
Master Thesis
Master of Science Informatik

A Language for the Specification and Efficient

Implementation of Type Systems

Pascal Wittmann

Technische Universität Darmstadt

Fachbereich Informatik

Software Technology Group

Prüfer: Prof. Dr. Mira Mezini

Betreuer: Dr. Sebastian Erdweg

Abgabetermin: 16. Oktober 2014

Erklärung

Hiermit versichere ich gemäß der Allgemeinen Prüfungsbestimmungen der Tech-
nischen Universität Darmstadt (APB) §23 (7), die vorliegende Masterarbeit ohne
Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt
zu haben. Alle Stellen, die aus den Quellen entnommen wurden, sind als solche
kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen.

Ort, Datum (Pascal Wittmann)

ii

Abstract

Type systems are important tools to detect semantic inconsistencies, to establish
abstractions and to guide programmers in the development process. However, there
is currently a lack of established tools supporting the development of type systems,
tools like lexer and parser generators but for type systems. We introduce a declar-
ative specification language for type systems that allows to specify type systems in
a natural deductive style. We generate two products out of a type system specifica-
tion: A first-order formula representation to facilitate the use of automated theorem
provers and a type checker. The type checker generator uses results proven by auto-
mated theorem provers to check the applicability of optimization strategies and the
first-order formula representation is also a reference implementation. Both results
aim to accelerate the development cycle for type systems and to narrow the gap
between theory and practice.

iii

Contents

List of Figures vi

1 Introduction 1
1.1 Motiviation . 1
1.2 Contributions . 2
1.3 Structure . 3

2 Preliminaries 5
2.1 Tools . 5

2.1.1 SDF . 5
2.1.2 Stratego/XT . 6
2.1.3 Spoofax . 7
2.1.4 Vampire . 7
2.1.5 Alternatives . 8

2.2 Type Systems . 8

3 Specification Language 9
3.1 Language Design . 9
3.2 Design Assessment . 14
3.3 Implementation . 15

4 Formula Generation 17
4.1 Goals . 17
4.2 Translations . 18
4.3 Implementation . 20
4.4 Editor Support . 21

5 Type Checker Generation 23
5.1 Goals . 23
5.2 Architecture . 23
5.3 Template Generation . 24

5.3.1 Templates . 25
5.3.2 Generation . 28

5.4 Constraint Template Optimization 30
5.4.1 Which-Ambiguities . 31
5.4.2 When-Ambiguities . 33
5.4.3 Unsatisfiable Templates . 36
5.4.4 Valid Premises . 36

iv

5.4.5 Ordering . 36
5.5 Constraint Generation . 37
5.6 Constraint Solving . 40

6 Evaluation 41
6.1 SytemF . 41
6.2 Lambda-Calculus with Subtyping . 43

7 Related Work 45

8 Summary 47
8.1 Conclusion . 47
8.2 Future Work . 47

Bibliography 49

A Type System Specifications 53
A.1 SystemF . 53
A.2 Simply Typed Lambda Calculus with Subtying and Records 57
A.3 Information Flow Security Type System 60

v

List of Figures

1.1 Connection between theorem proving and type system optimization 3

3.1 Context productions . 16
3.2 Meta-variable productions . 16

5.1 Phases of the type checker generator 24
5.2 Typing rule and template of T-Var 30

vi

Chapter 1

Introduction

This chapter motivates the thesis, summarizes the contributions and gives an
overview of the structure of the thesis.

1.1 Motiviation

Type systems ensure that programs are well-behaved. In other words, they ensure
that programs have meaning in the sense of the semantics of the programming lan-
guage. The type systems we focus on are static type systems and can be thought
of as a static approximation of the program semantics. Besides ensuring that pro-
grams are well-behaved, type systems are means to establish abstractions and to
enforce adherence to these abstractions. Type systems can provide explicit type an-
notations that serve as program documentation, which cannot become obsolete as
type annotations are verified by the type system. During type checking the program
under consideration can also be annotated with optimization hints for the compiler.
All in all type systems can help to develop software more efficiently (cf. [PHR14]
and [MHR+12]).

Type systems are useful tools, particularly if they fit to the programming lan-
guage and the application scenario. If that is not the case type systems can event
get in the way. To ensure a type system fits to a programming language, e.g. in the
context of a Domain Specific Language (DSL), it makes sense to adapt and modify
existing type systems or to create new specialized type systems. Those special-
izations can lead to better error messages, more expressive type systems, and the
detection of more errors (cf. [Thi02] and [vdBvdMSH10]). Currently there are only
some tools that support the creation and adaption of type systems by generating
type checkers from a type system specification ([MME+10], [OZQG14], [Gas05],
[TF05], and [Ber07]), but they are not established. Such generators accelerate the
development of type checkers, make development less error prone and fit well into
the language development workbench besides the long established lexer and parser
generators.

Type checker generators that use a high-level specification language can also
provide type theorists with a tool that allows them experiment with new type sys-
tems without long development delays. High-level specifications that are close to
the formalism used by type theorists have also the advantage of narrowing the gap
between type system specifications on paper and their implementation. Results

1

shown for the paper version can be adapted for the implementation (depending on
the correctness of the type checker generator). Such adaptions are not possible with
handcrafted implementations. High-level specification languages are also suited to
specify type systems from other areas, like language-based information-flow secu-
rity [SM06].

A declarative specification can be translated into a first-order formula repre-
sentation, which can be used to conduct proofs of these properties and thus raise
the confidence regarding these properties. As the proofs of propositions about type
systems have to change when the type system changes, it is desirable to make most
of these changes automatically. Automated theorem provers can try to conduct
those proves automatically. If the proof search fails one can give hints for proof
search, e.g. by providing induction hypothesis. This establishes a direct connection
between the specified type system, the proofs, and the generated type checker.

The translation of type system specifications into first-order formula represen-
tations also enables to provably check for and remove redundancies within the type
system specification. As redundancies have a potential to slow down the generated
type checker, the removal leads to different optimization strategies for the resulting
type checker.

The goal of this thesis is to narrow the gap between theory and implementation
of type systems. A declarative specification language is developed, in which type
systems are represented close to the standard formalisms. Two things are generated
from those specifications. First, a representation of the type system as first-order
formulas, intended to support proving properties of the type system. Second, an
efficient type checker that exploits facts proven by automated theorem provers for
optimization.

1.2 Contributions

The main contributions of this thesis are:

1. A declarative specification language for static type systems, with support for
natural deductive style typing rules and error messages. The specification
language is implemented in Syntax Definition Formalism (SDF) and capable
of using most SDF definitions of programming languages.

2. A transformation of type system specifications into equivalent first-order for-
mula representations in the Thousands of Problems for Theorem Provers
(TPTP) format. The first-order formula representations are suitable for type
checking using theorem provers, theorem proving, and serve as a reference
implementation for the type checker generator.

