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Abstract Many programming languages offer no facilities to extend their
syntax. Programmers want to have syntactically extensible languages to
make design patterns become language features. Syntactic extensions can also
be defined to embed domain-specific languages in a safe way while keeping
their syntax. SugarJ provides these features, but only to Java programmers.
Syntax extensions can be used like libraries and can also be composed. We
identify Java-dependent aspects in SugarJ, find general abstractions and build
an abstract language library. Implementing this library as a plugin allows
programmers to use SugarJ for their programming language. We demonstrate
this with plugins for Java and Prolog.
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1. Introduction

Today’s software is written in an increasingly large number of program-
ming languages. Many of these programming languages are general-purpose
languages, such as C, Haskell and Java. General-purpose languages allow
programmers to solve a wide array of problems. But there are also special-
purpose programming languages tailored to a specific problem domain. These
include languages for describing structured data, like XML, and languages for
querying databases, such as SQL. These special-purpose languages are much
better suited for their domain than any general-purpose language, but they
lack their generality, so they are not used for writing arbitrary programs.

New approaches to programming are constantly invented. Problems
can often be solved in a better, more structured way by thinking of suitable
abstractions. For example, related data can be organized as objects. Program-
mers can then define methods operating on these objects and manipulating
them. Making this relation explicit by using objects enables programmers
to write better software. Without this, the relation would of course still be
there, only implicitly; programmers are then forced to keep this relation in
mind when writing methods to manipulate data. However, many languages
offer no built-in provisions for using these concepts. Since general-purpose
languages allow writing arbitrary programs, these concepts can of course be
expressed somehow. However, this is often inelegant and leads to confusing
code. This problem could be overcome if languages allowed defining new syn-
tax, so programmers can replace complicated representations of concepts by
easy-to-understand syntax. The mapping from the convenient syntax to the
complicated expression would have to be defined by the programmer. However,
many languages do not allow defining new syntax. We want programmers to
be able to define their own syntax so they can write code tailored to their
problems and abstractions. In Java, for example, a pair of values can not be
expressed conveniently. If programmers want to write methods returning a
boolean expressing whether the operation was successful and a message with
details, they can not simply write public (boolean, String) method(),
but have to define their own custom data type. If Java offered extensible
syntax, we could implement (type1, type2) as a return type to mean “return
a custom data type with a variable of type1 and a variable of type2.”

SugarJ [2] allows programmers to define their own syntax extensions for
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Java. Syntax extensions are used like Java libraries, so programmers can
import a library providing syntax for pair types just like they would import
a library providing functions for trigonometry.

Our goal is to allow programmers to use any programming language
they want to develop their software. To this end, we want to enable every
programming language to be extended, but we also want to keep compatibility
with existing code, libraries and tools. We base our work on SugarJ, rewriting
it to be used for programs written in any programming language. We
achieve this by identifying and abstracting Java-dependent code in SugarJ
and providing an abstract language library. New languages can then be
created as implementations of this library and added as language plugins.
SugarJ is then able to provide support for the programming language.

SugarJ, as a syntactic preprocessor, operates on abstract syntax trees,
which can be built from source code in any language given a suitable parser.
Thus, much of the existing SugarJ code can be reused to provide its features
for programmers using other programming languages. As SugarJ is a prepro-
cessor, it also generates source code. This generated source code does not
contain any features foreign to the programming language, so existing tools
operating on this source code will still work. The most important of these
tools is the language’s compiler, which does not need to be modified.

In the scope of this thesis, we have abstracted over SugarJ’s Java-
dependent features and developed a language plugin architecture. Pro-
grammers can implement their own language plugins with little effort. We
developed a small language API, which allows rapid implementation of new
language support. Using Eclipse plugins to support different programming
languages allows seamless integration into SugarJ’s new plugin architecture.
We implemented language plugins for Java and Prolog and enabled the im-
plementation of a Haskell plugin.

This thesis is organized as follows: In Section 2, we first provide some
background on domain-specific languages, syntactic sugar, and the purpose,
features and program flow of SugarJ. This is followed by a detailed look
into our extensible language plugin infrastructure, its design goals and imple-
mentation in Section 3. We dedicate Section 4 to the development process
and technical realization. The case studies we carried out by implementing
plugins for different programming languages to demonstrate the usability of
our language plugin architecture are described in Section 5. In Section 6, we
reexamine our design goals and point out potential improvements and future
work. We briefly survey related work in the field of language extensibility in
Section 7 and conclude in Section 8.
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2. Background

2.1 Domain-specific languages and syntactic sugar
General-purpose programming languages, such as Java, are designed to be
used for writing arbitrary programs. However, their rich feature set is often
quite detached from the actual problem to be solved in a certain application.
Although the problems can be solved, the solutions often lack clarity and
elegance, leading to convoluted code. Special-purpose programming languages,
in contrast, lack the feature set that makes general-purpose languages suitable
for writing any program. However, they are optimized for their specific
problem domain, allowing the programmer to solve problems easily, producing
easy-to-understand code. Examples of special-purpose languages include
XML, which is used to provide structured data representations, and SQL,
which is used to query databases. These are also called domain-specific
languages, as they are used for specific domains.

Because a lot of different problems can be solved with general-purpose
programming languages, programmers want to write code that is clear, easy
to understand and concise. One way to achieve this is to provide a level
of abstraction that hides the inner workings of the programming language.
Introducing shorthand notations in the programming language to provide
these abstractions will not change the expressivity. Programmers will just
be able to understand the code better if sensible abstractions are provided.
These abstractions are called syntactic sugar. To provide an example, in C,
accessing elements in an array is syntactic sugar:

int a[11];
// ...
int third_element = a[2];
int third_element_ = *(a + 2);

Although programmers could write *(a + i) to access the (i+ 1)th element
of an array, writing a[i] provides a level of abstraction: The programmer
need not concern herself with intricacies of C (in this case, that a is just a
pointer to the first array element), but can make code clearer by leveraging
the concept of an array as a data structure with a number of cells, each of
which contains a value.

Syntactic sugar is usually provided by the programming language and can
not be extended by the programmer. Often, new ways of providing better
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abstractions, such as object orientation, are discovered. Some level of object
orientation can be implemented by using structs in C. Listing 2.1 shows a
very basic example: We define a struct to encapsulate two values and define
a custom type. Replacing struct by a better keyword and automatically
generating the typedef would provide a more convenient way to express this.
Syntactic sugar could be used to implement it; however, since C does not
allow for user-defined syntactic sugar, this is not possible. Therefore, to
support object orientation in a convenient way, the language itself needs to
be changed, which happened to C with the introduction of Objective-C and
C++. As an example, compare Listing 2.1, which uses a struct to implement
the equivalent of a class in C, and Listing 2.2, which implements a class in
Objective-C.

struct Paper
{

float height;
float width;

};
typedef struct Paper Paper;

Listing 2.1: Using a struct to define an equivalent of a class in C

#import <Foundation/Foundation.h>
@interface Paper : NSObject
{

@public
float height;
float width;

}
@property(nonatomic, assign) float height;
@property(nonatomic, assign) float width;
-(id) init;
@end

Listing 2.2: Defining a class in Objective-C
Changing programming languages leads to a number of problems: Most

importantly, a lack of tool support and the need to learn the new programming
language. Often, this might be too high a price to pay for just being able to
use some new syntactic sugar.

