
template rule matches a node is delegated to the XSLTPatternMatcher.matches function, which will be
described later.

When a template has been selected, it is instantiated using the instantiateTemplate function. The
current node as well as the position of that node in the list are passed as part of the XSLTContext,
which is very similar to the XPathContext that was already introduced.6 Template instantiation can
be parameterized, but parameters are accepted only if the template contained a default definition (for-
mal parameter) with the same name already. The actual parameter values are added to the context
after they are computed using the evaluateVariable auxiliary function, which either resorts to the
XPathEvaluator for XPath expressions or uses the processAll function for Result Tree Fragments.

The last and most important step of instantiating a template is the evaluation of the instructions in
the template (Line 30). The function processAll is used to process a sequence of instructions in a given
context by processing each instruction in turn and making sure that new variable definitions are visible
by subsequent instructions. The immutability of the context class7 ensures that variable definitions never
escape their scope.

Finally, process is responsible for the processing of a single instruction, of which the result will either
be a list of XML nodes or a new variable binding. Our implementation distinguishes the following
instruction types, which are subclasses of XSLTInstruction:

• CreateElementInstruction creates a new element in the result tree. This is used whenever a
literal result element (an element that is not from the XSLT namespace) or the <xsl:element>
instruction is encountered in the original stylesheet. It contains a name, which is an attribute value
template (i.e. it can be a mix of literal strings and XPath expressions that will be evaluated and
concatenated), and a sequence of more instructions that, when evaluated, form the attributes and
children of the element [3, Section 7.1.1 and 7.1.2].

• SetAttributeInstruction is used to add attributes to result elements and is therefore only al-
lowed in the list of child instructions in a CreateElementInstruction (or CopyInstruction).
This is used for attributes of literal result elements as well as for the <xsl:attribute> instruction.
It contains the name of the attribute (as an attribute value template) and a sequence of instruc-
tions that generate the value of the attribute. Conforming to the specification, attributes that are
added to an element after children have been added already are not allowed and are ignored.
If an attribute with the same name has already been added, it is replaced with the new one [3,
Section 7.1.3].

• CreateTextInstruction creates a new text node in the result tree. This is used whenever a
literal text node or the <xsl:text> instruction is encountered in the original stylesheet. The
text is stored as a simple string (when a text node with dynamic content should be created,
the CopyOfInstruction is used). Note that we do not handle output escaping or whitespace
stripping [3, Section 7.2].

6 An XSLT context contains the node list and not just its size, cf. [3, Section 1]. Using two separate classes also enables us
to to distinguish global and local variables in the XSLT context. We provide an auxiliary method to construct an XPath
context from an XSLT context (the other direction is not needed).

7 We provide auxiliary methods such as addLocalVariable to “modify” contexts, but these always create a new modified
context.
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• CreateCommentInstruction creates a new comment node in the result tree. This is used whenever
the <xsl:comment> instruction is encountered. It contains a sequence of other instructions that,
when evaluated, generate the content of the comment in the form of text nodes [3, Section 7.4].

• ApplyTemplatesInstruction corresponds to <xsl:apply-templates> and is used to select some
nodes from the source tree and apply matching templates to them, as implemented in the
applyTemplates function shown above. It contains an XPath expression to select the nodes (which
defaults to all children of the current template node), a mode identifier, and a set of parameters
that are passed to the template [3, Section 5.4].

• CallTemplateInstruction corresponds to <xsl:call-template name="..."> and is used to in-
stantiate one of the named templates directly [3, Section 6].

• CopyOfInstruction inserts the result of the evaluation of some XPath expression into the result
tree. If the evaluation results in a node-set, the nodes in those set are copied. Any other result is
converted to a string and inserted as a text node. Therefore, we use this instruction type not only
for <xsl:copy-of select="...">, but also for <xsl:value-of select="..."> as the latter is
equivalent to <xsl:copy-of select="string(...)">, i.e. the expression result is first converted
to a string, even if it is a node-set [3, Sections 7.6.1 and 11.3].

• CopyInstruction corresponds to <xsl:copy> and just copies the current context node, but without
its attributes or children. The attributes and children of the resulting node are generated by another
sequence of instructions that form the content of this instruction [3, Section 7.5].

• ChooseInstruction is a conditional branching instruction that contains a list of branches, each
with an XPath expression that determines the condition of that branch. The instructions of the first
branch where the condition evaluates to true are executed. An additional otherwise branch is
executed when all conditions evaluate to false. This corresponds to the <xsl:choose> instruction,
but it is also used for the more restricted <xsl:if> instruction which only allows for a single
conditional branch and no – or rather an empty – otherwise branch [3, Section 9].

• ForEachInstruction corresponds to <xsl:for-each> and iterates over a set of nodes that is se-
lected by an XPath expression. For each node in this set, the contained sequence of instructions is
executed with that node as the context node [3, Section 8].

• VariableDefinitionInstruction corresponds to <xsl:variable> and adds a new local variable
binding with a given name to the current context. The value of the variable is, as seen before, either
the evaluation result of an XPath expression or a Result Tree Fragment generated by a sequence of
instructions [3, Section 11].

We will now look at the actual implementation of only two of the more interesting instructions in
detail: The cases for CreateElementInstruction and CopyOfInstruction are shown in Listing 3.7 and
3.8 respectively, and explained below, mainly to get an impression of what kind of operations are needed
to implement the intended semantics.

In order to create an element, the contained instructions (content, of type Seq[XSLTInstruction])
are processed first, as these generate the attributes and children of the new element node. From the
resulting list of nodes we then extract separate lists of attributes and children (Lines 4–5). Since the
specification defines that “adding an attribute to an element after children have been added to it” [3,
Section 7.1.3] is an error and the attribute should be ignored in that case, we only accept attributes until
some other node is seen.

The name of the created element is specified as an attribute value template (name, of type
List[Either[String, XPathExpr]]), which is a list of segments that are each either a literal string
or an XPathExpression. These expressions are evaluated and all segments are concatenated (Lines 6–9)
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1 case CreateElementInstruction(name, content) =>

2 val innerNodes = processAll(sheet, content, context)

3 // attributes must come before all other result nodes, afterwards they are ignored

4 val attributes = innerNodes.takeWhile(n => n.isInstanceOf[XMLAttribute]).map(n => n.asInstanceOf[

XMLAttribute])

5 val children = innerNodes.filter(n => !n.isInstanceOf[XMLAttribute])

6 val evaluatedName = name.map {

7 case Left(str) => str

8 case Right(expr) => XPathEvaluator.evaluate(expr, context.toXPathContext).toStringValue.value

9 }.mkString // concatenate literal and expression parts to get the element name

10 Left(List(XMLElement(evaluatedName, attributes, children)))

Listing 3.7: Case for CreateElementInstruction within process

before the resulting XMLElement can be constructed and put in a list that is then returned as the result of
the process function. Note that the constructor of XMLElement merges adjacent text node children into
a single text node, so we do not need to do this here explicitly.

1 case CopyOfInstruction(select) =>

2 XPathEvaluator.evaluate(select, context.toXPathContext) match {

3 case NodeSetValue(nodes) => Left(nodes.toList.flatMap {

4 case XMLRoot(children) => children.map(_.copy)

5 case n => List(n.copy)

6 })

7 case other =>

8 val textValue = other.toStringValue.value

9 if (textValue != "")

10 Left(List(XMLTextNode(other.toStringValue.value)))

11 else

12 Left(Nil) // text nodes with empty content are not allowed

13 }

Listing 3.8: Case for CopyOfInstruction within process

The CopyOfInstruction is used to copy the result of an XPath expression (here called select) into
the result document. To achieve this, we first evaluate the expression in the current context.

If the result is a node-set (which could also be a Result Tree Fragment), we return a list of copies of
all nodes in that set (Lines 3–6). According to the specification, “a root node is copied by copying its
children” [3, Section 11.3], so a special case is needed to handle this (Line 4). Copying a node-set is
also one of the cases where it is important that it is an ordered set, because the nodes must be copied in
document order.

If the result is not a node-set, it is converted to a string, and a text node is created that has this value
as its content. Because text nodes with empty content are not allowed, we return an empty list whenever
the converted value is the empty string.

3.3.1 XSLT Pattern Matching

The last remaining piece is the pattern matching function XSLTPatternMatcher.matches, that we al-
ready referred to.

As can be seen in Listing 3.9, the publicly visible matches function that is supposed to check whether
the given XML node matches the given location path (which must be a pattern, cf. Section 2.1.4)
delegates the work to a private overload that takes the steps of the path in reversed order (Line 2). This
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1 def matches(node: XMLNode, path: LocationPath): Boolean =

2 matches(node, path.steps.reverse, path.isAbsolute)

3

4 private def matches(node: XMLNode, reversedPathSteps: List[XPathStep], pathIsAbsolute: Boolean):

Boolean = {

5 // match recursively from right to left (path steps are reversed!)

6 reversedPathSteps match {

7 case nextStep :: restPath =>

8 if (matchesSingleStep(node, nextStep)) {

9 restPath match {

10 case XPathStep(DescendantOrSelfAxis, AllNodeTest, Nil) :: Nil => true

11 case XPathStep(DescendantOrSelfAxis, AllNodeTest, Nil) :: restTail =>

12 // the next step is ’//’ and must be handled separately:

13 // does any ancestor match the rest of the path?

14 node.ancestors.exists(a => matches(a, restTail, pathIsAbsolute))

15 case _ =>

16 // does the parent match the rest of the path?

17 matches(node.parent, restPath, pathIsAbsolute)

18 }

19 } else { false }

20 case Nil =>

21 if (pathIsAbsolute) node.isInstanceOf[XMLRoot] else true

22 }

23 }

Listing 3.9: Function that checks if a node matches a location path pattern

is necessary because the location path steps are stored in such a way that the leftmost step is the first in
the list, but the matching algorithm needs to traverse the steps from right to left.

It does this in a recursive manner, checking whether the current node matches the next step (i.e. the
rightmost one) and then continuing with the parent node and the rest of the path. If the next step of the
remaining path is /descendant-or-self::node()/, which is the expanded form of ‘//’, the algorithm
looks for any ancestor that matches the remaining path (skipping the descendant-or-self step itself),
instead of checking only the parent (Lines 11–12). If the ‘//’ step is the last (i.e. leftmost) one in the list,
we can return true directly, because every node is a descendant of the root node and thus matches such
a pattern (Line 10). For example, the pattern //body/p is equivalent to the pattern body/p. We call the
step a trivial descendant step in this case.

The matching of a single step is delegated to the matchesSingleStep function that return true if
and only if the given node matches the combination of axis specifier and node test specified in the step.
The child-axis is used to match elements as well as text and comment nodes, while the attribute-axis
only matches attributes (recall that other axes besides these are not allowed in patterns). The node test
further specifies what type (and optionally what name) the node should have in order to match the step.

In this way, the matching algorithm walks up the XML tree until the match fails on some level or the
list of steps is empty. The latter means that no steps remain to be checked and we know that the node
matches the path, except when the path is an absolute path and the current node is not a root node
(Lines 16–17).

This concludes the chapter about our implementation of the concrete interpreter, and based on this
implementation we will now turn towards implementing an abstract interpreter.
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4 Towards Abstract Interpretation

The main objective of our work was the implementation and evaluation of using abstract interpretation
to analyze XSLT stylesheets. We used the concrete interpreter from the previous chapter as a basis
and made two fundamental changes according to the principles introduced in Section 2.2: Firstly, we
replaced the concrete data structures that are used in the interpreter with abstracted versions of the same
structures. Secondly, we modified the interpreter to use operations such as join (t) to handle control
flow and investigated the need to take additional measures in order to ensure termination.

4.1 Abstract Domain Interface

In our explanation of the concrete interpreter, we first looked at the data structures that were needed
to represent the necessary data, i.e. XML documents and XPath values. Likewise, we will now look
at the abstract objects that correspond to those concrete objects in our interpreter. Since we wanted to
experiment with different abstract domains, we defined an interface for them that the abstract interpreter
can use knowing neither the representations of the abstract objects, nor the implementations of the
operations dealing with those objects.