3. A generator that creates type checkers from type system specifications. This
generator uses an intermediate representation for typing rules suitable for
constraint generation and optimizes the intermediate representation using au-
tomated proofs, which check the applicability of optimizations.

Figure 1.1 shows how these contributions are connected. From a type system
specification a first-order formula representation and a type checker is generated.
The first-order formula representation is used in conjunction with an automated
theorem prover to check the applicability of optimizations for the type checker.

2

Type System Specification

First-order Formulas Type Checker

Generation Generation

used to validate
applicability of optimizations

Figure 1.1: Connection between theorem proving and type system optimization

The source code of the specification language, the first-order formula transfor-
mation, and the type checker generator including all type system specifications is
available as a Spoofax project at

https://www.github.com/pSub/master-thesis

1.3 Structure

The thesis is structured as follows. In Chapter 2 we introduce preliminaries and
briefly discuss their alternatives. Then we introduce in Chapter 3 the specification
language in detail and take a look at the implementation. Before we introduce in
Chapter 5 the type checker generator and its optimization strategies in depth, we
introduce the first-order model of the specifications in Chapter 4. In Chapter 6 we
evaluate the type checker generator with two programming language type systems
and one security type system. Related work is discussed in Chapter 7 and the thesis
is concluded in Chapter 8 together with a prospect on future work.

3

https://www.github.com/pSub/master-thesis

4

Chapter 2

Preliminaries

2.1 Tools

This section introduces the tools used in this thesis. We argue what makes the
tools suitable for achieving the goals of the thesis and give a short overview of the
alternatives.

2.1.1 SDF

Syntax Definition Formalism (SDF) [HHKR89] is a formalism to define the syntax
of formal languages in the tradition of the Backus-Naur Form (BNF). SDF allows
to define lexical and context-free grammars and is, in contrast to BNF, modular.
This modularity allows to compose SDF syntax definitions. There are also parser
generators for SDF (see [Rek92]). In contrast to formalisms for traditional parser
generators like Yacc [Joh75], SDF specifications are purely declarative, which in-
creases the reusability of the specifications.

The modularity of SDF is a consequence of the fact that SDF is generalized LR
parsable [Rek92]. Generalized parsable means that parsing might be indeterminate,
i.e. the parser produces all possibilities for syntactic ambiguities. This might not
seem to be an advantage as we have to deal with ambiguities now, but generalized
parsing has some nice implications. First, the class of supported grammars is larger
and therefore enforces less restrictions on the programmer and might allow more
natural definitions of formal languages. Second, it enables the modularity of SDF,
because the composition of generalized LR grammars is a generalized LR grammar.
This does not hold in general for LR grammars.

Another property of SDF is that it is scannerless parsable [vdBSVV02], i.e.
tokenization and parsing can be done in a single step. The advantages are that
only one meta-language is needed and non-regular lexical structure are handled
easily.

SDF supports specification of layout sensitive languages [ERKO12] like Python
or Haskell. It enforces context insensitive layout constraints at parse time and
context sensitive constraints at disambiguation time, i.e. all ambiguities that violate
layout constraints are removed.

Example 1 shows a grammar that allows to write boolean expressions. Con-
junctions are represented in the Abstract Syntax Tree (AST) with the constructor

5

Example 1.

module Bool

exports

context-free start-symbols Bool

sorts Bool

context-free syntax

"true" -> Bool

"false" -> Bool

"~" Bool -> Bool {cons("Not")}

Bool "&" Bool -> Bool {cons("And"),

layout("2.first.col < 2.left.col")}

And, written as an infix &. The layout constraint enforces, that if conjunctions span
over multiple lines, the right-hand side of & needs to be indented. Negation is rep-
resented in the AST with the constructor Not and written as a prefix ~. True and
false are written as true and false respectively. In this example all expressions
belong to the same syntactic sort Bool. Sorts represent non-terminals in SDF. The
start symbol is Bool as we only have a single sort.

SDF is used in this thesis to define the syntax of the type system specification
language. Programming languages used in specifications are defined in SDF, too.
Features like layout constraints make SDF a good tool for defining complex syntax
for natural deduction rules. Further modularity and composability make it possible
to define the syntax of the specification language independent of the target language.

2.1.2 Stratego/XT

Stratego [Vis01b] is a framework for the development of transformation systems.
It consists of the transformation language Stratego and a set of tools (called XT)
for tasks like parsing and pretty printing. The approach of Stratego is to use user-
definable strategies for rewriting. Stratego distinguishes the following abstraction
levels.

Transformation rules are basic rewrite rules on the structure of the AST.

Transformation strategies are the glue between the transformation rules. They
combine rules, define the order of application and the traversal order of the
AST. These strategies can be defined generically. scoped dynamic rewrite
rules [Vis01a] allow to pass context information during the traversal, because
transformation rules and strategies are context-free.

Transformation tools allow to compile transformation strategies into a stand-
alone program. The interface between such programs is the ATerm for-
mat [VdBdJKO00] for ASTs.

Transformation systems describe a set of programs created by the transforma-
tion tools. A transformation system for a source-to-source transformation
usually includes a parser and pretty printer.

6

Example 2.

module Bool

signature

sorts Bool

constructors

Not : Bool -> Bool

And : Bool * Bool -> Bool

rules

Eval : Not(True) -> False

Eval : Not(False) -> True

Eval : And(True, x) -> x

Eval : And(x, True) -> x

Eval : And(False, x) -> False

Eval : And(x, False) -> False

strategies

eval = bottomup(repeat(Eval))

Example 2 shows a Stratego module that declares the constructors from Exam-
ple 1. It has a rule Eval that reduces a term one step. The strategy eval applies
rule Eval repeatedly from bottom to top.

We choose Stratego to implement the transformation into first-order formulas
and the type checker generator as it interacts well with SDF, has facilities to inte-
grate into tool-chains and it allows to write abstract and generic transformations.

2.1.3 Spoofax

Spoofax [KV10] started with the goal to provide an integrated development en-
vironment (IDE) for SDF and Stratego. It was then developed into a language
workbench for Eclipse that allows language development with editor support for
both, the meta-languages and the developed language. Spoofax allows smooth
switching between both editor services and allows to deploy the editor for the de-
veloped language standalone. The editor services provide syntactic and semantic
analysis based on live parses, with error recovery and origin tracking. Those fa-
cilities are implemented language pragmatic, which allows developers to focus on
language specific parts.

We use Spoofax in this thesis to provide editor support for the specification lan-
guage and as glue between SDF and Stratego in the development of the specification
language, the formula generator and the type checker generator.

2.1.4 Vampire

We use the automatic theorem prover Vampire [Vor95] to prove classical first-order
logic propositions about type system specifications. Vampire is able to parse for-
mulas in the TPTP format and provides detailed output for the conducted proofs.
We use this output to extract information about the applied axioms, which are in
our case typing rules. However, the choice of Vampire was rather arbitrary every

7

first order theorem prover that has support for TPTP will do the job. Of course
the results might vary depending on the performance of the theorem prover.