Syntactic sugar and domain-specific languages share the idea of making
programming easier by providing easier-to-understand (and thus, better)
ways to solve problems. However, not all problems can be solved by a
domain-specific language; programmers want to use their general-purpose
programming language of choice to write programs, using DSLs only for
specific domains. To use a domain-specific language in a program, it needs to
be embedded somehow. The usual approaches are to embed it as a String or
to rebuild the DSL’s structure in terms of the general-purpose programming
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language, which is called pure embedding [5]. While string embedding is
easy to use, the program treats it just as a string, so no checking of the
actual string content is available. This can lead to hard-to-diagnose runtime
errors. Pure embedding will allow static checking. However, the abstractions
introduced are not helpful to the programmer. We would like to abstract
over the general-purpose programming language by using the DSL’s syntax.
Pure embedding does not provide a high enough level of abstraction by
requiring the DSL to be encoded in terms of the general-purpose language.
This makes it hard to understand for people without knowledge of both the
domain-specific and the general-purpose programming languages used.

As we have seen, general-purpose programming languages can benefit from
domain-specific languages for solving special problems. However, actually
embedding domain-specific languages is hard because they need to be encoded
in terms of the general-purpose language (we deem string embedding to be
mostly inacceptable), which reduces code clarity. If we can define our own
syntactic extensions, programmers can define embeddings for domain-specific
languages as syntactic sugar. This syntactic sugar will enable the DSL to be
embedded verbatim and desugar it to the general-purpose language. This
way, we can have both the benefits of pure embedding and the DSL’s syntax.
We can use the static checks provided by the general-purpose programming
language with the convenient syntax of the DSL.

2.2 SugarJ
2.2.1 Purpose, features

SugarJ allows programmers to define their own syntactic sugar for Java
programs [2]. This also allows domain-specific languages to be embedded
easily. If we allow user-defined syntactic sugar and embedded DSLs, program-
mers should be able to use them easily. To this end, SugarJ ties into Java’s
module system. Programmers can import modules containing syntactic sugar
definitions just like they would import other modules (i.e. packages) in Java.
Syntactic sugars can also be composed, allowing sugar definitions themselves
to use syntactic sugar defined in other modules.

import Xml;
public void genDocs(ContentHandler ch) {

ch.<book title="Sweetness and Power">
<author name="Sidney W. Mintz" />
</book>;

}

Listing 2.3: Using XML syntax in Java with SugarJ. From [2]

To make this possible, SugarJ builds upon the Syntax Definition Formalism
(SDF) [4] and the Stratego [8] term-rewriting system. SDF provides a
generalized LR parser, which we use to parse programs to abstract syntax
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trees. SDF uses grammars for parsing and allows these grammars to be
extended. This is important because it allows SugarJ to add syntactic sugar
definitions to the parser on-the-fly, enabling it to recognize syntactic sugar in
programs. Stratego allows us to define rules which are then pattern-matched
on the abstract syntax tree and perform tree transformations. Stratego rules
can also be composed. This is also important: While the extensibility of
SDF allows us to recognize syntactic sugar in the program, the extensibility
of Stratego allows us to modify the desugaring transformation to enable
desugaring on the fly.

2.2.2 Program flow

SugarJ is a preprocessor for Java files. However, it will not work on the
program source code directly: SugarJ’s approach is to parse the program
first, turning it into an abstract representation: The abstract syntax tree
(AST). In this representation, statements in the source code are nodes of the
tree, so SugarJ will only have to operate on trees, not on tokens.

A short overview

When a file is to be processed, SugarJ will first initialize the parser with the
Java grammar. This is needed to be able to generate the abstract syntax
tree from the source code. It will then enter a loop which processes the
file (see Figure 2.1). This loop consists of parsing the source file to obtain
the next top-level entity, applying transformations (i.e. desugarings) to the
top-level entity, and then processing the top-level entity. Processing will
first analyze the current entity in order to find out what kind of entity it is.
Depending on the result, further processing steps will be carried out, such as
processing a namespace declaration, processing module imports, processing
sugar definitions or language-definable language-specific processing.

After the whole module has been processed, checks will be carried out
to ensure the correctness of the grammar and transformation which have
been built and amended by the processing. Then, the abstract syntax tree
is converted to a source file, which is then handed to the language’s compiler
to be compiled into a program (cf. Figure 2.1).

Syntactic sugar processing: A closer look

The overview of SugarJ’s program flow might have left some questions unan-
swered, so we take a closer look on the most interesting processing step: How
SugarJ actually deals with a program using user-defined syntactic sugar.

When a declaration of syntactic sugar is recognized in the AST analysis
step, SugarJ retrieves the body of this declaration. This body contains a piece
of SDF grammar which describes what this specific syntactic sugar looks like
in the source code. This is needed to generate an AST node (which will be a
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Figure 2.1: Steps to process a module
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subtree for all but the most basic syntactic sugars) for the sugared expression;
without having an AST node for everything in the source code, SugarJ will
not be able to do anything. The sugar body will also contain Stratego rules
defining how to transform the subtree expressed by the grammar into a valid
subtree of the programming language.

Following that, SugarJ modifies the parser used to parse the program
source code into an AST: Using the piece of SDF grammar defined in the
sugar body, the parser can now produce a valid AST from code which was
defined as syntactic sugar. This applies especially to code that is not valid
code in the programming language. If the parser was not modified with this
grammar, it would fail to recognize the user-defined code which can not be
described by the programming language grammar, causing it to stop parsing1.

However, merely being able to parse source code into a correct AST
will not be of much use. The AST only describes the program’s structure,
not its meaning. Using the Stratego rules from the sugar body, the initial
program transformation will be modified. It will then be able to transform the
newly introduced AST nodes described by the SDF grammar into AST nodes
defined by the programming language’s grammar—also known as desugaring.

SugarJ’s basis for extensibility

Operating on ASTs is the key to enabling us to adapt SugarJ to work with
languages other than Java. In Section 4.1, we describe how we implemented
this. SugarJ decides which processing steps to execute based on the content
of the current AST node. Of course, the content of an AST node is different
for each programming language. There are four meanings of the content that
need to be recognized:

1. Namespace declarations provide SugarJ with information about the
name of the current module and its place in the module hierarchy.

2. Module imports tell SugarJ to load the imported module. If it de-
fines syntactic sugar, the parser and desugaring transformation will be
modified.

3. Sugar declarations will be analysed to retrieve their content. They will
then be used to modify the parser and desugaring transformation.

4. Language-specific entities are ‘normal’ nodes. They are also used for
nodes that change the behaviour of the compiler or the module system
in ways different from the other three categories. For example, when pro-
grammers define multiple classes in a single .java file, the Java compiler
will generate a .class file for each class, which SugarJ needs to know.

All AST nodes need to fall in one of these four categories. This way, if SugarJ
sees an unknown AST node after desugaring, we know that desugaring failed.

1Actually, error recovery mechanisms are used to still parse as much as possible
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3. Language Plugin

In order to allow software developers to easily add support for their program-
ming language of choice to SugarJ, we implemented a generic language plugin.
This section describes the design considerations and its components.

3.1 Design goals

We reengineered the SugarJ system to achieve a number of design goals.

Generic Programmers should be able to implement support for any language.
There is a large number of programming languages in use in industry
and research. Many of these languages follow different philosophies
and paradigms. We don’t know what programming languages will be
in use in the future, so concentrating on a small set of programming
paradigms or even programming languages is not sustainable. Therefore,
to enable programmers to use SugarJ for any programming language,
past, present, or future, we want to keep the language plugin generic.
By keeping the language library small, we also have the added benefit
of reducing the interface to the absolutely essential. This, in turn,
makes it possible to enable support for other programming paradigms,
including non-imperative programming languages.

Small Implementing a language plugin should not require much effort, which
is achieved by keeping the interface to SugarJ small. The utility
of a system like SugarJ is largely dependent on its usability. We
want to make sure that support for new programming languages can
be implemented easily. This will allow rapid implementation of new
programming language plugins, enabling more programmers to use
SugarJ for their programming language of choice. We achieve this by
focusing on keeping the library small. As a consequence, we consolidated
SugarJ’s code to allow reusing as much as possible.