The interface for abstract domains consists of the traits XMLDomain for operations on XML trees and
XPathDomain for operations on XPath values. While these traits define the operations, the actual data
representations of the abstract objects are defined by three type parameters that are used by the domain
traits and throughout the abstract interpreter:

• The N type is used for the abstract objects representing XML nodes. This resembles the XMLNode
class in the concrete interpreter.

• The V type is used for the abstract objects representing XPath values. In the concrete interpreter
this corresponds to the XPathValue class.

• The L type is used for the abstract structure of l ists of XML nodes. An extra type is required for
those, because there are domain operations that operate on such lists and using e.g. List[N] is not
sufficient as it is not a complete lattice. The L type is also used for (ordered) sets of nodes, because
they are very similar and we did not want to introduce yet another type parameter for simplicity.

The concrete types for N and L are fixed by implementations of the XMLDomain trait, whereas the con-
crete type for V is fixed by implementations of the XPathDomain trait. A third trait, Domain, joins together
implementations of XMLDomain and XPathDomain and thus fixes the entire abstract domain for an analy-
sis. The reason we chose to split the domain interface into the subdomains for XML data and XPath data
is that we could combine different implementations of those subdomains independently, though some
operations need to know about the internal representations of both subdomains and therefore had to be
implemented individually for each combination.

Furthermore, it might be noted that in our abstract domains there is no way to distinguish between
different types of XML nodes (e.g. element and text node) or different types of XPath values (e.g.
string and number value) within the Scala type system (which is not surprising given that a single
abstract object can represent concrete objects of several types at once). Instead, in those cases where it
is required by the interpreter, we provide domain operations to distinguish them.

On the following pages we present a detailed list of all domain operations that we defined in the traits
for both subdomains. Note that every implementation of one of the three types N, L and V must be a
complete lattice, therefore operations to compare two objects of such a type w.r.t. the partial ordering,
to obtain the top and bottom elements as well as the join of two elements are required for each of

27



those types. The remaining operations were added as needed during the implementation of the abstract
interpreter, whenever an operation could not be expressed using the already existing functions.

4.1.1 Operations in XPathDomain

def top: V

This function returns the top (>) element in the complete lattice of abstract XPath values. Recall that
> represents a value that the interpreter knows nothing about (except that it is an XPath value).

def bottom: V

This function returns the bottom (⊥) element in the complete lattice of abstract XPath values. Recall
that ⊥ represents an “impossible” value and is used whenever an operation does not have any valid
output, especially whenever the input for an operation was already ⊥.

def join(v1: V, v2: V): V

This operation calculates the least upper bound v1 t v2. A meet operation for V was not required by
the abstract interpreter.

def lessThanOrEqual(v1: V, v2: V): Boolean

This operation defines the partial ordering of the lattice and returns true whenever v1≤ v2.

def topNumber: V / def topString: V
These functions are similar to top, but the result is an element of the lattice that is the least upper

bound of all numbers (resp. strings), i.e. an element of which we know only that it is a number (resp.
string), but nothing more. In a domain where this is not representable, the result might be equal to >.

def liftString(lit: String): V / def liftNumber(num: Double): V / def liftBoolean(bool: Boolean): V
These operations lift a single literal string (resp. number/boolean) value into the lattice V. The re-

sult will be the least element v ∈ V such that the concretization γ(v ) contains the given string (resp.
number/boolean) value (recall that γ(v ) is a set of concrete XPath values).

def add(v1: V, v2: V): V

This function defines the addition operation for two abstract XPath values. Its operands are automati-
cally converted to numbers if they aren’t already. The result will always be a number (≤ topNumber). If
one of the operands is ⊥, the result will be ⊥.

Similar functions exist for subtraction, multiplication, division and the modulo operation as well as
the unary negation operation, but they are skipped in this list.

def compareRelational(v1: V, v2: V, relOp: RelationalOperator): V

This function defines the comparison of two XPath values using a relational operator (one of =, !=,
<=, <, >= or >). The expected semantics (for the concrete case) is defined in the XPath specification [4,
Section 3.4]. Note that this comparison is not to be confused with the partial ordering in the lattice.

def concatStrings(v1: V, v2: V): V

This operation is used to concatenate two string values. In contrast to the arithmetic operations, this
operation does not convert its operands to strings first. This means that whenever γ(v1) or γ(v2) do not
contain any values of type string, the result will be ⊥.
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def nodeSetUnion(v1: V, v2: V): V

This computes the union of two node-set values. Like concatStrings, it does not perform any type
conversions.

def toStringValue(v: V): V / def toBooleanValue(v: V): V / def toNumberValue(v: V): V
Functions for type conversions as specified by the XPath functions string(...), boolean(...) and
number(...) [4, Section 4]. Conversion to node-sets is not possible.

def createNodeSet(list: L): V

This operation and the following one use the L type in addition to V, because they provide a bridge
between the XML domain and the XPath domain: createNodeSet creates an abstract node-set XPath
value from an abstract list of XML nodes. While the input list is not necessarily an ordered set, the
implementation has to ensure that there are no duplicates in the resulting node-set and the nodes are
ordered in document order.

def matchNodeSet(v: V): (L, V)

This operation is similar to a match statement distinguishing between node-sets and other XPath val-
ues. The result is a pair of two values, of which the first component is an abstract list of all the nodes in
the set (in document order) and the second component is the “remaining part” of the input value, such
that its concretization does not contain any node-set values.

To further illustrate the last two functions, the following Scala expression should be true in any do-
main, provided that the input list already contains no duplicates and is ordered in document order:
matchNodeSet(createNodeSet(list)) == (list, bottom).

4.1.2 Operations in XMLDomain

def top: N / def bottom: N / def topList: L / def bottomList: L
These functions return the top (>) and bottom (⊥) elements of the lattice of abstract nodes, N, and the

lattice of abstract node lists, L, respectively.

def join(n1: N, n2: N): N / def meet(n1: N, n2: N): N
These functions compute the join (t) and meet (u) of two abstract nodes.

def joinLists(l1: L, l2: L): L

This function computes the join l1t l2 of two abstract node lists. A meet operation for node lists was
not required by the abstract interpreter.

def lessThanOrEqual(n1: N, n2: N): Boolean / def lessThanOrEqualLists(l1: L, l2: L): Boolean
These operations define the partial orderings of the lattices N and L, respectively.

def createElement(name: V, attributes: L, children: L): N

This function creates a new element node with the given name, attributes and children. The name is
from the subdomain V and the lists of attributes and children are of type L, so the implementation of
this operation depends on the representation of all three types N, L and V. Furthermore, this operation is
responsible for merging consecutive text node children before the element is actually created.

def createAttribute(name: V, value: V): N

This function creates a new attribute node with the given name and value. The parameters are given
as abstract XPath values and only string values (≤ topString) are allowed (other values evaluate to ⊥).
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def createTextNode(value: V): N / def createComment(value: V): N
These functions create new text and comment nodes with the given content, which must be string

values. Furthermore, the empty string is not allowed as content for text nodes, so the expression
createTextNode(liftString("")) == bottom should be true in any implementation of this interface.

def createRoot(children: L, isResultTreeFragment: Boolean): N

This function creates a new root node with the given children that either represents a complete doc-
ument, or a Result Tree Fragment (if isResultTreeFragment == true). In the latter case the list of
children is unrestricted, but in the former case only a single element child is allowed.

def createEmptyList(): L / def createSingletonList(node: N): L
These operations create an empty node list, or a list with a single element, respectively.

def concatLists(list1: L, list2: L): L

This operation concatenates two lists, i.e. it returns the result of appending the second list to the first.

def getFirst(list: L): N

This function extracts the first element of a list of nodes. In the case of an empty list, ⊥ is returned.

def getNodeListSize(list: L): V

This operation obtains the size of a node list as a numeric XPath value.

def getChildren(node: N): L / def getAttributes(node: N): L
These two functions are used to get a node’s children and attributes, hence they allow to navigate

downwards in the XML document tree. For nodes that cannot have any children (resp. attributes), an
empty list is returned (not ⊥).

def getParent(node: N): N / def getRoot(node: N): N
These two functions are used to navigate upwards in an XML tree. Since root nodes do not have a

parent, getParent returns ⊥ for those.

def getDescendants(node: N): L

This function is used to get a node’s descendants. A default implementation based on getChildren
is provided, but a domain may override this and provide a custom implementation, which is needed in
some cases because the default implementation does not enforce termination in the general case.

def getNodeName(node: N): V

This function returns the name of a node. For nodes that cannot have a name (i.e. nodes that are not
elements or attributes), the empty string is returned (not ⊥).

def copyToOutput(list: L): L

Copies a list of nodes by creating a new list that contains copies of each node in the list. A root nodes
is copied by copying its children, so the resulting list will not contain any root nodes.

def getStringValue(node: N): V / def getConcatenatedTextNodeValues(list: L): V
The first of these functions returns the string value of a node, as defined by the XPath specification [4,

Section 5]. The second one obtains the string value for each text node in the given list and returns the
concatenation of those, which is required to compute the contents of attribute and comment nodes.
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def isElement(node: N): (N, N)

This function, as well as the following ones, are predicate functions that can be used to check whether
an abstract node has a certain property. Predicates always return two results, a positive and a negative
one. In the case of isElement, the first result is an abstract node that is known to be an element node,
and the second result is a node that is not an element node. If we call the two results npos and nneg for an
input node n, the following must hold for all predicate functions: npos ≤ n, nneg ≤ n and npos t nneg = n.
It is not required that γ(npos) and γ(nneg) are disjoint.

Similar predicate functions for determining whether a given node is a root node, an attribute node, a
text node, or a comment node are skipped in this list.

def hasName(node: N, name: String): (N, N) / def isContainedIn(node: N, list: L): (N, N)
These are further predicate functions that check whether the given node has the specified name, or

whether it is contained in a given list, respectively.

def filter(list: L, predicate: N =>(N, N)): L / def takeWhile(list: L, predicate: N =>(N, N)): L
These operations filter a given abstract node list using a predicate function. The latter stops as soon

as the predicate does not match the value and thus always returns a prefix of the original list.

def flatMapWithIndex(list: L, f: (N, V)=>L): L

This operation applies a given function f to each abstract node in the input list. Additionally, the
function is provided the index of the current node in the list as a numeric abstract XPath value. For each
node, the function returns a new list of nodes and the resulting lists are concatenated to form the final
result. This corresponds to list.zipWithIndex.flatMap(f) for concrete objects.

4.2 The Powerset Domain

After having presented the domain interface, we will now look at our first implementation of this in-
terface and also give examples for some of the operations listed above. We called the first domain that
we implemented the PowersetDomain, because abstract objects in this domain are modeled as sets of
concrete values, i.e. each abstract object is an element of the powerset of concrete values. However, in
Section 2.2 we have already argued that this is actually impossible for infinite sets, therefore only finite
sets are explicitly modeled as sets, whereas infinite sets are uniformly modeled as a single abstract value
that just means “this is an infinite set”.

The definition of the three types N, L and V is as follows:

type N = Option[Set[XMLNode]] // defined in PowersetXMLDomain

type L = Option[Set[List[XMLNode]]] // defined in PowersetXMLDomain

type V = Option[Set[XPathValue]] // defined in PowersetXPathDomain

Listing 4.1: Definition of type parameters N, L, V within PowersetDomain

Option can be None or Some(...), so we use None as the special value that designates infinite sets,
and Some(Set(...)) for finite sets of concrete values. It follows that > = None and ⊥ = Some(Set())
(i.e. the empty set). The join operation returns None if any of its two operands is None. Otherwise, it
corresponds to the union of the two finite sets. The meet operation returns the right operand if the left
one is None, the left operand if the right one is None, and the intersection of its operands if neither is
None (i.e. both are finite sets).