2.1.5 Alternatives

We chose Spoofax and its components, because its feature set fits well to our goals
and there was some previous related work based on it. However there are alterna-
tive language workbenches that could have been a good fit as well. For example
Rascal [KvdSV09] a meta-programming language that has among others support
for context-free grammars, algebraic data-types, relations, relational calculus op-
erators, advanced patterns matching, generic type-safe traversal, comprehensions,
and string templates for code generation. The paper [EvdSV+13] gives an overview
of the state of the art in language workbenches.

2.2 Type Systems

Type theory started as an attempt by Gottlob Frege to solve Russel’s paradox, which
shows that näıve set theory is inconsistent. Frege argued that a predicate requires
an object as argument and cannot have itself as an argument, as it is the subject.
So the initial motivation for type theory was to avoid paradoxes and contradictions
in logics and rewrite systems. The term type system refers to type theories whose
rewrite systems are programming languages. Type systems address the problem
to ensure that programs have meaning, whereas in type theory the problem is the
ensure the consistency of a logic.

What does it mean to “ensure that programs have meaning”? It means that
one wants to filter the useful programs. It is not useful to have a syntactically valid
program that has no semantics as this program will behave unexpectedly at some
point. A type system assigns types to the expressions of a programming language.
A type checker can then verify, whether the types of the programs expressions match
according to predefined typing rules. If the type checker succeeds the program is
well-typed and has meaning, i.e. the program will not misbehave due to undefined
semantics. Depending on the expressiveness of the type system also the correctness
of the computation that the program performs can be shown.

8

Chapter 3

Specification Language

Our type system specification language is a DSL for people familiar with type
systems or type theory. While developing it, we had the following goals in mind.
The specification language should be

• close to text-book formalisms used in the type system community

• purely declarative

• modular

• usable with existing syntax definitions of programming languages

Those characteristics fit well with the goals of making it easy to experiment
with type systems and to create type systems from a high-level specification.

3.1 Language Design

In this sections we introduce the architecture of the specification language with
references to a small examples and argue how this architecture reflects the goals
mentioned above.

Specifications in our specification language are divided into eight sections, of
which two are optional. In a specification the sections have to be present in the
order they are introduced here.

Module name The first section declares the name of the specification module.
This name is an unique identifier and used for imports. The module name may
contain an arbitrary combination of numbers, letters, and the symbols . (dot), -
(dash), and / (slash).

Example 3. module target-language/typesystem

Example 3 shows the declaration of a module with the unique identifier target
-language/typesystem.

9

Imports The second section declares which other type system specifications are
imported and is optional. It is possible to prevent sections of a module from being
imported with the keyword hiding.

Example 4.

imports some-specification hiding (language contexts)

another-specification

The specification in Example 4 imports the module some-specification with-
out the sections language and contexts and it imports the module another-

specification.

Language The third section declares the language for which a type system should
be specified. This language needs to be present as a SDF module located at the
specified path. We call this language from now on target language. If other modules
are imported the target language must be defined only once in the closure of the
module.

Example 5.

language specifications/simply-typed-lambda-calculus/syntax

In Example 5 the SDF definition at specifications/simply-typed-lambda-

calculus/syntax.sdf is used; This path is relative to the syntax folder of the
Spoofax project. A SDF definition file (a file with the suffix def) located at the
same path needs to be present for analysis of the target language, see Section 5.4.

Contexts The fourth section declares the contexts that can be used in the judg-
ments and rules. In specifications contexts are used to track or collect information
during type checking. Informally these contexts are declared as cross-products of
non-terminals, i.e. a context instance is a set consisting of tuples of terminals that
can be produced by the non-terminals in the declaration. Every context has a name,
which can be used as a non-terminal in the specification.

Contexts serve in most use cases as bindings for variables. Therefore it is neces-
sary to be able to look up terminals in a context instance. In the context declaration
each non-terminal is annotated with an input ({I}) and output ({O}) tag. Those
tags specify the key and value positions of the context declaration. Depending on
those annotations we generate look up functions. If all non-terminals are tagged
as inputs the generated look up function will perform a normal membership test.
However, a context declaration with only output tags is not useful as it is not
possible to add elements to it.

Given a context declaration Z := A{I} x B{I} x C{O} x D{O} an instance of
this context looks like (a : b : c : d) ; z where a, b, c, and d are terminals
produced from the non-terminals A, B, C, D, respectively. z is another instance of
context Z or the empty context, which is written (). Different empty contexts can
be disambiguate with the context name, e.g. (Z).

Example 6. contexts Binding := ID{I} x Type{O}

10

Example 6 shows a context called Binding that consists of a non-terminal ID
tagged as input and a non-terminal Type tagged as output. This contexts models
a type binding for identifiers. We generate from this context declaration a look up
function of the form i : t in c where i represents a terminal produced from ID,
t a terminal produced from Type and c represents an instance of context Binding.

Meta-variables The fifth section declares meta-variables. In specifications meta-
variables are used to refer to expressions of the target language and to contexts. The
declaration of a meta-variable consists of a class, a prefix, and a set of non-terminals
from the target language and from the specification. We use the class to distinguish
different kinds of meta-variables. Currently we use classes only for merging meta-
variable declarations when resolving imports. For details see Section 3.3.

The set of non-terminals defines the scope of a meta-variable. Every non-
terminal contained in this set is extended with productions for meta-variables. In
other words, a meta-variable is a substitute for every terminal that can be produced
from one of the non-terminals. We explain the extension of the target language in
detail in Section 3.3.

Syntactically a meta-variable is a string of numbers and letters that is prefixed
with the prefix of the meta-variable declaration. The sole purpose of the prefix
is to avoid syntactic ambiguities. The prefix itself can consist of numbers, letters
and the following symbols ~, $, %, &, and ?. There is currently no way to add
new symbols to that list, besides editing the syntax definition of the specification
language. Usually a prefix is chosen such that it is not a prefix of a construct of
the target language, to reduce the chance of encountering ambiguities.

Example 7.

meta-variables Term "~" { Type Exp }

Ctx "$" { Context }

Id "%" { ID }

Example 7 declares three classes of meta-variables. The first class is called Term

and each meta-variable of this class has the prefix ~. Productions for meta-variables
of this class are added to the non-terminals Type and Exp.

Judgments The sixth section of a type system specification module declares judg-
ments. In our specification language judgments are the basic building blocks of the
rules defined in the next section. This is common in the specification of deduc-
tion systems in general. Judgments can be thought of as the “syntax” of the type
system, the semantics is defined by the rules.

A judgment can be defined rather arbitrarily from a combination of strings
of letters and numbers, non-terminals of the target language and the names of the
contexts. Those can be mixed freely, as long as a string separates the non-terminals
and context names. This restriction is only needed to reduce the number of syntactic
ambiguities in the language. Judgments do not have a name as it is currently not
possible to refer to them in any other way than in instances of them. To separate
judgment declarations from each other, each declaration must be finalized with a
dot.