Pluggable SugarJ is an Eclipse plugin and is intended to work in an Eclipse-based
infrastructure. To allow extensibility, it makes sense to leverage the
eclipse plugin infrastructure, allowing new languages to be implemented
as plugins. Creating pluggable programming language support allows us
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to distribute a base SugarJ system, allowing programmers to just write
their own language plugins without touching SugarJ’s code at all. This
is very useful to ensure interoperability between language plugins imple-
mented by different programmers, allowing them to be exchanged easily.

3.2 Components of the Language implementation

A language plugin consists of several components. They are shown in Figure 3.1.

Language
grammar

Sugar
grammar

Source file
representation

Language
library

Language plugin

Pretty-printer Java
SDF

Figure 3.1: Components and implementation languages of the language plugin

3.2.1 SDF grammars describing the language and a way to
define syntactic sugar

To implement a new language, SugarJ needs to know how to parse the
program source code, how syntactic sugar is defined and how to pretty-print
ASTs to an output which is accepted by the language’s compiler.

To enable parsing the language to an AST, an SDF grammar describing
the language is needed. We make no requirements concerning the structure
and content of this grammar. However, as the implementation of the language
API needs to discern namespace declarations, module declarations and module
imports, we recommend to include distinct nonterminals for these. SugarJ
currently does not have a mechanism to avoid the effects associated with name
clashes; therefore, we recommend prefixing nonterminals with the language
name to avoid future problems. To allow the desugaring transformation to
use nonterminals defined in the grammar, a Stratego file needs to be created:
This defines constructors for Stratego and can be generated from the SDF
grammar by using Stratego’s sdf2rtg and rtg2sig.

For defining syntactic sugar, the programmer also needs to implement the
sugar grammar. This describes how sugar and its desugarings are defined.
SugarJ expects syntactic sugar to be defined as an SDF syntax and Stratego
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rules, which should be reflected in the grammar. The scope of this thesis
was not to come up with a more intuitive or better integrated syntax for
defining syntactic sugar and its desugarings, so for our case study, we only
modified the grammar slightly to implement support for defining sugar for
a new programming language. However, two things are important in this
grammar: First, a nonterminal describing a sugar definition so that the
implementation of the language API is able to recognize sugar definitions.
Second, productions to define all the language’s top-level entities and sugar
declarations as ToplevelDeclaration. SugarJ works by incrementally processing
the AST’s top-level entities, loading desugarings and immediately applying
them to the remaining AST. Without knowing the top-level entities, SugarJ
will not work. As with the language grammar, a corresponding Stratego file
defining the constructors is also needed for the sugar grammar.

3.2.2 A pretty-printer to generate source code from the AST

Compilers of programming languages do not work on the ASTs generated
by SugarJ, so a means of transforming an AST back into source code is
needed. This transformation is called pretty-printing and SugarJ requires a
pretty-printer to be available. The implementation of this pretty-printer is
left to the programmer. For the Java language library, we chose to use the
Java pretty-printer included in Spoofax [6]; for the Prolog language library,
we generated a pretty-printer from the Prolog grammar with Stratego.

3.2.3 Source file representation

SugarJ processes the program’s AST. After the whole AST is processed, the
AST needs to be converted back to code again, as the language’s compiler will
not understand SugarJ’s ASTs. Whereas the language library is concerned
with ASTs, the source file representation is concerned with code. The
source file representation consists of two classes, ISourceFileContent and
SourceImport. Each AST processing step will have to put a suitable code
representation in the source file content. After processing is done, SugarJ
will retrieve the source code from the source file content.

ISourceFileContent is an interface providing two methods:
isEmpty returns true if the source file is empty and false otherwise. A source
file is empty if it does not contain any program code. In this sense, a source
file containing only sugar definitions is empty. Empty source files are not
written to disk and will not clutter the project. SugarJ will also not generate
code to import empty source files, but will still import the sugar definitions.
Therefore, source files which only define sugar should be empty.

getCode is called to obtain the source code of the processed file. It is
up to the programmer how this is implemented. In our Java and Prolog
implementations, each top-level entity is pretty-printed and then saved as
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a String in the source file content. Some top-level entities, such as module
declarations and imports, can not be pretty-printed directly and may require
additional computations. To allow better handling of imports, we introduce
SourceImport.

SourceImport is a class designed to help the programmer manage source
file imports. It provides a way to store the actual path to an imported source
file and its pretty-printed representation.

3.2.4 Language library

The language library is a collection of abstract methods that need to be imple-
mented for each language. SugarJ uses these methods to initialize the parser,
desugaring transformations and editor services, to recognize AST entities
and to react on them, to process definitions of syntactic sugar, and to invoke
the compiler. Listing 3.1 shows the abstract methods of the language library.

Initialization

SugarJ was redesigned as a modular, flexible and extensible system. As such,
it operates on abstract data representations. As we focus on extensibility, we
only make very limited assumptions about the structure of programs and
no assumptions about their syntax. This allows developers to use SugarJ
for any programming language. Because all programming languages are
different, the first step is to initialize SugarJ with language specifications.
This allows SugarJ to parse program source code, recognize elements in
the thusly constructed abstract syntax tree (AST), process desugarings and
provide editor services.

SugarJ needs to know the syntax of the language and the syntax of the
sugar definitions. It also needs to know how to parse SDF and Stratego in
order to extract these from sugar definitions. The language library features
a method getGrammars, which returns grammars needed for parsing SDF,
Stratego and editor services. The implementation of the language library
should overwrite this method, getting the list and extending it by the language
and sugar grammars. getInitGrammar provides a path to the SDF grammar
containing the initial grammar used for parsing the programming language.
getInitTrans returns the location of the initial desugaring transformation
(which will be extended later by sugar definitions). getInitEditor returns the
path to initial editor services.

File extensions

SugarJ will only operate on files having the correct file extension. All files that
should be processed by SugarJ (including files neither using nor defining sugar,
but being part of a program using sugar) are required to have the file extension
returned by getSugarFileExtension. Currently, this needs to be .sugj
getGeneratedFileExtension defines the file extension of generated files, i.e.
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public abstract class LanguageLib implements Serializable {
// Initialization
public List<File> getGrammars() { ... }
public abstract File getInitGrammar();
public abstract String getInitGrammarModule();
public abstract File getInitTrans();
public abstract String getInitTransModule();
public abstract File getInitEditor();
public abstract String getInitEditorModule();

// File extensions
public abstract String getGeneratedFileExtension();
public abstract String getSugarFileExtension();

// Source files and generated files
public abstract void setupSourceFile(RelativePath sourceFile, Environment environment);
public abstract ISourceFileContent getSource();
public abstract Path getOutFile();
public abstract Set<RelativePath> getGeneratedFiles();

// AST analysis
public abstract boolean isNamespaceDec(IStrategoTerm decl);
public abstract boolean isLanguageSpecificDec(IStrategoTerm decl);
public abstract boolean isSugarDec(IStrategoTerm decl);
public abstract boolean isEditorServiceDec(IStrategoTerm decl);
public abstract boolean isImportDec(IStrategoTerm decl);
public abstract boolean isPlainDec(IStrategoTerm decl);

// AST processing
public abstract void processLanguageSpecific(IStrategoTerm toplevelDecl,

Environment environment) throws IOException;
public abstract void processNamespaceDec(IStrategoTerm toplevelDecl,

Environment environment, IErrorLogger errorLog,
RelativeSourceLocationPath sourceFile,
RelativeSourceLocationPath sourceFileFromResult) throws IOException;

// Namespace
public abstract String getRelativeNamespace();

// Module import handling
public abstract boolean isModuleResolvable(String relModulePath);
public abstract String getImportedModulePath(IStrategoTerm toplevelDecl) throws IOException;
public abstract void addImportModule(IStrategoTerm toplevelDecl, boolean isCyclic)

throws IOException;
// Sugar declaration processing
public abstract String getSugarName(IStrategoTerm decl) throws IOException;
public abstract IStrategoTerm getSugarBody(IStrategoTerm decl);

// Editor services
public abstract String getEditorName(IStrategoTerm decl) throws IOException;
public abstract IStrategoTerm getEditorServices(IStrategoTerm decl);

// Pretty−printing
public abstract String prettyPrint(IStrategoTerm term) throws IOException;

// Interface to the language compiler
protected abstract void compile(List<Path> outFiles, Path bin, List<Path> path,

boolean generateFiles) throws IOException;
// Miscellaneous
public abstract File getLibraryDirectory();
public abstract LanguageLibFactory getFactoryForLanguage();
public abstract String getLanguageName();

}

Listing 3.1: Abstract methods of the Language library
15



files generated by the language’s compiler (e.g. .class for Java). This needs
to be different from the sugar file extension. This way, SugarJ can recognize
if program files have already been compiled and not compile them again.