As an example, the lattice for V is visualized in Figure 4.1. Only a small part of the lattice is explicitly
depicted, because there are infinitely many more finite sets (in fact, there are already infinitely many
singleton sets). The dashed lines below None shall indicate that there are more elements (finite sets of
cardinality 4, 5, 6, ...) in between.
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Some(Set())

None

Some(Set(NumberValue(1.0))) Some(Set(NumberValue(42.0))) Some(Set(StringValue("foo")))
... more sets

with 1 element

Some(Set(NumberValue(1.0),

NumberValue(42.0)))

Some(Set(NumberValue(1.0),
StringValue("foo")))

Some(Set(NumberValue(42.0)

StringValue("foo")))
... more sets

with 2 elements

Some(Set(NumberValue(1.0), NumberValue(42.0), StringValue("foo")))
... more sets

with 3 elements

Figure 4.1: Lattice V in PowersetXPathDomain

The advantage of this domain is that most operations can be implemented easily in the following way,
making use of the concrete operations that are already implemented for XMLNode and XPathValue:

• For operations with a single abstract input operand (e.g. getChildren), we return None when the
input is None, and operate on each element of the set independently otherwise. Note that this
corresponds to two nested calls of map in Scala, one for the Option and one for the Set.

• The result of binary operations (e.g. arithmetic operations in V) is computed as follows: Whenever
one of the operands is ⊥ (i.e. the empty set), the result is ⊥; when no operand is ⊥, but at least one
operand is > (i.e. None), the result is >; otherwise we compute the Cartesian product of the input
sets and apply the operation to each element of that product. For example, the addition operation
on the (finite) sets of number values {0, 1} and {1, 2} (where we write x for NumberValue(x))
results in the set {0+ 1,0+ 2,1+ 1,1+ 2}= {1,2, 3}.

• To implement predicate functions, we return None for both the positive and the negative result if
the input is None. If the input is a finite set, we use the Scala function partition to obtain two
sets such that all elements in the first set fulfill the predicate (this is the positive result) and all
elements in the other do not fulfill the predicate (this is the negative result).

The clear disadvantage of this domain is that as soon as a single property of an object, e.g. the name
of an attribute or the content of a text node, is unknown (in the sense that there are infinitely many
possibilities), the whole object can only be represented as None. Therefore we can not expect useful
results when performing abstract interpretation on the input > (i.e. None), which is what we will use in
order to gain information about the possible outputs of XSLT transformations without knowing anything
at all about the input document.

A better domain implementation is presented in Section 4.4, but the main differences there are in the
XML subdomain. The XPath subdomain that we use there (TypedPowersetXPathDomain, see Listing 4.2),
however, is similar to the PowersetXPathDomain presented above, but it allows better composition with
other XML subdomain implementations, whereas PowersetXPathDomain is tied to the XMLNode class,
because node-sets inside of XPath values are always sets of XMLNode instances.
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type V = (Set[Boolean], Option[Set[Double]], Option[Set[String]], L)

Listing 4.2: Definition of type parameter V within TypedPowersetXPathDomain

In contrast to the previously shown type definition, the structure is now a 4-tuple, and each compo-
nent of the tuple represents one of the XPath types independently from the others. We do not use the
XPathValue class from the concrete interpreter, but work directly on booleans, doubles and strings. The
fourth component represents node-sets and is generic in the type L, as is the TypedPowersetXPathDomain
as a whole. This means that it can reuse any representation for abstract node lists that is defined by some
implementation of XMLDomain, which makes it a lot more flexible than the previous version.

Each of the four components can be regarded as a lattice on its own. For numbers and strings we
still use the Option[Set[...]] approach, but for booleans this is not necessary because the set of all
possible boolean values (i.e. {true,false}) is finite.1

It might be noted that, while the PowersetXPathDomain has to return None (i.e.>) not only for the top
operation, but also for topNumber and topString, the typed version can actually distinguish these. For
example, topNumber is represented as the 4-tuple (Set(), None, Some(Set()), bottomList), where
bottomList depends on the XML domain.

In order to avoid repetition in the definition of the basic lattice operations, we defined the type class
Lattice[A] (see Listing 4.3) and provide a generic implementation of Lattice[Option[Set[T]]] for
every T.

trait Lattice[A] {

def top: A

def bottom: A

def join(left: A, right: A): A

def meet(left: A, right: A): A

def lessThanOrEqual(left: A, right: A): Boolean

}

Listing 4.3: Definition of the lattice type class Lattice[A]

4.3 Abstract Interpreter

Now that we have presented the domain interface and outlined a possible implementation thereof, we
will turn towards the abstract interpreter itself, and how it uses the previously introduced domain types
and operations. Since it is based on the concrete interpreter from the previous chapter, it is not surprising
that the overall structure of the implementation is very similar.

4.3.1 XPath

We start with the class modeling the abstract XPath context, shown in Listing 4.4 (cf. Listing 3.1 for the
concrete case). It contains the same data as the concrete context, but the context node is now an abstract
node, and the position, size, as well as all variable values are abstract XPath values.

case class AbstractXPathContext[N, L, V](node: N, position: V, size: V, variables: Map[String, V])

Listing 4.4: Definition of abstract XPath context class

The abstract version of XPathEvaluator is XPathAnalyzer, which is also generic in V, N and L, and its
evaluation function is similar to the concrete one shown in Listing 3.2, with the following modifications:

• The evaluation of literal number and string expressions involves calling the corresponding lift
operations defined in the domain interface.

1 Technically this is also true for doubles, because they have exactly 64 bits of precision, but representing an unknown
number as a set of 264 values is inconvenient, to say the least.
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• The evaluation of arithmetic operations, relational comparisons and node-set unions is imple-
mented using direct calls to the corresponding domain interface methods.

• There are no designated domain operations for boolean conjunction and disjunction, because the
evaluation of ‘and’ and ‘or’ expressions (after the operands are converted using toBooleanValue)
only requires comparisons of the operands with the (lifted) values true and false (w.r.t. the order
in the lattice). However, the evaluation of these operations is slightly complicated by the fact that
they are specified to use short-circuit semantics. For example, in the case of the ‘or’ operator this
means that “the right operand is not evaluated if the left operand evaluates to true” [4, Section
3.4], which implies that our abstract result needs to contain true if the left operand is greater than
true, even if the the right operand evaluates to ⊥.

Furthermore, the evaluation of location paths in the abstract interpreter is presented in Listing 4.5.
Note that the values of xmlDom and xpathDom, which are specified in the constructor of XPathAnalyzer,
are implementations of the domain interface XMLDomain and XPathDomain, respectively.

1 private def evaluateLocationPath(node: N, steps: List[XPathStep], isAbsolute: Boolean): L = {

2 (steps, isAbsolute) match {

3 case (_, true) => evaluateLocationPath(xmlDom.getRoot(node), steps, false)

4 case (Nil, false) => xmlDom.createSingletonList(node)

5 case (first :: rest, false) =>

6 val nodes: L = first.axis match {

7 case ChildAxis => xmlDom.getChildren(node)

8 case DescendantAxis => xmlDom.getDescendants(node)

9 case ParentAxis =>

10 val (root, nonRoot) = xmlDom.isRoot(node)

11 val result = xmlDom.createSingletonList(xmlDom.getParent(nonRoot))

12 if (!xmlDom.lessThanOrEqual(root, xmlDom.bottom))

13 xmlDom.joinLists(xmlDom.createEmptyList(), result)

14 else

15 result

16 case AttributeAxis => xmlDom.getAttributes(node)

17 case SelfAxis => xmlDom.createSingletonList(node)

18 case DescendantOrSelfAxis => xmlDom.concatLists(xmlDom.createSingletonList(node), xmlDom.

getDescendants(node))

19 }

20 val testedNodes = xmlDom.filter(nodes, n =>

21 /* ... filter according to node test in current step, using predicate functions ... */)

22 if (first.predicates.nonEmpty) throw new NotImplementedError("Predicates are not supported")

23 val (testedNodeSet, _) = xpathDom.matchNodeSet(xpathDom.createNodeSet(testedNodes))

24 xmlDom.flatMapWithIndex(testedNodeSet, {

25 case (n, _) => evaluateLocationPath(n, rest, false)

26 })

27 }

28 }

Listing 4.5: Abstract evaluation function for location paths

Again, the basic structure of this code is the same as that of the corresponding method in the con-
crete interpreter (cf. Listing 3.3), but the current node is now an abstract node (N) and the result
is an abstract node list (L). To aggregate the results of the recursive evaluation (Lines 24–26), the
flatMapWithIndex operation is used (the index is not required here and therefore ignored, but it is
required in the applyTemplates method, which is why the operation was included in the domain just as
it is).

To retrieve the nodes of the specified axis in each step, the corresponding domain operation is called
(Lines 7–18). However, the parent axis needs to be treated specially, because we have to correctly handle
the case where the current node is the root node, which does not have a parent. In this case, getParent
returns ⊥, and if we put that into a list (using createSingletonList), the resulting list would also be
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⊥. The correct result, however, would be an empty list. For this reason we check whether the current
node might be a root node by comparing the positive result of the isRoot predicate function with ⊥: If
it is greater than ⊥ (i.e. γ(node) contains at least one root node), we include the empty list in the result
(Lines 12–13). The parent is retrieved only for the negative result of isRoot (Line 11).

Note that in the abstract interpreter we did not implemented other axes apart from the six shown in
Listing 4.5, because these are the most commonly used (cf. the evaluation in Section 5.2), and the other
ones do not give useful results with the Zipper Domain (cf. Section 4.4) anyway, since we do not have
information about sibling nodes there.

Finally, the list of nodes specified by the axis in the current step is filtered (using the filter domain
operation) according to the node test of the same step. This involves the predicate functions isElement,
isAttribute, isTextNode, isComment and hasName.

We make sure that the list of nodes contains no duplicates and is sorted in document order (i.e. it
represents an ordered set) in every step, by first creating a node-set XPath value of it and then extracting
a value of type L again (Line 23). This is not strictly necessary, but it removes duplicates early and
therefore the remaining path is not evaluated multiple times for the same node. One could argue that
we should not do this, because in some domains sorting the set can involve a loss of precision (for
example, in the Zipper Domain, which will be explained in detail in Section 4.4, it can be the case that it
is impossible to determine whether two abstract nodes a and b refer to the same node, or a comes before
b, or b before a in document order). Sorting the list is required, however, at least once when the location
path is fully evaluated (this is not obvious in the excerpt above, but when evaluateLocationPath is
called from evaluate, its result is always put into a node-set value using createNodeSet). Hence the
loss of precision is unavoidable in general.

4.3.2 XSLT

The abstract version of XSLTProcessor (cf. Listing 3.6) is XSLTAnalyzer, outlined in Listing 4.6. The
differences between this abstract version and the concrete one are as follows:

• In transform, which is the entry point for the analysis of a transformation, we first enforce that
the source node is a root node (and because root nodes are also used to model Result Tree Frag-
ments, we have to disallow this explicitly). We continue only with the positive result of the isRoot
predicate function (Line 2).

• In applyTemplates we apply matching template rules to each node in the abstract node list
sources, using flatMapWithIndex (Line 12). As the context contains the current position in the
list, the index is actually required here (Line 16–17). In contrast to the concrete interpreter, the
abstract interpreter can not determine a unique template that matches the node, since an abstract
node might represent various concrete nodes that all match different templates. For this reason
chooseTemplates returns a list of templates, together with refinements of the abstract nodes that
match them. The results of the instantiation of these templates are then joined into a single result
(Lines 15–19).

• joinAllLists (code omitted) basically folds the input sequence using the joinLists domain op-
eration, but returns early if an intermediate result is already equal to > (since >t x = > for any
x). This is a performance optimization: In the result of chooseTemplates, the least specific tem-
plate (e.g. the built-in template that matches any element) comes last. This list is reversed and
mapped lazily (using view), so that the least specific template, which is also most likely to return
>, is instantiated first and the remaining templates are not instantiated any more if it is actually
the case that the instantiation of a template (or a combination thereof) results in >.