Non-terminals of the target language and context names need to be annotated
with input/output-tags in the same way as for contexts. Those tags describe which

11

parts of the judgment need to be computed by rule applications and which are
provided as input parameters to the rule application. Non-terminals of contexts
currently only support the input tag.

Equality and inequality are predefined built-ins, but have to be introduced
as judgments. This enables to define precisely for which non-terminals equali-
ty/inequality should be available and prevents other uses at parse time. Currently
it is not possible to define (in-)equalities between contexts. Equality and inequality
judgments are defined by appending is Eq or respectively is Neq to the judgment
declaration.

Example 8.

judgments Context{I} "|-" Exp{I} ":" Type{O}.

Type{I} "<:" Type{I}.

Exp{I} "=" Exp{I} is Eq.

Example 8 shows three judgments. The first could be the typing judgment of
a variant of the simply typed lambda calculus with a context, an expression of the
target language as input and a type of the target language as output. The second
judgment defines a relation between the types of the target language, i.e. it has
only input positions. This judgment could represent a subtyping relation. The last
judgment declares an equality between expressions.

Rules The seventh section of the module declares the (typing) rules. These rules
define the semantics for the judgments declared in the previous section. The syntax
of the rules replicates the form of inference rules: A (possibly empty) list of premises
separated from a conclusion by a horizontal line. Premises and conclusion are
instantiated judgments. All meta-variables that occur free in rules are implicitly
all-quantified. This means that all meta-variables are all-quantified, as there is
currently no mechanism to bind variables in typing rules.

Rules can be annotated with a name. Rule names increase the readability of the
specification and allow to create human readable derivation traces. The rules have
also support for custom error messages. There are two kinds of error annotations.
Premises can be annotated with @error msg, where msg can contain meta-variables
and holes (written {}) interleaved with arbitrary strings. Those errors are thrown
if the premise could not be derived or if the calculated output does not match
the expected output. The meta-variables are instantiated with the appropriate
terms and the hole with the expected output. The other kind of errors are prefixed
with @implicit and are thrown if an implicit equality between two meta-variables
cannot be satisfied. The meta-variables of implicit equalities are distinguished in
the error message by @[number] annotations, where [number] is a natural number.
The conclusion can also be annotated with error messages for implicit equalities.
Section 5.5 and Section 5.6 explain how error messages are implemented in the type
checker generator. Note that error messages are always attached to the preceding
premise.

12

Example 9.

judgments Context{I} "|-" Exp{I} ":" Type{O}.

rules

%x : ~T in $C @error %x "should have type" ~T "but has" {}.

============= T-var

$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
@error ~e "should have type" ~T2 "but has" {}.

===================================== T-abs

$C |- fun %x : ~T1 (~e) : ~T1 -> ~T2

$C |- ~e1 : ~T1 -> ~T2
$C |- ~e2 : ~T1 @error ~e2 "should have type" ~T1 "but has" {}.

==================== T-app

$C |- ~e1 ~e2 : ~T2

Example 9 shows the typing rules of Programming Computable Functions (PCF)
for variables (T-var), function abstraction (T-abs), and function application (T-
app). Rule T-var models that some variable %x has type ~T if it has type ~T in
context $C.If this check fails the annotated error message is thrown, where ~T is
replaced by the expected type and {} by the actual type of variable %x.

Rule T-abs in Example 9 expresses that function with argument %x of type ~T1
and a function body ~e has type ~T1 -> ~T2 if the function body has type ~T2
under a context that is extended with the function argument. Function application
is covered by rule T-app: if ~e1 is a function of type ~T1 -> ~T2 and the type ~e2
of matches its argument, then the application of ~e2 to ~e1 has type ~T2.

Example 10.

judgments

Context{I} "|-" Exp{I} ":" Type{O}.

rules

====================== Subst-Eq
~S = [%x -> ~S] %x@1 @implicit %x "does not equal" %x@1.

Example 10 shows the rule Subst-Eq from the SystemF specification in Ap-
pendix A.1. Subst-Eq has no premises and an implicit equality annotated with an
error message in the conclusion. Here %x and %x@1 refer to the same meta-variable.
The annotation @1 is used to distinguish the variables in the error message.

Conjectures Tests for a specification are called conjectures. Their syntax is
similar to the syntax of rules, with two exceptions. It is not possible to annotate
premises or conclusions with error messages and a conjecture can be marked as not
derivable by prepending the separating line with a slash. Marking conjectures not
derivable allows to formulate negative tests.

13

Example 11.

============================

() |- let fac : int -> int =

fix f : int -> int (

fun n : int (

ifz n then 1

else n * (f (n - 1))

)

)

in (fac 3) : int

/===========================

() |- fun x : int (x) : int

Example 11 shows two conjectures of the PCF implementation. They use the
judgment shown in Example 8. The first conjecture asserts that the type of the
faculty function applied to 3 is int and the second conjecture asserts that the
identity function for integers (fun x : int (x)) has type int is not derivable.

Comments Line comments (//) and block comments (/* ... */) can be in-
serted everywhere in the module.

3.2 Design Assessment

How does this design reflect the characteristics from the beginning of this chapter?
We will address this point by point.

Usage Formal definitions of type systems usually consist of judgments, rules, and
auxiliary definitions for contexts. All those components can be represented in
a natural way in the specification language. Judgments can be defined as an
arbitrary combination of non-terminals and separation symbols, as long as the
syntax does not create ambiguities. Rules are written in a natural deduction
style, because this is the most common formal representation of typing rules
and it acknowledges the deductive nature of typing rules in general. Contexts
can be defined using a set like notation. This is close to the intuitive semantics
of contexts and allows to generate commonly used syntax.

Declarative Nothing that can be defined in the specification language has side ef-
fects (i.e. breaks referential transparency) or possibilities to embed executable
code. Therefore the specification language is purely declarative, it focus on
what should be done rather then how it should be done.

Modularity Type system specifications are organized in composeable modules.
A module can import other modules or even only parts of other modules.
This enables the reuse of existing type specifications and the separation of
orthogonal features.

Integration Type systems can be defined for every programming language for
which a SDF syntax definition exists. These definitions can be used in most

14

cases without further modifications. One of the requirements is that they
introduce a constructor for every context-free production. Modifications are
also needed if one wants to use a language concept inductively in the type
system, but has not implemented this concept with explicit induction in the
syntax. The implementation of records in the simply typed lambda calculus
in Appendix A.2 is an example for this.

3.3 Implementation

In this section we describe how the specification language is implemented and how
the new syntactic constructs that can be defined in a specification are integrated.

The specification language itself is defined in SDF and consists of four SDF
modules. The module Common containts lexical definitions that are used in multiple
modules, the module BaseLanguage which defines the syntax of the specification
language, the module Generated which contains new syntax for meta-variables,
contexts, and jugmens that was defined in a specification and the main module
SLTC that combines the previous modules.