Source files and generated files

These methods concern creating source files and generated files.
setupSourceFile is used to initialize a new source file and output file, i.e.
create a file name for the output file and create a new ISourceFileContent.
getOutFile returns a path to the output file, getSource should return this
ISourceFileContent.

getGeneratedFiles returns the set of files generated by the SugarJ driver.
It is modified by the driver and does not need to be used in the implementation
of the language API. This is provided for languages which allow several files
to be generated from a single source file. If this is the case, the language
library should add the names of the other files that will be generated by the
compiler to the set. Java, for example, allows the definition of several classes
in one .java file, leading to the generation of multiple .class files.

AST analysis

There are several kinds of relevant AST nodes. When encountering them
in the AST, special processing steps need to be carried out. Developing a
language library includes implementing methods to check whether the current
top-level declaration falls into one of these classes.

Namespace declarations are recognized by isNamespaceDec. Namespaces
are required to assign names to modules, enabling building module structures
and import systems. In Java, package declarations will be recognized by this
method; the same applies for module declarations in Prolog.

Recognizing imports is done by isImportDec. When an import is recog-
nized, the SugarJ compiler will resolve the import statement to a module
on disk. If the imported module is a module containing definitions of syn-
tactic sugar, this module is processed immediately, extending the parser
and the desugaring transformation. This allows transforming AST nodes to
desugared AST nodes. Software developers implementing a language library
need not care about this, since it is all done automatically by the SugarJ
compiler. If the import is not a module containing syntactic sugar definitions,
it will be processed and added to the source file as an import module (cf.
addImportModule).

isSugarDec recognizes declarations of syntactic sugar. Syntactic sugar
will be processed, extending the parser and adapting the current desugaring
transformation. If a sugar declaration is encountered, SugarJ extracts the SDF
and Stratego-related parts from this declaration and modifies the parser on the
fly. This allows the syntactic sugar to be used from the next top-level entity on.
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isLanguageSpecificDec recognizes language-specific declarations. This
should include all valid top-level entities of the programming language. It
is required for two reasons. First, we want to ensure that SugarJ will stop
processing the AST if unknown entities are encountered. Therefore, all known
entities need to be defined somewhere. Some of them, as can be seen in this
and the following section, trigger further processing steps. Others, like the
language’s top-level entities, just need to be known. Second, programming
languages can be very different. We want to be as flexible and language-
parametric as possible, so we allow language-defined processing steps to be
carried out when certain entities are encountered. One example where this
is needed is in our Java implementation: Having multiple class declarations
in a single .java file requires several .class files to be created; a language-
specific processing step defined in the Java language library modifies the list
of generated files accordingly.

Editor services can be recognized by isEditorServiceDec. Extensible
editors were not the focus of this thesis, but are processed like syntactic
extensions.

AST processing

As we have seen, different kinds of AST nodes will lead to different processing
steps to be carried out. We managed to keep most processing steps language-
independent, so the programmer will just need to implement methods to
identify the kind of AST node the SugarJ compiler is currently operating
on. Processing of some AST nodes, however, can not be abstracted over all
languages, so this has to be implemented separately for each language.

In SugarJ, this applies to language-specific top-level entities which are
processed by processLanguageSpecific, which can be used if the language
requires some extra processing to be carried out.
One example where this is sensible can be found in the Java library implemen-
tation: In Java, several classes can be implemented in a single .java file; upon
compilation, separate .class files for each of these classes will be created. In
the Java library, this step identifies the names of the classes and adds the
filenames of their respective generated files to the list of generated files.

The other processing step which needs to be implemented by the library de-
signer is processing namespace declarations, processNamespaceDec. SugarJ
bases handling of modules and imports on the notion that namespaces are de-
fined in each module, they are organized hierarchically and reflect the project’s
structure on disk. A language library designer needs to implement this pro-
cessing step because we can not expect that namespaces are always defined in
the same manner in a single top-level entity by all programming languages.

These are the only AST processing steps which need to be implemented.
There is no processSugarDec: SugarJ will handle the processing of syntactic
sugar automatically. Processing sugar declarations and applying desugarings
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to the AST are done by the SugarJ driver. These processing steps will work
for all programming languages, so programmers do not need to care about
the implementation details. This reduces the effort spent in implementing a
language library. However, methods to retrieve the name and definition of
the sugar need to be implemented.

Namespace

SugarJ expects modules to have namespaces. Namespaces are also expected
to be organized hierarchically. The project structure on disk should reflect
the namespace structure, which allows SugarJ to infer the location of module
files from their namespace. getRelativeNamespace should return a relative
path in this sense.

Module import handling

By using the module system already known to the programmer, SugarJ
makes using syntactic sugar equivalent to importing a module. Thus, module
imports are processed separately. SugarJ will process imported modules,
which requires their location on disk to be known. Checking for module
availability also allows issuing warnings in the editor if the user tries to import
a nonexistent or unavailable module. Import processing is almost completely
done in the driver, so implementing support for a new language only needs a
few simple methods.

isModuleResolvable checks whether the module can be resolved. Many
languages feature library management mechanisms which allow modules to
reside in a common library directory and be retrieved automatically by the
compiler. Some languages also feature mechanisms to load modules from
libraries which are different from the normal module import mechanisms.
Modules in libraries do not need to be processed by SugarJ, so they are just
added as imports.

getImportedModulePath returns the relative path of the imported mod-
ule. This is important to find the module on disk, but even more so to
distinguish SugarJ’s standard modules from normal modules. The relative
path of SugarJ’s standard library modules begins with org/sugarj. Imports
of standard library modules are processed differently. The language definition
has to be a standard library module (e.g. org/sugarj/languages/Java).

addImportModule Imported modules are added to the source file and com-
piled. Some programming languages allow cyclic imports, which can be han-
dled by SugarJ. Modules included in a cycle will be assumed to exist before ac-
tually being compiled. This also precludes having Sugar definitions in a cycle.

Sugar declaration processing

The methods getSugarName and getSugarBody are required to enable the
processing of syntactic sugar declarations.
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SugarJ uses a module system to manage different definitions of syntactic
sugar. This is intended to integrate seamlessly into the programming lan-
guage’s module system; if an imported module happens to be a Sugar module
containing definitions for syntactic sugar, SugarJ should extend the parser
and desugaring transformation. For this to work, every sugar module needs
to have a name which can be recognized by the module system. The purpose
of the method getSugarName is to provide this name.

The other part of a sugar definition is returned by getSugarBody. It
returns the SDF grammar describing the sugar’s syntax, the program trans-
formations used for desugaring written in Stratego and a list of Stratego rules
to apply as the desugaring.

This is everything required for getting user-definable syntactic sugar to
work. The driver will extract SDF and Stratego from the sugar definition
and modify the parser as needed when the sugar is loaded.