• chooseTemplates iterates through all templates of the given mode and calls the matches method
of an instance of AbstractPatternMatcher for the currently used domain. This method has the
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1 def transform(sheet: XSLTStylesheet, source: N, recursionLimit: Option[Int] = None): N = {

2 val (rootSource, _) = xmlDom.isRoot(source, allowResultTreeFragments = false)

3 val globalVariables = /* ... evaluate global variables in stylesheet ... */

4 val result = applyTemplates(sheet, xmlDom.createSingletonList(rootSource), None, globalVariables,

5 Map(), Map(), recursionLimit)

6 xmlDom.createRoot(result, isResultTreeFragment = false) // wrap result in a root node

7 }

8

9 def applyTemplates(sheet: XSLTStylesheet, sources: L, mode: Option[String],

10 globalVariables: Map[String, V], localVariables: Map[String, V], params: Map[String, V],

11 recursionLimit: Option[Int]): L = {

12 xmlDom.flatMapWithIndex(sources, (node, index) => {

13 val templates = chooseTemplates(sheet, node, mode)

14

15 joinAllLists(templates.reverse.view.map { case (tmpl, specificNode) =>

16 val context = AbstractXSLTContext[N, L, V](specificNode, sources,

17 xpathDom.add(index, xpathDom.liftNumber(1)), globalVariables, localVariables)

18 instantiateTemplate(sheet, tmpl, context, params, recursionLimit)

19 })

20 })

21 }

22

23 def chooseTemplates(sheet: XSLTStylesheet, node: N, mode: Option[String]):

24 List[(XSLTTemplate, N)] = {

25 val result = MutList[(XSLTTemplate, N)]()

26 val matchable = sheet.matchableTemplates.getOrElse(mode, Map())

27 var currentNode = node

28 breakable {

29 matchable.foreach { case (path, tpl) =>

30 val (matches, notMatches) = patternMatcher.matches(currentNode, path)

31 if (!xmlDom.lessThanOrEqual(matches, xmlDom.bottom))

32 result += ((tpl, matches)) // template might match, so add it to possible results

33 if (xmlDom.lessThanOrEqual(notMatches, xmlDom.bottom) || xmlDom.lessThanOrEqual(currentNode,

matches))

34 break() // the node matched completely, so we can stop the process

35 currentNode = notMatches // continue with that "part" of the node that did not match

36 }

37 }

38 result.toList

39 }

40

41 def instantiateTemplate(sheet: XSLTStylesheet, tmpl: XSLTTemplate, context: AbstractXSLTContext[N, L, V

], params: Map[String, V], recursionLimit: Option[Int]): L = {

42 if (recursionLimit == Some(0)) return xmlDom.topList // return TOP if recursion limit is reached

43 val evaluatedParams = /* ... evaluate parameters in current context ... */

44 processAll(sheet, tmpl.content, context.replaceLocalVariables(evaluatedParams),

45 recursionLimit.map(_ - 1))

46 }

47

48 def processAll(sheet: XSLTStylesheet, instructions: Seq[XSLTInstruction], context: AbstractXSLTContext[

N, L, V], recursionLimit: Option[Int]): L = /* ... process each instruction in turn and collect

variable definitions, so they are available in subsequent instructions (in the same scope) ... */

49

50 def process(sheet: XSLTStylesheet, instruction: XSLTInstruction, context: AbstractXSLTContext[N, L, V],

recursionLimit: Option[Int]): Either[L, (String, V)] = /* ... match on instruction type ... */

Listing 4.6: Functions within XSLTAnalyzer
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same semantics as a predicate function, i.e. it returns a positive and a negative result, such that,
given an input node n, e.g. the positive result npos matches the template and npos ≤ n. We add
a template (and its matching node) to the list of possible matching templates whenever npos > ⊥
(Lines 31–32). When the node matches completely (i.e. nneg =⊥), we can stop the process because
of the way the templates are ordered (Lines 33–34). If it did not match completely, we continue
with the negative result (Line 35), because only for that we have not yet found a template.

• Every function (except chooseTemplates) has an additional parameter recursionLimit, which
can be used to limit the recursion depth of template instantiation. It can be set to Some(x) in the
beginning and is decremented in instantiateTemplate. When it has reached 0, > is returned.
Setting the limit to None allows unlimited recursion. The reason why such a limitation is needed
will be the subject of Section 4.5.

As examples for the processing of individual XSLT instructions in process, we now present and explain
the cases for CreateElementInstruction (Listing 4.7) and CopyOfInstruction (Listing 4.8) as we have
for the concrete interpreter (cf. Listing 3.7 and 3.8).

1 case CreateElementInstruction(name, content) =>

2 val innerNodes = processAll(sheet, content, context, recursionLimit)

3 val attributes = xmlDom.takeWhile(innerNodes, n => xmlDom.isAttribute(n))

4 val children = xmlDom.filter(innerNodes, n => {

5 val (isAttr, isNotAttr) = xmlDom.isAttribute(n)

6 (isNotAttr, isAttr) // swap positive and negative results of isAttribute

7 })

8 val evaluatedName = xpathDom.concatAllStrings(name.map {

9 case Left(str) => xpathDom.liftString(str)

10 case Right(expr) => xpathDom.toStringValue(xpathAnalyzer.evaluate(expr, xsltToXPathContext(

context)))

11 })

12 val result = xmlDom.createElement(evaluatedName, attributes, children)

13 Left(xmlDom.createSingletonList(result))

Listing 4.7: Case for CreateElementInstruction within process (abstract interpreter)

The CreateElementInstruction is processed by first processing the sequence of instructions that form
the content (Line 2). The resulting abstract node list contains attributes as well as other child nodes,
which have to be separated. This is done using the takeWhile and filter domain operations, together
with the isAttribute predicate function (Lines 3–7). To find all child nodes that are not attributes, the
positive and negative results of isAttribute can simply be swapped.

Then, the attribute value template for the element’s name is evaluated (Lines 8–11). This involves the
evaluation of XPath expressions, using xpathAnalyzer, an instance of the XPathAnalyzer class for the
currently used domain. Finally, the abstract element node is created and returned as the only element of
an abstract node list (Lines 12–13).

The CopyOfInstruction (recall that this is used for <xsl:copy-of> as well as for <xsl:value-of>)
is processed by first evaluating the XPath expression that selects the nodes that are to be copied (Line 2).
The result is an abstract XPath value that might be a mix of node-set values and other values. Be-
cause these must be treated in different ways, we split them using the matchNodeSet domain operation
(Line 3). Values that are node-sets are copied directly using the copyToOutput operation. Values that
are not node-sets are converted to strings and then wrapped in a text node (Lines 5–6). However, if
the empty string is part of the result, we include the empty list in the final result (Lines 7–9), since text
nodes with empty content are not allowed (recall that createTextNode returns ⊥ for the empty string,
and without this special treatment, the resulting list would then also be ⊥ instead of an empty list).

Finally, the results for node-set values on the one hand and other values on the other hand, which
have been computed independently, are joined into a single result list (Line 10).
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1 case CopyOfInstruction(select) =>

2 val result = xpathAnalyzer.evaluate(select, xsltToXPathContext(context))

3 val (nodeSets, rest) = xpathDom.matchNodeSet(result)

4 val nodeSetsOutput = xmlDom.copyToOutput(nodeSets)

5 val restAsString = xpathDom.toStringValue(rest)

6 var restOutput = xmlDom.createSingletonList(xmlDom.createTextNode(restAsString))

7 if (xpathDom.lessThanOrEqual(xpathDom.liftString(""), restAsString)) {

8 restOutput = xmlDom.joinLists(restOutput, xmlDom.createEmptyList())

9 }

10 Left(xmlDom.joinLists(nodeSetsOutput, restOutput))

Listing 4.8: Case for CopyOfInstruction within process (abstract interpreter)

Pattern Matching

In the chooseTemplate function, which is responsible for selecting templates that potentially match an
abstract node, we have assumed the existence of an AbstractPatternMatcher class that provides the
functionality corresponding to XSLTPatternMatcher in the concrete case (cf. Section 3.3.1). This last
section dealing with the implementation of the abstract interpreter is dedicated to the implementation
of the matches function within that class.

1 private def matches(node: N, reversedPathSteps: List[XPathStep], pathIsAbsolute: Boolean):

2 (N, N) = {

3 // match recursively from right to left (path steps are reversed!)

4 reversedPathSteps match {

5 case nextStep :: restPath =>

6 val (nextStepMatches, notNextStepMatches) = matchesSingleStep(node, nextStep)

7 if (!xmlDom.lessThanOrEqual(nextStepMatches, xmlDom.bottom)) restPath match {

8 case XPathStep(DescendantOrSelfAxis, AllNodeTest, Nil) :: Nil =>

9 (nextStepMatches, notNextStepMatches)

10 case XPathStep(DescendantOrSelfAxis, AllNodeTest, Nil) :: restTail =>

11 /* ... find nodes where some ancestor matches the rest of the path ... */

12 case _ =>

13 // find nodes where the parent matches the rest of the path

14 val parent = xmlDom.getParent(nextStepMatches)

15 val (parentMatchesRest, _) = matches(parent, restPath, pathIsAbsolute)

16 val (parentMatches, notParentMatches) = hasParent(nextStepMatches, parentMatchesRest)

17 (parentMatches, xmlDom.join(notParentMatches, notNextStepMatches))

18 } else (xmlDom.bottom, notNextStepMatches)

19 case Nil => if (pathIsAbsolute) xmlDom.isRoot(node) else (node, xmlDom.bottom)

20 }

21 }

22

23 private def hasParent(node: N, parent: N): (N, N) = {

24 val (isChild, isNotChild) = xmlDom.isContainedIn(node, xmlDom.getChildren(parent))

25 val (isAttribute, isNeither) = xmlDom.isContainedIn(isNotChild, xmlDom.getAttributes(parent))

26 (xmlDom.join(isChild, isAttribute), isNeither)

27 }

Listing 4.9: Matching of location path patterns in the abstract interpreter

Listing 4.9 outlines the relevant functions (the publicly exposed overload of matches, that is respon-
sible for reversing the path steps, is not shown). The obvious difference to the concrete case is the type
of the return value, which has already been mentioned in passing: Pattern Matching no longer returns a
Boolean, but two abstract XML nodes that constitute the positive and the negative result of the matching
process.
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The matching of a single step (delegated to the matchesSingleStep function, not shown here)
combines various predicate functions to obtain refinements of node, depending on whether the com-
bination of axis and node test is fulfilled by the node. If the step definitely does not match the node,
nextStepMatches will be ⊥ and no recursive call is made (cf. the check in Line 7).

If that is not the case and the next step is not a descendant step, the matching must continue re-
cursively. Note that the recursive call to check whether the rest of the path matches the parent is no
longer a tail call, because now the result of the recursive call does not simply tell us whether the parent
matches, but instead gives us a refined node (parentMatchesRest, Line 15). We then have have to refine
the matching result of the current step (nextStepMatches) to obtain a node of which we know that its
parent matches the rest of the path (parentMatches, Line 16).

The example shown in Figure 4.2 shall illustrate this.

<x> <!-- x -->

<a> <!-- a1 -->

<a/> <!-- a2 -->

</a>

</x>

Path to match: /x/a

{x , a1, a2}

{a1, a2}

{x , a1}

{a1}

{x}

matches step ‘a’?

getParent

matches remaining path /x?
(recursive call)

hasParent({a1, a2},{x})

matches path /x/a?

Figure 4.2: Illustration of abstract location path pattern matching

Here, we use x , a1 and a2 to refer to the element nodes in the depicted XML document, and sets of
those nodes to refer to abstract nodes in the sense of the Powerset Domain, e.g. {x , a1} represents the
abstract node that is either x or a1.

We start from the abstract node {x , a1, a2}, which represents any element in the document, and want to
apply the matching algorithm to the path /x/a, restricting our attention to the positive result. To do this,
we first test against the leftmost step ‘a’ (unsurprisingly, this uses isElement and hasName internally)
and obtain the abstract node {a1, a2}, because a1 and a2 match this step, but x does not. We then call
getParent, which – in the powerset domain – just returns the set of all parents of the original nodes, i.e.
{x , a1}. The matches algorithm is applied recursively to that abstract node and the remaining path /x,
so the result is {x} because a1 does not match /x.

This is then used to refine the original node {x , a1, a2} in such a way that only those concrete nodes
remain whose parent is x . Therefore, the final result is {a1}, which is indeed the only node from the
document that matches the path /x/a.