The module Common only defines character classes and lexical restrictions, there-
fore we will not explain it in detail.

The syntax of the specification language, which is independent of the target
language, is defined in the module BaseLanguage, and is parameterized by the
non-terminals TypingJudgment and MetaVariable. These non-terminals depend
on the actual target language and are therefore defined in Generated.

In a new project the module Generated does not exist in the syntax folder, as no
specification is in use. Building a project copies a dummy Generated module from
the resource folder into the syntax folder. The dummy Generated module contains
empty productions for the non-terminals TypingJudgment and MetaVariable to
ensure that a compilation of the whole project is possible without a specification
(e.g. to run tests). We describe the generation of a specification specific Generated

module in the following.
The strategy toSdf transforms a specification into a SDF AST which is then

pretty printed and saved in the syntax folder. The generated module Generated

imports module Common and the SDF file of the target language. In addition it
contains context-free grammars for context, meta-variables, and judgment declara-
tions.

For each context declaration the strategy make-contexts generates productions
for the empty context, context bindings, and context lookups. Figure 3.1 shows the
resulting productions, where Name is the name of the context declaration and n

the position of the context declaration in the specification.
Figure 3.2 shows the productions created by make-variable for meta-variables.

A meta-variable consists of its prefix, a name and an optional error annotation.
There are two kinds of productions for meta-variables. The first kind extends every
non-terminal (in the production called Scope) listed in the meta-variable definition
of the target language. The second kind (the non-terminal MetaVariable) enables
the use of meta-variables in error messages. In the constructor of meta-variables m is
either the context number in case Scope is a context and otherwise the meta-variable
class.

Strategy make-judgment creates productions for judgment declarations. For
each judgment we generate a production that consists of all non-terminals separated

15

〈Name〉 ::= ‘ContextEmpty-n’
| ‘ContextBind-n’ 〈Elem〉 〈Name〉
| ‘ContextLookup-n’ 〈Elem〉 〈Name〉
| ‘(’ 〈Name〉 ‘)’

〈Elem〉 ::= 〈String〉 | 〈String〉 ‘:’ 〈Elem〉

Figure 3.1: Context productions

〈Scope〉 ::= ‘MetaVariable-m’ 〈Prefix 〉 〈MetaVariableName〉 〈Anno〉

〈MetaVariable〉 ::= ‘MetaVariable-m’ 〈Prefix 〉 〈MetaVariableName〉 〈Anno〉

〈Anno〉 ::= ε | ‘@’ 〈ErrorNumber〉

Figure 3.2: Meta-variable productions

by the separators from the declaration. The constructor of judgments is either
composed from the string TypingJudgment or in the case of a built-in from the
built-in name and the position of the judgment in the specification.

The module SLTC plugs all modules together. It imports the module Generated

and instantiates the parameters of module BaseLanguage.
Imports are implemented using the Name Binding Language (NaBL) that is in-

tegrated in Spoofax. NaBL ensures that the module names are unique, that imports
can be resolved and annotates modules with meta-information about modules. The
Stratego strategy resolve-imports does the actual resolving of the imports before
a module gets used.

First resolve-imports fetches all module definitions that are imported. Then
it merges the fetched modules into the current module. This results in a module that
contains the declarations of the current module plus all not excluded declarations
from the imported modules. All sections are merged separately and redundancies
such as duplicate declarations are removed.

16

Chapter 4

Formula Generation

Type systems in programming languages are treated as black boxes from a program-
mers point of view. The programmer interacts with the type system for example
via type annotations and receives feedback from the type system in form of error
messages. Errors in the type system are hard to detect for the programmer, be-
cause he cannot be sure if it is an error in his program or in the type system (or
its implementation). In addition he can only debug his program, because of the
black box view on the type system. Therefore it is desirable to ensure that the type
system has the intended semantics.

Mathematical proofs are used to ensure that a type system has the intended
semantics. A basic property of type systems is safety, which roughly means “a
well-typed term can never reach a stuck state during evaluation”[Pie02]. Those
properties can be proven by hand or with the help of proof assistants. Both meth-
ods require substantial manual effort. In accordance to the goal of the automated
generation of type checkers, we explore how well automated theorem provers can
solve simple propositions and how this can be exploited in the type checker gen-
eration. We generate formulas from type system specifications to interface with
automated theorem provers.

4.1 Goals

The generation of formulas from type system specifications pursues two goals. The
first goal is to represent type system specifications as formulas suitable for auto-
mated theorem provers and to use those as a basis to prove simple propositions
about type systems. In Section 5.4 we prove propositions that check the applicabil-
ity of an optimization. The second goal is to explore how well automated theorem
provers can check if a program is well-typed. Being able to type check programs us-
ing automated theorem provers provides us with free reference implementations for
our type checker generator. The correctness of those reference implementations de-
pends only on the translation of type system specifications into first-order formulas
and on the correct implementation of the automated theorem provers.

17

4.2 Translations

In this section we explain how we translate type system specifications into first-
order formula. Just context declarations, rules, and conjectures have an explicit
representation as first-order formulas. The rest of the specification is not directly
translated into first-order formulas and it is only needed to ensure that the generated
formulas are well formed.

We represent contexts as a list like structure. Every context c has a constant
emptyc that represents the empty context and predicate bindc that constructs con-
texts from the inputs and outputs of the context declaration and a context. The
lookup of elements in a context c is modeled by the predicate lookupc. This pred-
icate is defined inductively by two formulas shown in the following and checks
whether an element is contained in a context. In the base case the element to look
up is the top element of the context. In the step case the top element is differ-
ent from the element we search, therefore we have to proceed with the rest of the
context.

∀e, x1, . . . , xn, y1, . . . , ym.
(lookupc(x1, . . . , xn, y1, . . . , ym, bindc(x1, . . . , xn, y1, . . . , ym, e))) (4.1)

∀e, x1, . . . , xn, x′1, . . . , x′n, y1, . . . , ym, y′1, . . . , y′m.
(x1 6= x′1) ∧ · · · ∧ (xn 6= x′n) ∧ (lookupc(x1, . . . , xn, y1, . . . , ym, e) =⇒

lookupc(x1, . . . , xn, y1, . . . , ym, bindc(x
′
1, . . . , x

′
n, y

′
1, . . . , y

′
m, e)) (4.2)

Formula 4.1 shows the base case of the lookup in context c. We translate all
non-terminals in the context declaration tagged as input into variables x1 . . . xn and
all tagged as output into variables y1 . . . ym, respectively. The variable e represents
context. In the base case we apply lookupc to a context whose outer most bindc
binds an element that is exactly the element we search. Therefore the element is
trivially contained in the context and the lookup succeeds.