Editor services

getEditorName returns the name of an editor extension. getEditorServices
returns the definition of an editor extension. This works similar to syntactic
sugar.

Pretty-printing

SugarJ produces an AST, but this is not what the programming language’s
compiler needs in order to produce a compiled program. A pretty-printer is
needed to transform elements of the AST into program source code accepted
by the compiler. The method prettyPrint should return the pretty-printed
representation of the input IStrategoTerm.

Interface to the compiler

SugarJ is intended to act as an immediate step before the compiler. The
language library provides the method compile to invoke the compiler. It is
called after the complete AST has been processed. For Java, this should call
javac. For interpreted languages like our choice of Prolog, this does not need
to do anything. This method is protected because it is not supposed to be
called directly; the language library contains a method to start compilation,
which will call this method.

Miscellaneous

The language API also includes miscellaneous methods. The name of the pro-
gramming language name should be defined to enable better logging messages.
There also needs to be a method returning a factory to create a new language
library. The library also needs to include a way to return its location on disk
so filenames of grammars and transformations can be resolved correctly.
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4. Technical realization

4.1 Changes to the SugarJ compiler to support
arbitrary programming languages

After we built the abstract language library, adding support for arbitrary
programming languages that can be implemented as language plugins to the
SugarJ compiler was straightforward. SugarJ’s processing steps can be seen
in Figure 2.1. We will refer to this figure to explain what we modified.

We added the language library to SugarJ’s initialization code as a pa-
rameter. SugarJ now uses the grammars and transformations defined in the
language library. We did not need to modify parsing and desugaring.

To adapt SugarJ to work with languages other than Java, we modified all
processing steps that analyze or extract information from AST nodes (refer
to Section 2.2.2). Figuring out the meaning of an AST element—whether it
is a namespace declaration, a language-specific entity, a module import, or
a sugar definition—is now handled by the language library. We chose this
approach because it allows developers to define their own names for these
nonterminals in their language grammars. This makes development easier,
because nonterminals in grammars can be given sensible names.

Processing namespace declarations, which will return the module’s place in
the module hierarchy, must be done by the language library. Module systems
are vastly different across programming languages. Processing language-
specific entities is, as the name implies, also completely done by the language
library. To process imports, SugarJ calls the language library to extract
the imported module’s location from the AST node of the import. All
other import processing is done automatically by SugarJ. To process sugar
definitions, SugarJ requests the definition’s body from the language library.
Modification of the parser and transformation are handled by SugarJ.
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Figure 4.1: Project structure and dependencies before (left) and after (right)
refactoring

4.2 Overview of the project structure
At the beginning of development, SugarJ consisted of three projects: compiler,
editor and stdlib. The editor project is used for integrating SugarJ into eclipse,
providing build services and editor support. The stdlib project contained
the Java language and sugar grammars, initial transformations and editor
services. The compiler project contained the whole program logic.

After reengineering SugarJ to provide an extensible plugin architecture,
the SugarJ core consists of 5 projects: common, compiler, editor, languagelib,
and stdlib. We also provide two language implementations, javalib and
prologlib. The editor project was only modified slightly to support the lan-
guage library. The common project contains commonly used classes and
interfaces: Managing file paths, IO, logging, ATerm and java commands.
The stdlib project contains grammars for SDF, Stratego, editor services, the
common grammar defining files to consist of ToplevelDeclarations, as well
as the standard transformation. The languagelib project defines SugarJ’s
interface for supporting new languages. Programmers can add support for
a new language by creating a project which implements languagelib. This
allows the SugarJ compiler to be used for providing SugarJ’s features to
this programming language without any further change. The languagelib
defines the actual language API as well as an interface for representing source
files. The compiler project contains the program logic of SugarJ which is
responsible for transforming program source code to ASTs and processing
desugarings. Care was taken to leave most classes in the compiler project and
only extract the absolutely essential classes and methods to other projects.
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4.3 Development process

SugarJ is implemented in Java as an Eclipse project. SugarJ was previously
intended to provide a means to implement syntactic sugar for Java, whereas
the goal of this thesis was to allow using SugarJ for arbitrary languages while
keeping its main feature, library-based syntax extensibility. We chose an agile
approach which was to first extract obviously Java-dependent code and then
building a language API while reengineering SugarJ to turn it into an exten-
sible plugin architecture. After this, the remaining Java-dependent aspects
which might have been overlooked earlier were identified by implementing
support for a different programming language in this architecture. This
language implementation would also serve as a case study to demonstrate
our new system.

The first step of development was to extract Java-dependent code. Some
Java-dependent code was identified by stepping through a run of SugarJ with
small Java source files and sugar files in the debugger and visualizing program
flow. The identified code was then abstracted to create an initial version of
the language library. We simultaneously built the Java library by moving
the identified code there.

The original SugarJ implementation was characterized by tight coupling
of language-specific and SugarJ-specific code as well as utility code which
were organized as a single project (compiler). We extracted methods to the
language API and its implementations, which were implemented as their own
projects. This led to cyclic dependencies between projects, which can not be
resolved by the Eclipse plugin system. For this reason, we spent some time
on refactoring the program structure to resolve cyclic dependencies. There
are three causes of cyclic dependencies, leading to three approaches for their
resolution:
The first approach is to move whole classes to projects higher up in the
dependency tree. This requires the class not to depend on other classes
defined in the originating project. Some examples of this were utility classes
for managing files and directories and ATerms. They can be found in the
common project.

Moving whole classes as-is is not possible when classes depending on classes
of their originating project are used in projects lower in the dependency tree.
This problem is solved by the second approach: Identifying actual usage and
extracting a suitable interface which is then implemented by the original class.
One example of this can be seen in Result: This is a very compiler-specific
class which stores the result of a compilation. In the original implementation,
it also contained logging facilities required in the language library. Once these
logging facilities were moved to a generic error-logger interface, Result could
remain in the compiler, whereas the error logging is used in the language
library.

Classes are used to group related methods. During refactoring, some
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methods in classes became more related to methods in other classes, reflecting
the change in program structure. Regrouping these methods helped in
resolving cyclic dependencies. Increasing coherence inside classes also made
the program more logical and easier to follow.

After refactoring into plugin projects was done, we added sugar support
for another programming language. Adding support for a programming
language consists of creating a language grammar and a sugar grammar,
implementing a source file representation and the language API. The language
we implemented was Prolog, which was chosen for several reasons. Prolog
has a rather minimalistic syntax, making the grammar required for parsing
small and easy to adapt to our needs. Prolog also features a module system,
which is required for SugarJ. One additional point for choosing Prolog was
the dissimilarity to Java, which would help to ensure that no Java-dependent
features—or imperative-language-dependent features in general—would be
left unidentified in the implementation.

The last step was then to refactor parts of the project, notably the
language API: Consolidating similar methods, assigning meaningful names
and cleaning up code.
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5. Case studies

Using our language plugin architecture, we implemented support for several
programming languages to show that the reengineered SugarJ system works.
To give an overview about the effort it takes to implement a new language,
we show lines of code of the language libraries.

5.1 Java

Support for the Java programming language was previously integrated into
SugarJ. Obviously, making SugarJ language-parametric without providing a
way to use legacy SugarJ code was not an option. Therefore, we built a Java
language plugin while identifying and abstracting over Java-dependent code
in the SugarJ implementation. Apart from minor changes in functionality
due to API refinements, this plugin provides the same functionality as SugarJ
originally did. Therefore, we expect all legacy SugarJ code to still work.

Language Lines of Code
Java 398
SDF 1356

Stratego 446

Figure 5.1: Java language library

We want to focus on our Prolog language plugin, as the Java plugin contains
mostly already existing code extracted from SugarJ. Therefore, no design
choices had to be made.