In the case of a (non-trivial) descendant step (i.e. we are interested in whether any ancestor matches
the remaining path), the calls to getParent and hasParent are iteratively repeated until a root node is
reached. However, our implementation is not guaranteed to terminate when getParent returns possibly
non-root nodes infinitely (this can occur in the Zipper Domain, but not in the Powerset Domain). Since
in our evaluation of real-world stylesheets (cf. Section 5.2) none of the analyzed transformations used
non-trivial descendant steps, we did not spend more time improving this situation.
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4.4 The Zipper Domain

We have seen that the Powerset Domain as introduced in Section 4.2 is not very useful when running
the abstract interpreter on the unknown input >. The ZipperXMLDomain is another implementation of
the XMLDomain interface, that together with the TypedPowersetXPathDomain forms the ZipperDomain.
It allows an abstract representation of XML trees and nodes that are only partially known.

The Zipper Domain received its name from the Zipper data structure as described by Gérard Huet [7].
The Zipper is an implementation of a (concrete) tree where every node is modeled as a combination
of a subtree and a path. The subtree contains the part of the tree from the current node downwards
to the leaves, while the path contains the rest of the tree, i.e. everything in between the current node
and the root as well as the siblings of the current node. Thus, every node contains a representation of
the complete tree, which can be traversed in all directions (this is important because in XSLT processing
the input tree is usually traversed top-down, but patterns are matched bottom-up). In contrast to our
previous implementation of XML nodes, however, the Zipper avoids cyclic references between child and
parent nodes. This is important because cyclic references would significantly complicate the implemen-
tation of basic lattice operations. On the other hand, with an acyclic object graph, these operations can
be implemented in a straightforward way using a divide-and-conquer principle (this can be observed in
Listing 4.15).

Following this principle, in order to model an abstract node we created a lattice S for abstract subtrees
and a lattice P for abstract paths. Each abstract node then is a combination of an abstract subtree and an
abstract path (recall that multiple lattices can be combined to form new lattices). It might also be noted
that the representations of subtrees and paths are independent, so e.g. P could be replaced by some other
definition without changing the general design of the Zipper Domain (however, the implementation of
some operations depend on internals of both types).

type S = Subtree // type of abstract subtrees

type P = Set[Path] // type of abstract paths

type N = (S, P) // a node is a subtree and a path

type L = ZList[N] // type of abstract node lists

type V = (Set[Boolean], Option[Set[Double]], Option[Set[String]], L)

Listing 4.10: Overview of the type definitions in ZipperDomain

The type definitions for the lattices within the Zipper Domain are outlined in Listing 4.10, and Figure
4.3 visualizes how an abstract node in this domain is composed of a path and a subtree. The rest of this
subsection elaborates on the definitions of Subtree, Path and ZList, the latter being a representation of
abstract lists that we use not only for lists of nodes, but also for the list of children and attributes within
each subtree.

Root

Path (P)

Subtree (S)

Figure 4.3: Schematic visualization of an abstract node in the Zipper Domain
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4.4.1 Abstract Paths

Paths in the original Zipper structure are defined as being either the root of the tree, or a combination of
left siblings (a list of subtrees), a parent path, and right siblings (again a list of subtrees). Our design of
abstract paths, shown in Listing 4.11, deviates from that structure in some ways:

abstract class PathStepDescriptor

case object AnyElementStep extends PathStepDescriptor

case class NamedElementStep(name: String) extends PathStepDescriptor

case object AnyAttributeStep extends PathStepDescriptor

case class NamedAttributeStep(name: String) extends PathStepDescriptor

case object AnyTextNodeStep extends PathStepDescriptor

case object AnyCommentNodeStep extends PathStepDescriptor

abstract class Path

case class RootPath(isFragment: Boolean) extends Path

case class ChildStep(descriptor: PathStepDescriptor, parent: Path) extends Path

case class DescendantStep(descriptor: PathStepDescriptor, ancestor: Path) extends Path

type P = Set[Path]

Listing 4.11: Type definitions for abstract paths

• The original Zipper models unlabeled trees. Our trees, however, are labeled, so we added an
additional PathStepDescriptor to each step. These form a partial order (but not a lattice):
AnyElementStep is greater than NamedElementStep(name) for any name and the same holds for
AnyAttributeStep and NamedAttributeStep, respectively. Any other two descriptors are incom-
parable.

• A path is built from steps, where each step references a parent path until the root is reached.
The original Zipper only knows the child relationship, but we additionally allow a descendant
relationship, which is less precise, because the steps in between are unknown.

• We do not store any information about siblings. While this leads to a loss of precision when
navigating down a tree, then up, then down another path (i.e. to a sibling of a previously visited
node), it simplifies the implementation of operations. Furthermore, the loss of precision only
occurs when the parent axis is used in XPath selectors, since that is the only case where the tree
is navigated upwards with the possibility of going down again (other axes that navigate upwards
in the tree are not supported in our implementation). During pattern matching the tree is also
navigated upwards, but without predicates the matching algorithm can only go further up and
never down again.

• The RootPath has an additional field that is used to distinguish true document roots from Result
Tree Fragments. We will not go into details about this and continue as if this flag did not exist.

This way, every instance of Path is essentially equivalent to some XPath location path pattern.
For example, the path DescendantStep(AnyAttributeStep, ChildStep(NamedElementStep("foo",
RootPath))) is equivalent to the path /foo//@*, meaning that the current node is an attribute with
any name, which is a descendant of an element named “foo”, which in turn is a child of the root node.
This correspondence between instances of Path and location path patterns is intended and shows that
Paths contain exactly the kind of information that is required for pattern matching. Furthermore, it
allows us to use the shorter pattern notation in the following paragraphs.2

2 For the same reason we implemented toString for Paths in such a way that it prints the corresponding XPath pattern.
We also implemented a method to create a Path from a location path pattern, to be used in unit tests.
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Instances of Path also form a partial order, in the sense that two paths can be compared w.r.t. their
precision (note that we regard p1 < p2 if p1 is more precise than p2, as we did for lattices, where the
greatest element > is the least precise element). For example, a node that has the path /foo/bar/@attr
also has the (less precise) path /foo//@*, therefore /foo/bar/@attr< /foo//@*. To obtain a complete
lattice from those, we look at sets of instances of Path and make the following observations:

• Every node is either the root node, or an element, attribute, comment or text node that
is a descendant of the root node. So the path of every node is contained in the set
{/,//*,//@*,//text(),//comment()} (recall that text() is the node test for text nodes, hence
in this context it refers to the AnyTextNodeStep descriptor). Consequently that set is the top
element in the lattice of abstract paths. The bottom element is the empty set ⊥= ;.

• A set of Paths might contain elements that are more precise than other elements in the same set.
We do not allow such sets and implemented a method normalize that removes any such elements.
For example, normalize({/foo/bar/@attr,/foo//@*})= {/foo//@*}.

• The join operation can be defined by taking the union of two sets and normalizing the result:
a t b = normalize(a ∪ b). For example, {/a} t {/a/b}= {/a,/a/b} and {/a} t {/*}= {/*}.

• The meet operation can be defined by looking at the Cartesian product of two sets and for each
two elements calculating a set of paths representing all paths that are less than both of them.
When the paths do not contain descendant steps, this is the singleton set containing the lesser
of the two if they can be compared, or the empty set if they are incomparable. For example,
{/a,/a/b} u {/*} = {/a}, because /a < /*, but /a/b and /* are incomparable. For paths with
descendant steps, the result corresponds to all possible interleavings of path steps, for example
{//a//b} u {//c//b} = {//a//c//b,//c//a//b}. Here, the abstract path describes a node that is
an element named ‘b’ and has an ancestor named ‘a’ and also an ancestor named ‘c’.

Therefore, P = Set[Path] is the final type that we use for abstract paths, and we implemented an
instance of the Lattice type class for P that provides implementations for the basic lattice operations as
described above.

4.4.2 Abstract Lists

Before we explain abstract subtrees, which constitute the other part of abstract nodes, we now introduce
the data structure that we use for abstract lists, called ZList, since they are also used within subtrees.

A ZList can be viewed as a kind of linked list with more constructors in addition to the usual Cons
and Nil (cf. lists in Haskell or the Scala List type). We implemented ZList in such a way that it is
generic in the type of its elements, but an (implicit) instance of the lattice type class is required for this
element type for all operations in ZList. For a given element type T, instances of ZList[T] form a lattice
themselves.

abstract class ZList[T] { /* ... */ }

case class ZBottom[T]() extends ZList[T]

abstract class ZListElement[T] extends ZList[T]

case class ZTop[T]() extends ZListElement[T]

case class ZUnknownLength[T](elems: T) extends ZListElement[T]

case class ZCons[T](first: T, rest: ZListElement[T]) extends ZListElement[T]

case class ZMaybeNil[T](first: T, rest: ZListElement[T]) extends ZListElement[T]

case class ZNil[T]() extends ZListElement[T]

Listing 4.12: Type definitions for ZList
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Listing 4.12 shows the type definition for all ZList constructors: ZCons, ZNil, ZBottom, ZTop,
ZUnknownLength and ZMaybeNil (the purpose of the intermediate abstract class ZListElement, that
distinguishes ZBottom from the other constructors, will become clear later). The meaning of the individ-
ual constructors is as follows:

• ZNil describes the empty list. We also write the empty list as [].

• ZCons describes a list that has one element, followed by another list of elements, which might be
empty. We also write e.g. [a, b, c] for the list ZList(a,ZList(b,ZList(c,ZNil()))). Recall that
a, b and c are of type T and therefore lattice elements themselves.

• ZMaybeNil is either the empty list or a Cons. It means that the list might end here, but
might as well be followed by another list. We also write e.g. [a, NIL + b] for the list
ZList(a,ZMaybeNil(b,ZNil())), where the ‘+’ sign means “either NIL (end of list) or what
follows”. ZMaybeNil can also be regarded as the join of ZNil and ZCons.

• ZUnknownLength describes a list whose content is known, but whose length is not. It contains
no further following list segment, meaning that the list either ends at this point or contains an
unknown number of repetitions of the contained lattice element. We also write e.g. [a, NIL+ b . . .]
for the list ZList(a,ZUnknownLength(b)), where ‘NIL + b . . .’ means “b repeated zero or more
times”.

• ZTop describes any list. This could actually also be represented as ZUnknownLength(>), where
> is the top element from the lattice of list elements (i.e. any element, repeated any number
of times), but an additional constructor is required to model recursive data structures where the
element lattice contains a ZList of itself, as is the case with abstract subtrees. Without ZTop, the
top element of such a structure would not be finitely representable. We also write e.g. [a, TOP] for
the list ZList(a,ZTop())

• ZBottom describes no list and constitutes the bottom element of the ZList lattice. This is not
strictly required, since e.g. ZCons(⊥) also describes no list, but we normalize the representation in
such a way that ZBottom is used whenever a single list element would be⊥. Using the intermediate
type ZListElement for everything but ZBottom, we statically ensure that only the whole list can
be ZBottom, i.e. ZBottom is not used as a tail in some other list. We also write [BOTTOM] for
ZBottom().

In the next paragraphs we give some examples of the set of concrete lists that correspond to abstract
lists represented using ZList, and show results for some lattice and list operations. For explanatory
purposes, we will use the lattice of integer sets P (Z) for the element type T.

Consider the abstract list l1 = [{0}, {1}, {2}]. Since the list has exactly three elements and each
element is a singleton set, the only concrete list that is represented by l1 is [0,1, 2], so γ(l1) = {[0, 1,2]}.
Let l2 = [{3}] be the list that only contains the element 3 (so γ(l2) = {[3]}). Joining l1 and l2 gives us
a new abstract list: l3 = l1 t l2 = [{0,3}, NIL + {1}, {2}]. The first element of l3 is either 0 or 3 and the
list might end after the first element. However, γ(l3) = {[0], [3], [0,1, 2], [3,1, 2]} ) γ(l1)∪ γ(l2) shows
that this indeed is an over-approximation.

To better understand ZUnknownLength, consider l4 = [NIL + {0,1} . . .], which describes all lists
that contain any number of 0’s and 1’s in any order (note that the concretization γ(l4) =
{[], [0], [1], [0,0], [0, 1], [1, 0], ...} is now actually infinite). On the other hand, the list l5 = [{0}, TOP]
describes any list that starts with a 0. We can now use the meet operation on l4 and l5 to obtain
a representation of any list that only contains the elements 0 and 1 and starts with a 0, as follows:
l4 u l5 = [{0}, NIL+ {0, 1} . . .].