Formula 4.2 models the step case of the lookup in context c. We introduce two
variables, x1, x

′
1, . . . , xn, x

′
n for non-terminals tagged as input and y1, y

′
1, . . . , ym, y

′
m

for non-terminals tagged as output. The intuition of the formula is that if it is
possible to look up an input/output pair in a context e then we can also look it up
in a context that contains an additional input/output pair. If read with evaluation
in mind the intuition is that if the outermost element is not the element we look
for, i.e. all inputs differ, then we have to look into the rest of the context. We only
check the input positions in order to test whether we have a match to lookup the
last element first. This corresponds to the scoping behavior of most programming
languages.

Example 12. The following context declaration models a standard identifier to
type binding. It has two components, identifier as inputs and types as outputs.

contexts C := ID{I} x Type{O}

For this declaration we generate the following two formulas to model the behavior
of lookupC .

∀i, t, e . (lookupC(i, t, bind(i, t, e))) (4.3)

∀i, i′, t, t′, e . (lookupC(i, t, e) ∧ i 6= i′ =⇒ lookupC(i, t, bindC(i′, t′, e)))) (4.4)

18

We translate the AST nodes of the programming language directly into predi-
cates that resemble the program structure. For the translation we use the following
scheme. AST nodes of the following form Cons(e1, . . . , en) are translated into a
predicate of the form cons(p1, . . . , pn), where we translate all constituents ei into
predicates pi recursively. We create for each of those predicates the following injec-
tivity and univalence axioms.

∀p1, p′1, . . . , pn, p′n .
(cons(p1, . . . , pn) = cons(p′1, . . . , p

′
n) =⇒ (p1 = p′1) ∧ · · · ∧ (pn = p′n)) (4.5)

∀p1, p′1, . . . , pn, p′n .
((p1 6= p′1) ∨ · · · ∨ (pn 6= p′n) =⇒ cons(p1, . . . , pn) 6= cons(p′1, . . . , p

′
n)) (4.6)

∀x, y, p1, . . . , pn .
((cons(p1, . . . , pn) = x ∧ cons(p1, . . . , pn) = y) =⇒ x = y) (4.7)

Injectivity and univalence holds by definition for those predicates as we create
those predicates from syntax. These axiom can help theorem provers to conduct
proofs, for examples see Section 5.4.

The most important part is the translation of the typing rules. Depending on
whether the typing rule has premises we use either of the following schema:

∀FV (c) . c (4.8)

∀FV (p1, . . . , pn, c) . p1 ∧ · · · ∧ pn =⇒ c (4.9)

The predicates pi represent the premises and c is the conclusion of the typing
rules, FV computes the free variables. What a typing rule intuitively expresses
is that the conclusion can be derived if all premises can be derived. In terms
of first-order logic “derived” means that there exists a proof for the proposition.
Therefore we translate a typing rule without premises into a formula that consists of
the conclusion and all-quantifies all free variables of the conclusion. Free variables
are all-quantified, because we want that all possible variants of the conclusion are
derivable. Typing rules with premises translate into a single implication. The
premise of the implication is the conjunction of all premises of the typing rule.
This ensures that all premises need to be derivable/satisfied. The conclusion of
the implication is the conclusion of the typing rule. This is a safe fact, because
the conclusion of the typing rule is derivable if all premises are derivable, which is
exactly the semantics of this implication.

Example 13. The following we have the typing rules T-var and T-abs from the
PCF specification.

%x : ~T in $C
============= T-var

$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
==================================== T-abs

$C |- fun %x : ~T1 (~e) : ~T1 -> ~T2

19

Those are translated into the following first-order formulas.

∀x, t, e . (lookup(x, t, e) =⇒ tcheck(e, var(x), t))) (4.10)

∀c, x, e, t, s . (tcheck(bind(x, t, c), e, s)

=⇒ tcheck(c, fun(param(x, t), e), funtype(t, s))) (4.11)

We translate judgments in rules into predicates. The built-in judgments for
equality and inequality are translated into the primitives of TPTP.

4.3 Implementation

This section describes the implementation details of the translation from the spec-
ification language into first-order formulas.

The implementation is organized in the following steps. At fist, the module is
split up into its components, then we transform contexts, typing rules, and conjec-
tures into first-order formulas. After that we create a file for each conjecture which
contains all generated formulas. In the following those steps will be explained in
detail.

The strategy make-context-formulas generates axiom formulas for each con-
text declaration. For each distinct non-terminal in a context definition we create a
fresh variable name to ensure variable names are compatible with TPTP. We trans-
form every context declaration into Formula 4.1 and Formula 4.2 in our internal
representation of TPTP formulas. To adhere to the structure of the two formulas,
we split the non-terminals of a context declaration by its input/output tags and put
those tagged as input before those tagged as outputs. In the generated formulas we
replace the non-terminals by the fresh variables. In case of Formula 4.2 we create
additional fresh variables for input positions.

To rewrite typing rules into first-order formulas is a bit more involved than
the rewriting of context declarations. The strategy make-formula transforms rules
into first-order formulas in the TPTP format. This strategy rewrites premises and
conclusions into first-order terms using the strategy rewrite. Premises are, due
to limitations of the layout-rules, not represented as ordinary lists after parsing.
Therefore premises are transformed into ordinary lists by the generic to-list strat-
egy. Now that we have first-order terms for the premises and the conclusion, we
collect all free variables that occur in them. In rules variables are not bound,
thus all variables are free. However it is important to collect only free variables,
as conjectures may contain quantifiers. At last, we put premises, conjecture, and
quantification together to construct a formula in the TPTP format which has the
structure of Formula 4.9.

Now we present the details of the rewrite strategy, which transforms premises
and conclusions. This strategy is defined as a sequence of two top down traversals.
The first traversal is the actual rewrite of the typing judgments and the second is
a special treatment for strings. The second traversal is necessary to wrap all target
language constructs into the Term constructor.

We translate parts of the specification language into new SDF syntax definitions
as described in Section 3.3. Therefore not all nodes contained in the AST of a

20

specification are known at the time of implementation. However all those nodes
have a regular structure. That is why it is possible to use the cons#(args) pattern
to extract the relevant parts in a generic manner. The rule make-aux-cons wraps
all generic nodes1 into the auxiliary constructor AuxCons with three parameters, the
static part of the constructor name, the generic part of the constructor name and
the arguments. After this transformation normal pattern matching on AuxCons is
possible. The strategy rewrite-aux-cons transforms those auxiliary constructors
into first-order terms.

All nodes in the AST of a specification that are not wrapped into auxiliary
constructors are constructors of the target language. Therefore we attempt to
transform each node into an auxiliary node, in case that succeeds, we rewrite the
node into a first-order term otherwise we wrap the node into the Term constructor. It
is important to wrap the nodes of the target language to implement pretty printing.

The second top down traversal wraps all strings that occur in the parameters of
nodes into Term constructors. As the specification language has no string nodes, it
is safe to transform all those strings into Term nodes. If there is no second traversal
a direct transformation leads to infinite recursion as every string within a Term

constructor would be wrapped again in a Term constructor, therefore we need a
second traversal.