5.2 Prolog

We implemented syntactic sugar support for Prolog. In the development
process, this was useful to identify more Java-dependent aspects. However,
as no support for Prolog existed previously, new code had to be implemented,
thus enabling us to demonstrate developing a library for an arbitrary language.
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Prolog is a declarative logic programming language. We chose SWI-
Prolog1 as our Prolog interpreter. Prolog was an attractive language to use
in the development of SugarJ’s language plugin system. It is attractive for
several reasons: The language itself is quite small, offering only few top-level
entities: Sentences (used for defining facts and rules) and Commands (used for
querying). Therefore, the Prolog grammar is small, allowing us to concentrate
on implementing and testing the language abstractions without spending
too much time on writing grammars to support the parsing of programs.
Another reason was the dissimilarity of Java and Prolog. This would help us
to focus on keeping the language plugin small and generic, as well as open to
declarative programming languages.

Apart from reasons rooted in the agile approach we chose to developing our
language plugin architecture, Prolog is also an interesting language because
it is actually used in research and industry. We wanted to avoid using toy
languages to ensure that our abstractions can be used for programming
languages in use.

5.2.1 Implementation

Figure 5.2 shows the amount of source code we required to implement the
Prolog language plugin. Stratego code and the pretty-printer were generated
automatically and fine-tuned by hand.

Language Lines of Code
Java 407
SDF 321

Stratego 114
Pretty-printer 52

Figure 5.2: Prolog language library

Grammars

A large part of the effort of implementing support for a new language is
implementing suitable grammars (see Figure 5.2). We used an existing
SDF grammar for Prolog2. We added nonterminals for recognizing module
declarations and module imports. We also require a much stricter Prolog
program structure than specified in the grammar: Every Prolog file needs to
be a module and start with a module declaration. Imports follow between
the module declaration and the rest of the program. We want to enforce this
so programmers will not be able to use predicates (and especially syntactic

1http://www.swi-prolog.org
2https://svn.strategoxt.org/repos/StrategoXT/prolog-tools/trunk/syn/Prolog.sdf
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sugar) defined in a module before importing it. SugarJ only runs through
the code once, so using an undefined syntactic sugar will lead to an error.
We also modified the grammar slightly to forbid some reserved keywords.

Various modifications were carried out to allow parsing Prolog programs
in a more suitable way for SugarJ’s program flow. Overall, the modifications
were minor. If an SDF grammar for the language of interest is available,
this can therefore be modified to be usable for SugarJ with little effort. We
mostly use the same syntax to define syntactic sugar as the original SugarJ
implementation. We created the SugarProlog grammar from the SugarJava
grammar with little modifications. If language library developers use a similar
syntax to define syntactic sugar, Sugar grammars can be created easily.

AST analysis and processing

Prolog programs feature a simple structure with only few kinds of toplevel
entities (see Listing 5.1). The AST analysis needs to be able to recognize every
toplevel entity. In Prolog, recognizing module declarations PrologModuleDec
is done by isNamespaceDec, as is recognizing sugar module declarations.
PrologModuleImport is recognized by isImportDec; SugarBody is recognized
by isSugarDec. All other toplevel entities—PrologModuleReexport and
PrologSentence—are recognized by isLanguageSpecific.

If no special processing steps need to be carried out for language-specific
entities, as is the case in our Prolog implementation, the AST processing
is done by SugarJ. As could be seen in Section 3, only very little AST
processing needs to be implemented by the programmer. To provide an
example, Listing 5.2 shows the largest AST processing method which needed
to be implemented in the Prolog library.

Implementing support for a module system

In Prolog, every module has a name and exports predicates. This is defined
in the first line of a module with
:- module(modulename, [exported predicates]).
We require the module name to be equivalent to the file name.This is sensible
because SWI-Prolog imports modules based on their file name, not on their
module name. Other modules are imported by :- use_module(modulename).
We require the module name in this command to be a path relative to the
project’s source directory. While this mimics Java’s module system, we
consider this essential for building programs structured into modules and
especially for using sugar modules. Programmers want to use sugar modules
by specifying their name without having to care about the location of this
sugar module relative to the current source file.
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%% Sugar module
SugarModuleDec PrologModuleImport* SugarBody

-> SugarCompilationUnit {cons(" CompilationUnit ")}
%% module
PrologProgram -> SugarCompilationUnit {cons(" CompilationUnit ")}

%% to p l e v e l e n t i t i e s
PrologModuleDec -> ToplevelDeclaration
PrologModuleImport -> ToplevelDeclaration
PrologModuleReexport -> ToplevelDeclaration
PrologSentence -> ToplevelDeclaration
SugarModuleDec -> ToplevelDeclaration
SugarBody -> ToplevelDeclaration

Listing 5.1: Excerpt from the Prolog grammars showing toplevel entities

String moduleName = null;
if (isApplication(toplevelDecl, "ModuleDec")) { // prolog module

moduleName = prettyPrint(getApplicationSubterm(toplevelDecl,
"ModuleDec", 0));

prologSource.setModuleDecl(prettyPrint(toplevelDecl));
} else if (isApplication(toplevelDecl, "SugarModuleDec")) { // sugar module

moduleName = prettyPrint(getApplicationSubterm(toplevelDecl,
"SugarModuleDec", 0));

prologSource.setEmpty(true);
}
relNamespaceName = FileCommands.dropFilename(sourceFile.getRelativePath());
decName = getRelativeModulePath(moduleName);
log.log("The SDF / Stratego package name is ’" + relNamespaceName + "’.");

if (prologOutFile == null) {
prologOutFile = environment.createBinPath(getRelativeNamespaceSep() +
FileCommands.fileName(sourceFileFromResult) + ".pro");

}

Listing 5.2: ProcessNamespaceDec from the Prolog library
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Defining syntactic sugar

For defining sugar, our choice was to separate sugar definitions from normal
Prolog code. Sugar is defined in Sugar Modules, for which we introduced a new
command, :- sugar_module(modulename). The syntactic sugar declaration
consisting of grammar, desugarings, and rules is then enclosed between :-
and ., reminiscent of a Prolog command.

Source file representation

In the original SugarJ implementation, .java files were generated from
source code only containing sugar declarations. These files were empty, but
importing empty files is not a problem for the Java compiler, as they will be
ignored. In our Prolog implementation, there are files which either contain
no Sugar definitions or contain only Sugar definitions. An empty Prolog file
is not a valid module. Thus, when empty files are imported as modules, the
interpreter will not be able to consult the Prolog program and fail. SugarJ’s
source file representation allows source files to declare that they are empty.
If they are, they will not be added to the list of imported modules. Our
Prolog implementation makes use of this, elegantly avoiding the need to
create essentially empty modules for each sugar definition. This is important
for interpreted languages, where the intermediate code files—which would
normally be passed to the compiler right away—are in fact the end result.
Not creating unnecessary files helps to maintain a clean and uncluttered
project structure.

5.2.2 Syntactic sugar in Prolog using SugarJ and the Prolog
Library

We implemented a small example of syntactic Sugar in Prolog. Processing is
entirely done by SugarJ with our Prolog language library, PrologLib.

Our implementation requires sugar to be defined in their own modules,
which do not contain normal Prolog code. Listing 5.3 shows a sugar module
containing a sugar definition. As an example, we implemented purely syntactic
sugar:
Prolog clauses are written as name(variables) :- body. While this is a
sensible notation, declarative programmers might also be interested in using
a syntax inspired by S-expressions. We implemented syntactic sugar to allow
clauses to be written as (define-rule name (variables) (body))

This is not a very interesting example on its own, but is sufficient for
demonstrating SugarJ. Since the extension of the parser and desugaring
transformation is independent of the implemented syntactic sugar and works
for all correct sugar definitions, we only need to show that SugarJ will correctly
carry out the processing steps, viz. parse the Prolog source file, import the
sugar module, recognize the sugar declaration, invoke the mechanisms to
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extend the parser and transformation, and pretty-print the processed AST.
Therefore, showing that any sugar works is sufficient, irrespective of the
sugar’s sophistication.