Furthermore, it might be noted that l4u l1 = [BOTTOM], since l1 contains the element {2}, which is not
allowed by l4 (since {2} u {0, 1}= ;).
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We do not elaborate on the details of how the lattice operations (i.e. meet, join and comparison) are
implemented, besides the remark that they recursively traverse the list and make use of the correspond-
ing operations of the underlying element type T. Apart from these basic lattice operations, we provide
implementations for other list operations such as concatenation (the ++ operator), map and filter. List-
ing 4.13 shows the implementation of the concatenation operation for ZList, which is also used by the
flatMapWithIndex domain operation.

1 def ++(other: ZList[T])(implicit lat: Lattice[T]): ZList[T] = (this, other) match {

2 case (ZBottom(), _) | (_, ZBottom()) => ZBottom()

3 case (ZTop(), _) => ZTop()

4 case (ZUnknownLength(elem), _) => ZUnknownLength(lat.join(elem, other.joinInner))

5 case (ZCons(first, rest), _) => ZCons(first, (rest ++ other).asInstanceOf[ZListElement[T]])

6 case (ZMaybeNil(first, rest), _) => other | (ZCons(first, rest) ++ other)

7 case (ZNil(), _) => other

8 }

9

10 def joinInner(implicit lat: Lattice[T]): T = this match {

11 case ZTop() => lat.top

12 case ZUnknownLength(elems) => elems

13 case ZBottom() => lat.bottom

14 case ZCons(first, rest) => lat.join(first, rest.joinInner)

15 case ZMaybeNil(first, rest) => lat.join(first, rest.joinInner)

16 case ZNil() => lat.bottom

17 }

Listing 4.13: Concatenation of ZLists

There one can see that the result is ZBottom when at least one of the operands is ZBottom. When
the left operand is ZTop, the result is ZTop as well, since ZTop says that the remaining list content could
be anything, which is still true after appending some other list. Similarly, when the left operand is
ZUnknownLength, the result is ZUnknownLength, but in this case there is more information about what
elements are in that list: It is the join of all elements in the left and all elements in the right operand.
Since the right operand can be any subtype of ZList, the joinInner auxiliary method is defined to
extract the join of all elements within the list. This auxiliary method is also utilized by other ZList
operations.

Appending to ZCons or ZNil is straightforward, and appending to ZMaybeNil essentially calculates
both of these results (i.e. appending once as if the remaining list was empty and once as if the remaining
list was not empty) and joins them (the join operation in ZList is implemented as the ‘|’ operator).

Another thing that is apparent from Listing 4.13 is the usage of the Lattice[T] type class.

4.4.3 Abstract Nodes

Recall that abstract nodes are modeled as a combination of abstract paths and abstract subtrees. Sub-
trees, as defined in Listing 4.14, are in turn a combination of

• an abstract label, which we represent as a set of NodeDescriptors,
• an abstract list of attributes, which we represent as an abstract list of attribute labels, and
• an abstract list of children, each represented as an abstract subtree, thus making the Subtree

structure recursive.

The representation of abstract labels is similar to that used in abstract paths (cf. PathStepDescriptor
in Listing 4.11). As for PathStepDescriptor, we associate a partial ordering with node descriptors,
in such a way that e.g. AnyAttribute > NamedAttribute(name) > Attribute(name, value) for any
name and value. We then obtain a lattice by looking at sets of descriptors, which must be normalized in
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case class Subtree(desc: Set[NodeDescriptor],

attributes: ZList[Set[NodeDescriptor]],

children: ZList[Subtree]) { /* ... */ }

abstract class NodeDescriptor

case object Root extends NodeDescriptor

case class Element(name: String) extends NodeDescriptor

case object AnyElement extends NodeDescriptor

case class Attribute(name: String, value: String) extends NodeDescriptor

case class NamedAttribute(name: String) extends NodeDescriptor

case object AnyAttribute extends NodeDescriptor

case class Text(value: String) extends NodeDescriptor

case object AnyText extends NodeDescriptor

case class Comment(value: String) extends NodeDescriptor

case object AnyComment extends NodeDescriptor

Listing 4.14: Types for representing abstract subtrees

the sense that no descriptor in the set is less than another descriptor in the same set. For example, the
set {Root,Element("a"),AnyText}, when used as an abstract label, describes any node that is either a
root node, an element named ‘a’, or a text node (with arbitrary content).

The handling of attributes is complicated by the fact that the list of attributes must not contain multi-
ple attributes with the same name. To bypass the complications of implementing this explicitly (which
is especially problematic when the name of an attribute is unknown, i.e. AnyAttribute), we use the
ZUnknownLength constructor instead whenever we are dealing with attribute lists, since concatenating
two such lists automatically joins the attribute descriptors. This is again an over-approximation be-
cause we can only express that an attribute might be contained in the list, not that an attribute must be
contained in the list (since γ(ZUnknownLength(...)) always contains the empty list).

Listing 4.15 (where latD is an implementation of Lattice[Set[NodeDescriptor]]) shows how the
implementation of the Lattice type class for subtrees is composed of its constituents: The join and meet
operations delegate to the corresponding operations for each component, and an instance of Subtree is
less than or equal to another instance if that relationship holds for each component individually.

1 implicit object SubtreeLattice extends Lattice[Subtree] {

2 override def top = Subtree(latD.top, ZUnknownLength(Set(AnyAttribute)), ZTop())

3 override def bottom = Subtree(latD.bottom, ZBottom(), ZBottom())

4 override def join(left: Subtree, right: Subtree): Subtree =

5 Subtree(latD.join(left.desc, right.desc),

6 left.attributes | right.attributes,

7 left.children | right.children)

8 override def meet(left: Subtree, right: Subtree): Subtree =

9 Subtree(latD.meet(left.desc, right.desc),

10 left.attributes & right.attributes,

11 left.children & right.children)

12 override def lessThanOrEqual(left: Subtree, right: Subtree): Boolean =

13 latD.lessThanOrEqual(left.desc, right.desc) &&

14 left.attributes <= right.attributes &&

15 left.children <= right.children

16 }

Listing 4.15: Definition of SubtreeLattice (instance of the Lattice type class)

In a similar way, the lattices for subtrees and for paths are eventually combined to form the lattice for
abstract nodes, N. Since we can use this N as the element type in ZList, the type for abstract node lists L
is just ZList[N].
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We will not go into the details of how individual operations on abstract nodes are implemented in the
Zipper Domain, but two particularities are worth mentioning:

Firstly, we try to ensure that abstract nodes are always normalized. In this context, we say that a node
is normalized if its components do not contradict each other with regard to what nodes they describe. For
example, the subtree component of a node could be ⊥ while the path component is not. As soon as one
component is ⊥, however, there is no concrete node that is represented by such an abstract node, and
therefore the whole structure is effectively ⊥. When the node is normalized, both components will be ⊥
in this case. Furthermore, a node could be represented by a subtree that only has an element label, and
a path that only has an attribute node label. Such a node does not exist either, so the whole structure
should be ⊥ in this case as well. By normalizing nodes, i.e. removing incompatible combinations from
each component, we allow operations to only look at individual components (i.e. either the subtree or
the path) and still work correctly.

Given a function normalize that performs this normalization, we can also create an abstract node
from only one component by using > for the other component: n = normalize((>,/foo/bar)), for
example, is the abstract node that represents any element named ‘bar’ that is a child of ‘foo’, which is in
turn a child of the root node. Normalization now ensures that the label within the subtree component of
n only contains the Element("bar") descriptor.3

Secondly, we did not implement all operations with the maximum possible precision that our rep-
resentation would allow. This is mostly due to complex interactions between the ZList type and text
node contents. In particular, the merging of text nodes within arbitrary instances of ZList[N] returns
ZUnknownLength in our implementation in some cases where it could be more precise. Since the concept
of abstract interpretation is an over-approximation already, this is not too much of an issue as long as
correctness is preserved (i.e. it would not be an option to not merge text nodes at all). The results of our
evaluation presented in the next chapter will confirm this.

4.5 Recursive Templates and Termination

The attentive reader will have noticed that we discussed the necessity to ensure termination in the
introductory section on abstract interpretation, but did not yet deal with this issue in detail as far as our
abstract interpreter is concerned.

While unbounded loops, which pose one possible source of non-termination of an analysis, are not
expressible in XSLT (the <xsl:for-each> instruction is not a loop in this sense), there are two ways in
which template instantiations can be recursive and possibly non-terminating:

• Named templates can be called recursively, meaning that a template calls itself (or another template
that later calls the original one) using <xsl:call-template>, usually with different parameters
than before and only if a certain condition is fulfilled. This is analogous to recursive functions in
other programming languages.

• Matchable templates might be applied recursively when they use <xsl:apply-templates> with a
select-clause that selects nodes which are in turn matched by the same template. This is unique
to XSLT (and possibly other transformation languages that adhere to the same rule-matching se-
mantics).

An example of the latter case is the following built-in template rule, which is implicitly added to every
stylesheet and matches the root node as well as any element node, if not overridden by other user-defined
rules:

3 The redundancy between subtrees and paths, as far as the label is concerned, is an effect of the recursive nature of how
subtrees and paths are represented, since both representations start with the node in question. The same issue exists
with the original Zipper structure when extended to labeled trees.
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<xsl:template match="*|/">

<xsl:apply-templates/>

</xsl:template>

Since the template application instruction misses a select-clause, the default selector is used which
selects all children. If one or more of those child nodes are not matched by another template rule, the
same built-in template is instantiated again, leading to recursion whose depth depends on the input tree.

The issue is not limited to built-in templates as the following example illustrates:

<xsl:template match="a">

<b><xsl:apply-templates select="a"/></b>

</xsl:template>

This template rule transforms a tree of <a> elements into a tree of <b> elements. Assuming that this is
the only template in a stylesheet (apart from the built-in rule above, which provides the entry point for
the transformation by matching the root node), the result will be a tree consisting solely of <b> elements.
This, however, can not be expressed in any of our domain implementations, since they do not support
recursive structures (i.e. defining the children of an element in terms of the element itself). If they did,
the least fixed point would be a tree of <b> elements of unknown depth, but in our domains this has to
be approximated at some point using >.

In order to do this, the abstract interpreter has to recognize recursive template instantiations. This
could be done by inspecting the stack of previous context nodes for multiple instantiations of the same
template, and comparing the nodes in this stack w.r.t. their precision: As long as further recursive calls
lead to a gain of precision in the result, the abstract interpreter should continue. However, due to
descending one level further in the tree leads to incomparable abstract paths in the Zipper Domain
(consider the paths /a/a and /a/a/a, for example), this approach does not work without employing
more advanced techniques such as widening [8], which exceed the scope of our work.

For these reasons, we decided to introduce the recursion limit already shown in Section 4.3, which
decrements a user-defined counter value whenever a template is instantiated. This approach works
for both named and matchable templates. The question of how different values for the recursion limit
influence the result and performance of the analysis will be discussed in the evaluation presented in the
next chapter.
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5 Evaluation

This chapter presents an evaluation of our implementations of both the concrete and the abstract in-
terpreter. We first show how the results of our interpreters compare to the ones of the XSLT processor
implemented in the Java standard library. We then evaluate the extent to which our abstract interpreter
is applicable to a collection of real-world XSLT transformations from various sources and show some
results. The source code of our implementation as well as the collection of stylesheets that were used in
this evaluation can be found on GitHub at https://github.com/Boddlnagg/analyzexslt.

5.1 Reference Tests

Using ScalaTest, we wrote a test suite that tests whether the results of our interpreters match the results
of the XSLT processor from the javax.xml.transform package in the Java standard library, which is an
implementation of the XSLT 1.0 specification. Each test consists of an XSLT stylesheet definition and
an input XML document. The Java XSLT processor is used to generate a reference result, which is then
compared to the result of our implementation.

The suite consists of 52 test cases and covers every supported XSLT instruction as well as various corner
cases of the specification, e.g. empty text nodes. Some tests also test for invalid inputs, meaning that
the reference processor will throw an exception. In these cases, our implementation must also throw
an exception or return ⊥. For example, the transformation in one test case produces multiple result
elements on the top level of the output document, which is not allowed.