Conjectures are essentially transformed following the same scheme as rules, the
only difference is that we tag the resulting formulas as conjecture and not as
axiom.

4.4 Editor Support

It is possible to use automated theorem provers to type check conjectures from
within the editor. For type checking with automated theorem provers we trans-
form the specification into first order formulas and create a file per conclusion, as
described in the previous section. Then we call the automated theorem prover Vam-
pire on each resulting file and parse the results. For each conjecture we visualize
in the editor whether the verification succeeded and in case of success provide the
names of the used first-order formulas.

We contribute also a consistency test for specifications. This check attempts
a proof of 1 = 0 with vampire using the first-order formulas generated from the
specification. This method allows us to possibly find inconsistencies in the type
system specification. However, due to the embedding into first-order logic and
Gödel’s second incompleteness theorem it is not possible to proof within first-order
logic that the type system is consistent.

1Generic nodes of the specification language, i.e empty context, context binds, context lookups,
typing judgment and meta-variable nodes.

21

22

Chapter 5

Type Checker Generation

In this chapter we briefly describe and motivate the design and goals of the type
checker generator.

5.1 Goals

The first goal is to generate type checkers from high level type system specifications
that are not geared to type checking. Mainly this means to try to deal with non-
syntax directed typing rules without backtracking. The motivation for this is that
non-syntax directed typing rules are often more readable and that changes have
mainly local effects.

The second goal is to design a modular type checker generator, particularly one
that can be easily adapted and that facilitates the exchange of components. This
modularity is desirable because it increases the reusability and makes it possible to
combine previously unrelated projects.

The third goal is to generate type checkers that emit readable error messages if
a program is not well-typed. This is essential to make the generated type checker
usable in production in any way.

5.2 Architecture

The type checker generator has two phases: Template generation and template op-
timization. The template generation phase transforms the type system specification
with modifications into templates. A template is a different representation for a
typing rule that is better suited for type checking. We introduce templates in detail
in Section 5.3. The template optimization phase checks which optimizations apply
to the generated templates and applies them. The optimizations aim to reduce the
amount of non-determinism in the type system and therefore reduce the amount of
backtracking in the type checker. The final product after those two phases is a file
that contains the optimized templates.

The template optimization phase is the key part of the type checker generator.
It is the link between the type checker generator on the one hand and the formula
generation and automated theorem provers on the other hand. We generate from
a single type system specification a first-order formula representation suitable for

23

theorem proving and a template representation suitable for constraint generation.
In the optimization phase we combine them by using the automated theorem prover
to check if optimizations are applicable to the templates.

Instead of generating a type checker directly from the specification, we imple-
ment a generic constraint-based type checker that takes templates as input. This
generic type checker has two phases: Constraint generation and constraint solv-
ing. The constraint generation phase takes the templates and the expression that
shall be type checked as input. We then build a derivation tree according to the
expression by pattern matching the conclusion of the templates. The building and
traversing of the derivation tree emits constraints. In the constraint solving phase
we then try to unify the emitted constraints. If that succeeds it reports the result
otherwise it reports the errors that occurred during unification.

Template Generation Template Optimization

Constraint GenerationConstraint Solving

Templates

Extended Templates

Program

Constraints

Specification

Figure 5.1: Phases of the type checker generator

Figure 5.1 shows the phases and their relationships. Nodes represent phases and
arrows express that data flows from one node to another. Labels on arrows describe
the data format.

The four phases correspond to modules or tools. Each phase has a well-defined
interface, therefore the implementation can be exchanged freely. This facilitates the
use of different constraint solvers, constraint generators or template optimizers.

The following sections describe the implementation of the type checker genera-
tor. Each section focuses on one of the phases.

5.3 Template Generation

The first phase translates type system specifications into templates. This phase is
not just a simple translation from a human readable representation into a represen-
tation suitable for programs, but also normalizes the resulting templates. Normal-
ization comprises the elimination of implicit equalities and resolves dependencies
between premises. All following phases assume normalized templates. The normal-
ization allows simplifications in the implementations of the phases.

24

Definition 5.1. The Stratego implementation appends to all constructors two
underscores to avoid name collisions with target languages. This is necessary as the
module system of Stratego is not strong enough to avoid those collisions. We omit
these here for the sake of readability. The non-terminals Inputs, Outputs, Term,
and Error may contain arbitrary terms.

〈Template〉 ::= ‘Template’ 〈Premises〉 〈Conjecture〉

〈Conclusion〉 ::= ‘Conclusion’ 〈Judg〉 〈Name〉 〈Pattern〉 〈Outputs〉

〈Premises〉 ::= ε | 〈Premise〉 〈Dependencies〉 〈Premises〉

〈Premise〉 ::= ‘Lookup’ 〈Ctx 〉 〈Inputs〉 〈Outputs〉 〈Error〉
| ‘Judgment’ 〈Judg〉 〈Inputs〉 〈Binding〉 〈Outputs〉 〈Error〉
| ‘Eq’ 〈Term〉 〈Term〉 〈Error〉
| ‘Neq’ 〈Term〉 〈Term〉 〈Error〉

〈Dependencies〉 ::= ε | 〈Judg〉 〈Outputs〉 〈Dependencies〉

〈Name〉 ::= ‘Some’ 〈String〉 | ‘None’

〈Judg〉 ::= 〈Int〉

5.3.1 Templates

A template is an intermediate representation of a typing rule that is more suitable
for the constraint generation process and defined in Definition 5.1.

Templates serve as the input format for the constraint generation phase of the
type checker. Besides being better suited for constraint generation templates also
have the advantage that we can adapt the system to other specification languages by
translation into templates. The structure of the templates has no hard requirements
on the specification language, although it has to be declarative and the structure
of the templates is similar to the structure of the typing rules of the specification
language.

Before we are going to describe the structure of templates in depth, we highlight
the conceptual differences between templates and typing rules. Templates take
advantage of the input/output tags of typing judgments and context definitions by
splitting everything up into an input and output part. This will become handy in the
constraint generation phase, where we can see immediately which are the patterns
to match against the expressions and which are the output positions that we have
to compute. As described in the introduction to this chapter, we also normalize
templates. For each implicit equality in the conclusion and premises of typing rules
we add an explicit equality. Thus every variable occurs in each judgment only
once. Further we sort premises by dependencies between their inputs/outputs. We
describe and motivate the normalization process in the remainder of the section.
The template optimization and constraint generation phase take advantage of these
normalizations and therefore expect their inputs to be normalized.

25

Note: We transform all meta-variables of the specification into the variables
(Var(name)) that we use for constraint generation as we do not need the additional
information of meta-variables anymore.

Premises in Templates

Premises in templates have multiple shapes: Judgments, context lookups, equalities,
and inequalities. A premise always has a (possibly empty) list of dependencies. This
list contains the number and the outputs of the judgment the premise depends on.
Later on in this section we define what it means for a premise to have dependencies,
first we take a look at the different kinds of premises.