Using this syntactic sugar, programmers can write Prolog programs like
the one seen in Listing 5.4. The output generated by SugarJ can be seen in
Listing 5.5. Note that the module import that imported the sugar definition
does not show up in the generated source code.

5.3 Haskell

Outside the scope of this thesis, using our language-parametric SugarJ imple-
mentation, we implemented a language plugin to support Haskell [3]. This
can be seen as further evidence that our language library interface is both
useable and useful for a wide range of programming languages. As with the
Java and Prolog libraries, lines of code are given in Figure 5.3.

Language Lines of Code
Java 360
SDF 974

Stratego 329
Pretty-printer 267

Figure 5.3: Haskell language library, preliminary version
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:- sugar_module(ruledef).
:- use_module(org/sugarj/languages/Prolog).

:-
context−free syntax

"(" "define-rule" PrologWord "(" PrologVariable+ ")" "(" PrologBody ")" ")"
-> PrologNonUnitClause {cons("RuleDef")}

desugarings
desugar-ruledef

rules
desugar-ruledef:
RuleDef(rulename, ruleargs, rulebody) -> NonUnitClause(

Func(
Functor(rulename), ruleargs

), rulebody
)

.

Listing 5.3: Defining syntactic sugar in Prolog

:- module(sugartest, [myFact/2]).
:- use_module(prolog/ruledef).

myFact(0, 1).

(define-rule myFact ( A B ) (
Y is A-1,
myFact(Y, Z),
B is A*Z

))

:- myFact(5, X), !, print(X).

Listing 5.4: Prolog code using sugar

:-module(sugartest,[myFact/2]).
myFact(0,1) .
myFact(A,B) :- Y is A - 1 , myFact(Y,Z) , B is A * Z .
:- myFact(5,X) , ! , print(X) .

Listing 5.5: Generated output from Listing 5.4
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6. Discussion and Future work

As has been shown in this thesis, we have reengineered SugarJ to allow
software developers to create their own language plugins. However, we also
identified areas for improvement during development. We also discuss the
design compromises we had to make.

6.1 A look at the design goals

Our reengineering effort concentrated on achieving three major design goals:
Keeping the interface generic, small and pluggable (cf. section 3.1). We want
language libraries to be pluggable, so SugarJ itself does not need to be changed
to use a new language. This enables us to use Eclipse’s plugin system to
manage and distribute language plugins. Another goal is to keep the language
libraries small to reduce implementation effort. Keeping the implementation
effort low is crucial: We want SugarJ to be used, so interested programmers
should be able to implement support for their language of choice easily. Our
third goal is to make the language plugin API as generic as possible. We do
not know which languages can benefit from SugarJ’s features; designing the
language API around a certain programming paradigm seems unnecessarily
limiting. Even being able to provide just user-definable syntactic sugar
would benefit all languages we can think of. While excluding programming
languages due to the design choices we made is probably unavoidable, we
still want to support as many as possible.

6.1.1 Design goal: Genericness

The main point of this thesis was to enable SugarJ to be used with program-
ming languages other than Java. To this end, we identified Java-dependent
code, recognized the underlying concepts and built a suitable abstraction.
These abstractions constitute the language library. Our case studies show
that we are able to implement support for languages following different
programming paradigms, most notably imperative (Java) and declarative
(Prolog, Haskell) languages.

However, there is a tradeoff between providing a generic language interface
and enabling programmers to take advantage of the existing features. We
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require languages to have a module system with certain properties:

1. They should have a module system which can infer the location of a
module’s source file from the name by which the module is imported.
Reason: SugarJ has to process the source file.

2. Module imports may not affect preceding code. Reason: Programs are
processed in linearly in one run.

3. Every source file of a program needs to be a module. Reason: SugarJ
operates on modules.

4. Module imports may not interfere with each other: Modules will behave
the same regardless of the order in which they are imported. Reason:
SugarJ compiles and caches modules.

6.1.2 Design goal: Small language plugin

Keeping language plugins small will encourage software developers to imple-
ment their own language plugins. In order to keep language plugins small,
we wanted to keep as much functionality as possible in the SugarJ compiler.
Leveraging the already-existing codebase to provide most of the functionality
will also keep the methods a programmer needs to implement for her new
language library simple. We also extracted commonly used functions to their
own plugin, so they can be used in the language library without having
to reimplement them anew each time. While this has little influence on
the number of methods that need to be implemented to fulfill the interface
specifications, implementation effort for the actual language library is still
reduced if programmers only have to implement few helper methods.

We acknowledge that keeping functionality in the compiler instead of
requiring each language library to provide it might conflict with providing
a generic library to implement support for all programming languages, our
first design goal. However, our case studies provide hints to suggest that our
language API is small and leads to small language implementations. Having
working plugins for languages following different programming paradigms also
suggests that we found a reasonable tradeoff between having small language
plugins and being generic.

6.1.3 Design goal: Pluggability

We refactored SugarJ into multiple hierarchically organized plugin projects
(see Figure 4.1). The SugarJ compiler was modified to only have dependencies
to the LanguageLib plugin, which provides an abstract language API, not
to concrete language implementations. The standard library plugin takes
care of SDF- and Stratego-related aspects. This is important for a working
language plugin architecture for a multitude of reasons: We could, in the
future, make improvements to the standard library which language plugins
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could then profit from. It also makes the individual language plugins more
robust by not forcing the programmers to implement their own functionality
to manage language-unrelated aspects. Providing a library for commonly
used functions—such as file handling—as a separate common plugin enables us
to update this without affecting the rest of SugarJ, in particular the language
libraries implemented by our users. By implementing projects as Eclipse
plugins, a good underlying plugin infrastructure is already in place to support
pluggable language plugins.

However, even though all the provisions for providing pluggability are
in place, our current implementation does not yet support languages as
exchangeable plugins. Although the language libraries can define their own
file extension, the current implementation of SugarJ requires this to be .sugj.
Implementing the Eclipse plugin integration is left as future work. We explain
this in detail in section 6.2.2. Our current architecture is already modeled to
allow us to integrate it into Eclipse without further engineering effort.

6.2 Future work

SugarJ is an ongoing research project. By creating the possibility to use
SugarJ’s features for language extensibility for many programming languages,
programmers and researchers alike are now able to spend less time on imple-
mentation effort and to solve their problems more easily.

6.2.1 Case studies

Currently, we have working implementations of three language plugins: Java,
Prolog and Haskell. We would like to carry out more case studies by im-
plementing more programming languages. This will help us to confirm the
validity of our approach and the suitability of our language API for a broad
range of programming languages.

Creating the Prolog plugin already showed us areas in which SugarJ can
be improved. Even though Prolog’s module system does not conform to
SugarJ’s expected criteria, we were able to implement Prolog support with
little modifications to the language (see section 5.2.1). We will implement
more language plugins to make SugarJ’s features available to more developers.

6.2.2 Use the Eclipse plugin system

We reengineered SugarJ to enable language support as plugins. Languages
can be implemented as Eclipse plugin projects and SugarJ is able to use them.
Currently, programmers have to specify the language plugin they want to
use by changing code in the SugarJ compiler. However, this only needs to
be changed at a single place in a class specifically created for this purpose.
To provide editor support, all code files also have to have the file extension
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.sugj. We want to use Eclipse’s plugin architecture to provide a menu to
select the language SugarJ should use. SugarJ could also automatically use
the correct language plugin depending on file extension.

6.2.3 Error messages

Our editor already provides programmers with error messages. They warn
the programmer about unresolvable module imports and errors in desug-
aring. These features are enabled automatically by just implementing the
language library. We also provide support for user-definable editor support
and errors [1].