The complete reference test suite is run once for each of our interpreter implementations, and each
implementation passes all tests:

• It is run once for the concrete interpreter, and the results must match exactly in order for the tests
to pass. In order to be able to compare the results, each reference result is parsed into our own
XML representation (cf. Section 3.1).

• It is also run once for the abstract interpreter using the Powerset Domain (using the typed
version of the XPath subdomain, TypedPowersetXPathDomain). The input is lifted into the domain
by wrapping it in a singleton set. The abstract interpreter runs on that input, and the result must be
another singleton set whose only element must match the reference result in order to pass a test.
The implementation would still be correct if the abstract result contained more than one concrete
document, but the Powerset Domain allows for maximal precision given a concrete input.

• Finally it is run for the abstract interpreter using the Zipper Domain. The input is lifted into
the domain using the lift... and create... domain operations. The reference result is lifted
into the domain as well and compared to the actual result w.r.t. the order in the lattice. We can
not guarantee maximal precision in this domain, therefore in order for a test to pass, the actual
result (ractual) must be a correct over-approximation of the (lifted) reference result (rre f ), i.e.
ractual ≥ rre f .

Besides the reference tests, there are other test suites covering individual areas of our implementation,
e.g. the operations in ZList, the parsing and evaluation of XPath expressions, and the abstract location
path pattern matching algorithm.

Another test suite runs the abstract interpreter on some simple stylesheets using the Zipper Domain
and > as the input. One of those is the CD catalog stylesheet we presented in the introduction (Listing
2.2). The result of this is shown in Figure 5.1 next to the concrete result that was already shown in the
introduction.
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1 <html>

2 <body>

3 <h2>

4 <![TEXT[Available CDs]]>

5 </h2>

6 <ul>

7 NIL + <li>

8 <b>

9 NIL + <![ANY-TEXT]>

10 </b>

11 <![ANY-TEXT]>

12 </li>

13 ...

14 </ul>

15 </body>

16 </html>

(a) Abstract result, from input >

1 <html>

2 <body>

3 <h2>Available CDs</h2>

4 <ul>

5 <li>

6 <b>Still got the blues</b> by Gary Moore

7 </li>

8 <li>

9 <b>Eros</b> by Eros Ramazotti

10 </li>

11 <li>

12 <b>One night only</b> by Bee Gees

13 </li>

14 </ul>

15 </body>

16 </html>

(b) Concrete result, same as Listing 2.3

Figure 5.1: Comparison of abstract and concrete result of the transformation in Listing 2.2

A few words must be given to the notation used here, since it is also used in the next section:1 It is a
mix of the XML format and the ZList notation introduced in Section 4.4.2. Hence, NIL means that the
list of child nodes might end at that position, and ‘...’ means that the previous node is repeated zero or
more times.

In order to distinguish text nodes from the ZList markers (such as NIL) and from the whitespace used
for indentation (which would actually be part of the document tree in real XML documents), we use the
<![TEXT[...]]> syntax, which is borrowed from the CDATA syntax found in XML. A similar syntax is
used for comment nodes.

Further examples in the next section will also show that node labels (such as html) are sets. We could
have also written <{html}>, but the curly braces are omitted for singleton sets in order to resemble the
XML format more closely.

The abstract result shows that our implementation statically (i.e. without concrete input) determines
the structure of the result document. One can see that the outer elements (html, body, h2, ul) do not
depend on the input, and that the <ul> element contains an unknown number of <li> elements, each
containing a <b> element and some text. The content of the <b> element might be empty, because the
source text where this content is taken from might be empty, but <![ANY-TEXT]> means that there is
some text node, which must not be empty.

5.2 Real-World XSLT Transformations

The previous section showed that our implementation achieves reasonable results for simple examples.
In order to find out how it works for more complex and realistic XSLT stylesheets, we gathered a collec-
tion of 16 XSLT stylesheets from various sources on the internet.2

In a first step, we then analyzed the features used in those stylesheets to evaluate the implications of
our decision to not implement the full feature set of XSLT. To do this, we used the XSLT and XPath parsers
that we had implemented and added the XSLTFeatureAnalyzer class that traverses the respective ab-

1 We have implemented a pretty printing function that generates this output from abstract nodes in the Zipper Domain.
By default, however, abstract nodes are printed using another representation that corresponds directly to the internal
representation, with added indentation of ZList elements for readability.

2 These files as well as information about their sources and abstract interpretation results can be found in the
xslt-collection directory within the Git repository.
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• Feature used and supported in our implementation
◦ Feature used but not supported
– Feature not used

00
-m

us
ic

xm
l

01
-li

br
eo

ffi
ce

-s
pr

ea
ds

he
et

m
l

02
-s

vg
-e

xa
m

pl
e

03
-n

un
itr

ep
or

t
04

-s
ic

k-
of

-b
ei

ge
-s

vg
05

-p
oc

ke
t2

ke
ep

as
s

06
-d

oc
bo

ok
-h

tm
l5

07
-e

ad
20

02
-to

-w
or

dm
l

08
-e

pu
b-

na
v

09
-z

ef
an

ia
2h

tm
l

10
-d

c2
m

od
s

11
-s

ph
in

xx
m

l2
re

vi
ew

12
-u

m
br

ac
o-

m
ed

ia
he

lp
er

13
-b

ra
in

fu
ck

14
-ia

ti-
ac

tiv
iti

es
-r

df
15

-g
ith

ub
2h

tm
l

Output Method xml xml html html xml xml defaulta xml defaulta html xml text xml xml xml xml
Namespaces – ◦ ◦ – ◦ – – ◦ – – ◦ – – – ◦ –
<xsl:import>/<xsl:include> –/– ◦/– ◦/– –/– –/– –/– –/◦ –/– –/– –/– –/◦ –/– –/– –/– –/– –/–
Top-Level Variables/Parameters –/– •/• –/• –/– •/• –/– –/• –/– –/– •/– •/– –/– –/– •/– –/– –/–
Other Top-Level Elements (<xsl:...>), unsupported – key – – – – – strip-space – – – – – – – –
Named Templates (<xsl:call-template>) – • • – • – • • – – • – – • – –
Template Modes – • • • – – • – – • – – • – – –
Variables/Template Parameters •/– •/• •/• –/– •/• –/– •/• –/– –/– •/– •/• –/– •/• •/• –/– –/–
Result Tree Fragments • • • – – – • – – • • – • • – –
Literal Text/<xsl:text> –/– •/• •/– •/– •/– –/– •/• •/• •/– •/• –/• •/• –/– –/– –/– •/–
Literal Elements/<xsl:element> –/• •/• •/– •/– •/– –/• •/• •/– •/– •/– •/– –/– •/– –/– •/– •/•
<xsl:attribute> • • – – • – • – – – • – • – – •
Attribute Value Templates – • • • • • • – – • – – • – • •
<xsl:processing-instruction> – – ◦ – – – – ◦ – – – – – – – –
Conditionals (<xsl:if>/<xsl:choose>) •/– •/• •/– –/– •/– –/– •/• •/• •/• –/– •/• –/• •/• –/• •/– –/–
<xsl:for-each> • • • – – – • • • – • • – – • •
<xsl:value-of>/<xsl:copy-of>/<xsl:copy> •/•/• •/•/– •/–/– •/–/– •/–/• •/–/– •/•/– •/–/– •/–/– •/•/– •/–/– •/–/– •/–/– •/•/• •/–/– •/•/–
Other Instructions (<xsl:...>), unsupported – message – – – – message sort number – – – – – – –
Union Operator in Selectors/Patterns •/• •/• –/– –/– •/• •/• •/• •/• –/– –/– •/– –/– –/– –/– –/– •/•
Max. Number of Steps in Patterns 1 2 1 1 1 1 3 5 1 1 1 5 1 1 0b 2

Literal position – – – – – – – – – – – – – – – –
Attribute literal value – – – ◦ – – – – – – – – – – – ◦Predicates in Patterns
Arbitrary expression – – – – – – – – – – ◦ – ◦ – – ◦

Patterns with ‘//’ Step (trivial/non-trivial) –/– –/– –/– –/– –/– –/– •/– –/– –/– –/– –/– –/– –/– –/– –/– •/–
Literal position ◦ ◦ – – – – – ◦ – – – – – – – –
Attribute literal value – – – – – – – – – – – – – – – ◦Predicates in Selectors
Arbitrary expression ◦ ◦ – – – – – – ◦ – ◦ ◦ ◦ – – –

Selectors with Absolute Path – • – – – – • – • • – – – – • •
child/attribute/parent •/•/• •/•/• •/•/– •/•/– •/•/– •/•/– •/•/• •/•/• •/–/– •/•/• •/–/• •/•/• •/•/– •/•/– •/•/• •/•/–
self/descendant/
descendant-or-self

•/–/– •/•/• •/–/– –/–/– –/–/– –/–/– •/–/• •/–/– –/–/– •/–/– •/–/– •/–/– •/•/– –/–/– •/–/• •/–/–Axes used in Selectors

Others (unsupported) – 5 more – – – – – – – – – – – – – –
Arithmetic/Boolean XPath Operators –/– •/• •/– –/– •/– –/– –/• –/• –/• –/– –/• –/– –/• –/• –/– –/•

Conversions – string
number

number – string
number

– – string – – string – – – – –

Booleans –
true
false
not

– – – – – – – – not not not not – –
Simple XPath Functions

Others –

name
count
position
concat

position – concat –

local-name
count
position
last

position
last

– – concat
name
count concat – concat local-name

concat

Strings/Math/Others –/–/– 8/3/4 –/–/– –/–/– 1/–/– 1/–/– 1/–/2 –/–/– –/–/– –/–/– 5/–/– 1/–/– 2/–/2 3/–/– 2/–/– 1/–/–Other XPath Functions
(unsupported) Extension Functions – ◦ – – – – – – – – – – ◦ – – –

a Either ‘xml’ or ‘html’ will be selected depending on the result of the transformation (cf. [3, Section 16]).
b The only pattern used here is the root pattern ‘/’, which has no steps.
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stract syntax trees and extracts a set of used features. To work around the fact that we do not support
importing stylesheets from external files, we copied the contents of imported stylesheets into the main
file.

We have compiled the results of this feature analysis in Table 5.1 in a way that additionally shows
which of the features are supported by our implementation. Several items in this table are noteworthy:

• Different stylesheets use fairly different sets of features. We were unabled to indentify a common
“core” feature set.

• Several features, some of which are not listed in the table, were not used in any of the analyzed
transformations. Among those are named attribute sets [3, Section 7.1.4], custom template prior-
ities, the <xsl:comment> instruction, and, most notably, non-trivial descendant steps in patterns.
Only one of the transformations, namely ‘01-libreoffice-spreadsheetml’, which is an import filter
for Excel files in LibreOffice, uses more than the six XPath axes that we support.

• Most stylesheets that use predicates use them for arbitrary expressions. This means that even
if we did implement support for only a subset of predicate expressions, such as literal position
predicates (specifying that a node must be the n-th element in the current node list) or literal
attribute value predicates (specifying that the value of an attribute must match a given string
literal), these stylesheets would still remain unsupported. Furthermore, many stylesheets do not
use predicates at all.

• Most of the XPath functions that we do not support are string functions (e.g. substring, contains,
etc.), each of which would require an additional domain operation. For some of those operations
our abstract interpreter provides stubs, so that the function can be evaluated but the result will be
topString, i.e. an unknown string value.

In the next step, we analyzed the collected real-world stylesheets using our abstract interpreter with
the Zipper Domain. In order to also analyze some of the stylesheets that use features which are not
supported by our implementation, we reduced them by removing usages of unsupported features while
(mostly) preserving the original semantics. For example, the usage of namespaces could be removed
in most cases by simply using unprefixed names for output elements. However, we did not reduce all
stylesheets, because some were simply too large (e.g. ‘01-libreoffice-spreadsheetml’ is 434 KB) or used
unsupported XPath functions to such an extent that any reduction would alter the semantics completely
(e.g. ‘13-brainfuck’ is a Brainfuck interpreter implemented in XSLT that makes heavy use of various
string operations; ‘12-umbraco-mediahelper’ uses custom extension functions that are only available in
conjunction with the Umbraco CMS).