Language libraries specify the compiler used to compile program files.
Currently, SugarJ will not take advantage of any compiler output. Compile
errors will not be recognized as compile errors; instead, SugarJ will not be able
to find the expected generated file and provide the user with a corresponding
error. Many IDEs provide support to show compile errors directly, which is a
valuable feature. We plan to introduce this feature to SugarJ by analyzing
the compiler output. However, SugarJ is a preprocessor and will generate
code. This generated code is stripped of non-functional layout and comments,
and it also contains desugared syntactic sugar. Therefore, if a compile
error occurs, we need to think of a way to map the error’s location in the
generated code to the error’s location in the code written by the programmer.
This will likely differ from language to language, so providing a generic, yet
easy-to-implement way is an interesting question which could be explored
further.

6.2.4 Module system

SugarJ has some requirements pertaining to the module system implemented
by the programming language (see section 6.1.1). We can support a broad
range of different programming languages, as we show by implementing
plugins for Java, Haskell and Prolog.

SugarJ works well for languages with hierarchical module systems where
the name of a file can be inferred through the module name. We want to
carry out further research to find out how SugarJ’s module system can be
improved to support other kinds of module systems.

In Fortran 95, for example, each module has a name, which is defined
usingmodule modulename. Fortran source files containing module definitions
are compiled to .mod module files which generally contain binary data. A
compiled module’s file name does not correspond to the module’s source file,
but to the module name. When modules are imported by use modulename,
the Fortran compiler looks for modulename.mod. It is not possible, in general,
to infer source code location from the module name.

A way to overcome this problem, as far as SugarJ is concerned, is to
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modify the programming language to use SugarJ’s module system. We did
this with our implementation of the Prolog language plugin (see section 5.2.1).
Yet, this leads to problems when using already-existing code: Module name
definitions and module imports will need to be rewritten to conform to
SugarJ’s hierarchical module system.

We want to keep the language API simple, so extracting the complete
module system to the language API and letting the programmer implement it
will not lead to satisfactory results. We want to survey different programming
languages and their module systems to identify recurring concepts in their
module systems. With these concepts in mind, we will then find suitable
abstractions and integrate them into SugarJ.

6.2.5 Language composability

For certain kinds of problems, even a general-purpose programming language
might not be suitable. Examples of this include accessing low-level system
features, for which many programming languages offer little to no support in
the language itself. Usually, a way to call or encode code written in other
general-purpose languages is provided. SWI-Prolog, for example, contains
JPL1, a library to use Java code in Prolog programs. JNI2 can be used to use
native code (written in C, C++ or other programming languages) in Java
programs and to use Java code in C, C++ or other programming languages
respectively.

These facilities, however, are often cumbersome to use. Thus, they are a
prime candidate for defining user-definable syntactic sugar. SugarJ already
enables sugar libraries to be composed. We would like to extend this to be
able to compose languages libraries. This way, emebdded languages with
their own language plugin could automatically benefit from the functions
provided in this plugin: Module system support, editor services, and even
user-definable syntactic sugar.

1http://www.swi-prolog.org/packages/jpl/
2http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
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7. Related Work

We compare our reengineered SugarJ version to Racket, which also supports
user-defined languages. We also explain the differences between the previous
version of SugarJ and our implementation.

7.1 Racket

Racket, a dialect of Scheme, supports user-defined languages [7]. Lan-
guages are defined as libraries and used by the programmer by writing
#lang languagename at the beginning of the source file. Racket can just
be reused and does not need to be modified, allowing programmers to use
languages just as they would use libraries. However, all aspects of Racket can
be changed by the language library, viz. notation, semantics, optimizations
and the module system. In Racket, each module can be implemented in a
different language. Racket only allows using one language per module.

In SugarJ, languages are also implemented as libraries. However, our
approach is different: Instead of using a single base language which can then
be extended by language libraries, SugarJ uses sugar libraries to extend lan-
guages, while language libraries are employed to support extending arbitrary
languages. We do not allow modules to be written in different languages; we
do allow using multiple sugar libraries in a single module. Racket transforms
all code implemented in languages defined by language libraries to Racket
code. SugarJ transforms code using syntactic sugar defined in a sugar library
to code of the programming language implemented by the current language
library.

Our focus is not on changing programming languages completely or being
able to implement our own programming languages. We want programmers
to still use the language, libraries and code they are already using, but
with added extensibility through user-defined sugar. We therefore strive to
make implementing language libraries as easy and effortless as possible. To
make this possible, we give up the ability to change many aspects of the
programming language, as is possible with Racket.
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7.2 SugarJ

SugarJ provides syntactic extensions for Java as libraries [2]. These libraries
can be defined by programmers using SDF and Stratego. Libraries can be
composed to use sugar inside sugar. For example, if a sugar library for
having pair types in Java and a sugar library for directly writing XML is
imported, programmers can use pairs in their XML elements. SugarJ also
provides extensible editors through editor libraries [1]. Like sugar libraries,
editor libraries are imported like Java packages. They will then extend
the editor with services such as code folding, syntax highlighting and code
auto-completion.

We build upon the features of SugarJ. We provide a Java language plugin
for SugarJ, which is fully compatible with all legacy SugarJ code. Thus,
programmers can transition seamlessly from SugarJ to our implementation.

Our contribution is an abstract interface for adding support for any
programming language to SugarJ. Other systems to provide syntactic exten-
sibility through libraries by operating on the AST will require a similar set of
features. Our interface contains methods for AST element analysis to decide
how AST elements should be processed. It also contains methods for module
definition processing and module import handling, which are used to establish
a module hierarchy, find modules on disk and compile them separately. The
interface also contains methods for extracting definitions of syntactic sugar
and handing it to SugarJ’s compiler.

This interface describes high-level features common to many programming
languages. Programmers can implement it as an Eclipse plugin to add support
for their programming language without changing SugarJ itself. We verify
this approach through case studies and implement support for a declarative
language. By being able to implement support for declarative languages,
such as Prolog and Haskell [3], we show that our abstractions are suitable for
a wide array of programming languages and paradigms.

7.3 Pure embedding

Hudak describes pure embedding, an approach for embedding DSLs in general-
purpose programming languages [5]. Pure embedding works by encoding the
DSL in terms of the host language’s syntax.

In our implementation of SugarJ, as well as the original SugarJ, we allow
DSL embedding by providing syntactic extensibility. Programmers can write
their own sugar library that defines desugarings for the DSL syntax to pro-
gramming language syntax. Hudak’s approach does not provide a convenient
syntax, but works with all programming languages. In order for SugarJ
to work with a programming language, we have to implement a language
plugin for this language. Also, our syntactic sugar libraries are not generally
portable across languages.
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8. Conclusion

Programmers can benefit from being able to extend the syntax of the pro-
gramming language they are using. SugarJ provides syntax extensions for
Java as libraries. Our reengineered version provides user-definable syntax
extensions for arbitrary programming languages.

To this end, we identified aspects of programming languages related
to extensibility, mainly their module system. We also identified aspects
related to AST processing. We found abstractions for these aspects and
extracted them into a language library. To enable SugarJ to support a new
programming language, programmers can implement this language library for
their language. We focus on keeping the library generic, so we can support
many programming languages. We also keep it small to enable programmers to
implement support for new programming languages easily. To keep the SugarJ
compiler independent of the supported programming languages, programming
language libraries are implemented as Eclipse plugins.

We implemented language plugins for Haskell, Java, and Prolog. The Java
language plugin supports all legacy SugarJ code. The Prolog and Haskell
language plugins show that our abstractions are also valid for declarative
programming languages and different module systems.

We also identified some areas for further research on the topic of enabling
syntactic extensions for arbitrary programming languages. We will look into
different module systems used by various programming languages to find
better abstractions for their module systems.
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