For lack of concrete input documents, we were not able to compare the abstract results to concrete
results, but the following excerpts show that our abstract interpreter produces sensible results nonethe-
less.

Generally, the best results could be achieved for stylesheets which can be categorized as “Fill-in-the-
blanks stylesheets” according to M. Kay [2, p. 533]. These stylesheets usually consist of only one template
rule for the root node, which establishes the overall structure of the result document and has “blanks”
at certain places, which are filled according to data from the input document. From our collection,
stylesheets 04 and 14 fall into this category and therefore give good results even without a recursion
limit.

In ‘07-ead2002-to-wordml’, the header of the resulting WordML document is constant, i.e. predefined
in the stylesheet itself using literal result elements, but the body is dynamic, resulting in a “hole” in the
analysis result, as shown in Listing 5.1.

The content of this hole is essentially > (‘*’ designates any element node in our notation) because
the stylesheet uses <xsl:apply-templates/> to generate the contents of the <body> element, which
can trigger the built-in templates. Therefore, a recursion limit was required to terminate the analysis.
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<wordDocument embeddedObjPresent="no"? ocxPresent="no"? macrosPresent="no"?>

<fonts>

<defaultFonts fareast="Times New Roman"? h-ansi="Times New Roman"? cs="Times New Roman"? ascii="

Times New Roman"? />

</fonts>

<!-- ... rest of the constant header omitted in this listing ... -->

<body any-attributes>

NIL + <{*,![ANY-TEXT],![ANY-COMMENT]} any-attributes>TOP</*>

...

</body>

</wordDocument>

Listing 5.1: Result of analyzing ‘07-ead2002-to-wordml’

Interestingly, disabling built-in templates (recall that we added an option to do this, cf. Section 3.3) in
this case yielded the same results, indicating that the stylesheet contains the possibility of unbounded
recursive template application even without built-in templates.

The influence of built-in templates was more directly noticeable in other stylesheets. For example,
analyzing ‘02-svg-example’ results in>when built-in templates are enabled, but gives meaningful results
without them. However, we can not be sure if the stylesheet actually relies on built-in templates, so
disabling them might lead to incorrect results.

The analysis of some stylesheets, such as 03, 05, 08 and 09 from our collection, resulted in ⊥ when
built-in templates were disabled. In these cases, we can be sure that built-in templates are required for
correctness. For 08 and 09, slightly modifying the stylesheets by adding a new template rule for the root
node eliminated the need for the recursive built-in template rule, in such a way that good results could
be achieved even with built-in templates enabled and without a recursion limit. The result of the latter
is shown in Listing 5.2, which nicely illustrates what can be modeled in the Zipper Domain.

1 <html DIR="LTR"?>

2 <head>

3 <title>

4 NIL + <![ANY-TEXT]>

5 </title>

6 <link rel="SHORTCUT ICON"? href="../images/cs_icon.ico"? />

7 <script src="../js/zefania.js"? type="text/javascript"? />

8 <link rel="stylesheet"? type="text/css"? href="../css/zefania-ltr.css"? />

9 </head>

10 <body onLoad="javascript:toggledivchap()"?>

11 <!-- ... some <div> elements omitted in this listing ... -->

12 NIL + <div class={"chapterbody1","searchresults","chapterbody2","floatright","floatleft"}? id=*?>

13 <{ul,h1,p} class="treeview"? id={"menus_book1","menus_book2"}?>

14 NIL + <{li,![ANY-TEXT]}>

15 NIL + <a href="javascript:;"? onclick=*?>

16 NIL + <![ANY-TEXT]>

17 </a>

18 </li>

19 ...

20 </{ul,h1,p}>

21 NIL + <{script,p} type="text/javascript"?>

22 NIL + <{sup,![ANY-TEXT]}>

23 NIL + <![TEXT[ ]]>

24 <font color="#cccccc"?>

25 NIL + <![ANY-TEXT]>

26 </font>

27 <![TEXT[ ]]>

28 </sup>

29 ...
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30 </{script,p}>

31 </div>

32 ...

33 </body>

34 </html>

Listing 5.2: Result of analyzing ‘09-zefania2html’

For example, the node in Line 13 is either an <ul>, an <h1> or a <p> element, which might have
the attribute class="treeview" and also might have an id attribute with one of the two values
"menus_book1" or "menus_book2". The content of this node is a (possibly empty) combination of <li>
elements and text nodes.

It might be noted that apart from the addition of a template rule for handling the root node, we did
not have to modify or reduce this stylesheet in order to obtain the result above, since it does not use
unsupported features.

Finally, we have measured the performance of our analysis for three of the stylesheets in our collection
with varying recursion limits. Additionally, we compared the results to a version of our implemen-
tation without the performance optimization described in Section 4.3, showing that this is indeed an
optimization.

The benchmarks were run using Scala 2.11.4 (Java HotSpot 64-Bit Server VM, Java 1.8.0_25) on an
Intel Core i7-2630QM CPU (2.00 GHz) and 8 GB RAM. Each analysis was run 7 times for each recursion
limit up to a maximum of 10, as long as it took less than 120 seconds. The first 2 runs were then
discarded to account for JIT warmup, and the final result is the arithmetic mean of the remaining 5 runs.3

Furthermore, built-in templates were disabled for the stylesheet ‘02-svg-example’, as explained above.
The diagrams in Figure 5.2 show the results.
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Figure 5.2: Performance of analysis with varying recursion limits

One can see that, without the performance optimization, the time required for an analysis increases
exponentially with increasing recursion limit for all three stylesheets. This can be explained by the fact
that abstract template matching usually results in a number of possibly matching templates, and each
of those may in turn contain recursive template applications with multiple possibilities. Each of those

3 The code used for these benchmarks as well as their exact outcomes are available in the branches ‘bench’ (with optimiza-
tion) and ‘bench-noopt’ (without optimization) on GitHub.

54



possibilities has to be analyzed until the recursion limit is reached, leading to the exponential explosion
visible in the diagram.

The early-return optimization improves the situation for stylesheets 05 and 07 and has no impact on
stylesheet 02. This, as well as the vast performance increase for stylesheet 05, is likely due to the in-
fluence of the built-in template rules, which are disabled in stylesheet 02, but are apparently triggered
immediately in stylesheet 05 (recall that the optimization prefers template rules with low priority, there-
fore built-in templates – if applicable at all – are evaluated first, and no further templates are evaluated as
soon as > is returned). This assumption is supported by the fact that the result of analyzing stylesheet 05
is > (the final analysis results are, of course, independent of the optimization).

Furthermore, it is noteworthy that the results of stylesheet 02 become more precise as the recursion
limit is increased, whereas the results of stylesheet 07 do not differ at all for the tested limits up to 10
and always contain the static header and the “hole” as shown in Listing 5.1.

For comparison, we also measured the time required to analyze stylesheet 09, which did not need
any recursion limit: The analysis, of which the result has already been shown in Listing 5.2, took 0.022
seconds, regardless of the early-return optimization.

In conclusion, the preceding paragraphs have shown that both the quality (i.e. precision) of the results
as well as the performance of the analysis vary greatly depending on the given stylesheet. It could also be
observed that the Zipper Domain is able to express important properties such as restrictions of element
names and attribute values to a given set of possibilities, optional nodes, and repetitions. However, our
approach suffers from an inability to cope well with structural recursion in XML documents.
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6 Related Work

We are not aware of any prior work using abstract interpretation for the analysis of XSLT transformations,
but there is a lot of work in the area of static analysis of XSLT and XML transformations in general. We do
not claim that the following list is complete, rather we want to give an overview over other approaches
and related technologies.

Static Validation of XSL Transformations
A. Møller et al. [9] present a static analysis that is based on DTDs and handles the complete XSLT 1.0

language. Their analysis is able to statically verify whether the result of a transformation, given any
input document which is valid according to a specified input DTD, is again a valid document relative to
a specified output DTD. Since DTDs can not express certain criteria, such as the content of text nodes,
they apply an excessive preprocessing step which simplifies the given stylesheet by introducing various
approximations. Then, they present a fixed point algorithm to compute the flow of template invocations
and construct an XML graph which is eventually validated relative to the output DTD.

Both the flow analysis and the XML graph are able to deal with structural recursion in a way that our
naive, generic abstract interpretation approach is not.

They also provide statistical data on select and match expressions used in real-world XSLT stylesheets,
which is more exhaustive than what we were able to collect in this area, but basically confirms that a
vast majority of stylesheets use no descendant steps within patterns and no XPath predicates. Since
they note that test cases of stylesheets together with input and output DTDs are “remarkably difficult to
obtain” [9], it can be regarded as an advantage of our approach that it does not need to know about any
externally provided schema definitions.

XSLT 2.0/3.0
We have already mentioned that more recent versions of the XSLT standard exist [10, 11]. The most

interesting addition compared to XSLT 1.0 in the context of this work is the option for XSLT processors to
be schema-aware. This means that a processor can make use of type information in the form of an XML
Schema Definition (XSD). When such a processor evaluates a stylesheet, it may use schema definitions
to validate either the input document or the output document, or both, on the fly. The specification,
however, does not prescribe any static guarantees, rather “it is implementation-defined whether type
errors are signaled statically” [10, Section 2.9].

A master’s thesis by S. Kuula [12] extends the aforementioned approach by A. Møller et al. [9] to work
with XSLT 2.0 and XSDs, which are much more expressive than DTDs. Kuula claims that his approach
is fast enough for real-time analysis even for large stylesheets and schemas, but admits that his over-
approximations still lead to spurious errors, i.e. cases where his analysis can not prove that the output is
always valid relative to the target schema even though it is.

The main additions of XSLT 3.0, which is still in Working Draft status at the time of this writing, are
higher-order functions and better support for streaming. We are not aware of any research in the area of
statically analyzing XSLT 3.0 stylesheets.

A System for the Static Analysis of XPath
P. Genevès et al. [13] present a static analysis of XPath based on the propositional µ-calculus, which is

a propositional modal logic extended with least and greatest fixpoint operators. They are able to analyze
a fragment of XPath – which is restricted to location paths and only works with element nodes, but allows
all relevant axes (upward and downward) as well as predicates, union, intersection and negation – by
translating given XPath expressions into formulae in this logic. Then, they present an implementation
of a solver which can automatically check these formulae for satisfiability, in the sense that a formula
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is satisfiable if the expression might return a nonempty set of nodes. Morever, they show how other
XML decision problems, such as XPath containment (i.e. whether the result of one XPath expression is
a subset of the result of another) and equivalence (i.e. whether two XPath expressions always have the
same result) can be reduced to satisfiability.

By also presenting a possibility to lift DTDs into the µ-calculus, their approach allows to check for
satisfiability in restriction to a given DTD. Since XPath location paths are a fundamental component of
XSLT transformations, the static analysis of such transformations is mentioned as a use case for their
work, though they do not expand on this topic.

CDuce: An XML-Centric General-Purpose Language
Benzaken et al. introduce CDuce [14], a functional programming language designed for working with

XML documents. It can be used to write XML transformations similar to what is possible with XSLT, but
CDuce’s rich static type system allows these transformations to be statically analyzed in a much more
direct and comprehensive way. CDuce features ML-style pattern matching, which, in combination with
function overloading, can be used in a way similar to XSLT template rule matching, but is more versatile,
since patterns may be recursive and can contain regular expressions over sequences of XML nodes and
text characters. Since types can also be recursive, structural recursion in XML documents can be encoded
in the type system in a natural way.

As we faced the problem of merging adjacent segments of text in XML documents, it is noteworthy that
CDuce addresses this issue by always modeling strings as sequences of single characters instead of using
a distinct string or text node type. This way, for example the sequences [‘a’, ‘b’, ‘c’], [‘ab’, ‘c’] and [‘abc’]
are all implicitly equivalent. Furthermore, by using regular expressions over such character sequences,
values of text nodes can be specified in a much more fine-grained way than what is possible in DTDs or
in our implementation.

Benzaken et al. also present an implementation of a run-time system that executes CDuce programs,
which is based on deterministic tree automata and uses the available static type information to optimize
execution. Moreover, they mention the possibility of importing XML Schema definitions into the CDuce
type system, so that CDuce programs can be validated relative to existing schemas.
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