Judgments correspond to the user defined judgments of the specification. They
consist of the judgment number 1 which refers to the position in the decla-
ration section of the specification, the positions of the judgment marked as
inputs 2 , context modifications 3 , 4 , 5 , the output positions of the judg-
ments 6 , and potentially error messages 7 .

The main difference between context modifications in templates and typing
rules is that all modifications are at one place and can always be evaluated
in the same manner. A context modification can either be an addition to a
context 3 which consists of a context identifier (this identifier refers to the
position in the declaration section of the specification), a list of inputs and
a list of outputs. It can also be a context identity 5 which corresponds to a
context meta-variable in the specification and context identities do not modify
the context and a reset operation 4 which resets the given context and cor-
responds to the empty context. A valid context can be obtained by applying
the context modifications from right to left to a context instance. A detail
explanation of the semantics in our type checker will follow in Section 5.5.

Example 14.

Judgment(

1 1

, [Var("X0")] 2

, [Binding(1, [Var("X1")], [Var("X2")]) 3

, Reset(1) 4

, Ctx(2) 5

]

, [Var("X3")] 6

, Some([Error([Var("X0"), "has type", "{}"])]) 7

)

In example 14 we have judgment one that has only one input position Var("

X0") and one output position Var("X3"). It leaves context two as it is, resets
context one and then adds the input/output pair Var("X1") and Var("X2")

to context one. In addition it is annotate with one error message.

Context lookups consist of the context number 8 , of the input 9 and of the out-
put 10 positions of the context lookup from the specification and potentially
of error messages 11 . We do not treat lookups as normal judgments as their
semantics is not defined within the specification. Therefore we have to deal
with them separately in the type checker.

26

Example 15.

Lookup(

1 8

, [Var("X0")] 9

, [Var("X1")] 10

, None() 11

)

In example 15 we look up Var("X0") from context one and bind the result to
Var("X1)". This context lookup has no error messages attached.

(In)equalities are predefined judgments and therefore treated separately. They
have a judgment number, exactly two input positions, no output positions and
potentially an error message. The judgment number is used to keep track of
the non-terminals of the (in)equality.

Example 16. Neq(4, Var("X0"), Var("X1"), None())

In example 16 we test if Var("X0") and Var("X1") are not equal and provide
no error message.

In some cases it is relevant in which order we evaluate premises. As we have not
talked about evaluation yet, we assume premises are evaluated like functions. We
provide terms for input positions an retrieve terms for the output positions. If we
take a look at Example 17 we see that typing rule T-Tapp from Appendix A.1 has
two premises. When we compare the premises with the judgment definitions, we
see that %x occurs as an input of the first premise and as within an output position
of the second premise, but not at all in the conclusion. If we want to evaluate the
first premise we have to find a term for %x, but that term is only provided by the
output of the second premise. Therefore we have to evaluate the second premise
first.

Example 17.

judgments

TermBinding{I} "|" TypeBinding{I} "|-" Exp{I} ":" Type{O}.

Type{O} "= [" ID{I} "->" Type{I} "]" Type{I}.

rules
~U = [%x -> ~S] ~T
$C1 | $C2 |- ~e : all %x . ~T
============================== T-Tapp

$C1 | $C2 |- ~e [~S] : ~U

We make those dependencies visible in the template language by annotating each
premise with a list of its dependencies. Those dependencies contain the number of
the premise on which the premise depends and the output positions of that premise.
The outputs are redundant information and only added to make it easier to check
which information are proivded by that dependency. The dependency for the first
premise in Example 17 would look like (1,[TAll(Var("X0"), Var("X1"))]). Here

27

Var("X0") and Var("X1") are the generated variable names for %x and ~T. In this
example TAll(Var("X0"), Var("X1")) is the only output provided by the premise
and 1 refers to the second premise, because we sort premises of templates topological
according to the dependencies, as we will describe in the next section.

Conclusions in Templates

Conclusions contain the judgment identifier 12 , the input positions of the judgment
13 , the context modifications 14 as well as the output positions of the conclusion
15 . In contrast to the conclusion in a typing rule from the specification, a typing
rule in a template has no error message. As it was only possible to annotate the
conclusion with error messages for implicit equalities those error messages propagate
into the premisses that are introduced to make the implicit equalities explicit.

Example 18.

Conclusion(

3 12

, ([Var("X177")] 13

, [Binding(2, [Var("X178")], [])

, Ctx(2)

] 14

)

, [] 15

)

Example 18 shows a conclusion that has judgment number three and only one
input position. The context pattern specifies that there has to be at least one
element in the second context. In this example judgment three has no outputs.

A template consists of a name, a list of premisses with dependencies and a
conclusion. Figure 5.2 shows how a complete template looks like for the variable
typing rule in the simply typed lambda calculus. On the left side of Figure 5.2 the
typing rule from the specification is shown and on the right side its representation
as a template. Note that in the example we hide the underscores in the constructor
names of the specification language. Due to that we see in Figure 5.2 the term Var

(Var("X52")) where actually the outermost Var constructor is part of the target
language and the inner Var is part of the specification language.

5.3.2 Generation

The Stratego rule to-template does the main part of the template generation. It
takes a rule from a specification and transforms that rule into a template. The
strategy to-templates does that iteratively for every rule in a specification. The
first step in the conversion is the elimination of implicit equalities in the premises
and the conclusion.

For each implicit equality we create an explicit equality by collecting all variables
that occur more than once in an input position of a premise or conclusion. After
that we create fresh names for the collect variables and create premises that state
the equality of the fresh meta-variables. Implicit equalities in premises are not
transformed into explicit equalities if the meta-variables also occur in the conclusion.
These equalities are either ensured by explicit equalities from the conclusion or if

28

there are no implicit equalities in the conclusion for this meta-variable, by the fact
that this variable occurs only once as a source and thus, cannot introduce different
values. If a meta-variable occurs more than twice we define the equalities for the
new variables transitively.

Example 19 shows this for a typing rule of the judgment

Type{O} "= [" ID{I} "->" Type{I} "]" Type{I}

which models type substitution in the SystemF, see Appendix A.1. On the left
side of Example 19 you see the typing rule with an implicit equality and on the
right hand side the transformed version without the implicit equality.

Example 19.

=====================
~S = [%x -> ~S] %x

%y = %z

=====================
~S = [%y -> ~S] %z

If there are error messages for implicit equalities, we associate those error mes-
sages with the corresponding explicit equalities. Then we replace the variables in
the error message by the fresh meta-variables of the corresponding explicit equality
and add the error message as a normal error to the explicit equality.

In order to treat the introduced explicit equalities like the equalities introduced
in the type system specification, we have to introduce corresponding judgments.
This is important as we rely in the template optimization phase on the information
about the non-terminals in the judgments.

To introduce judgments for equalities that are generated from implicit equal-
ities, we have to determine the non-terminals of the equality. We infer the non-
terminals by analyzing the surrounding terms and by exploiting the scope of the
meta-variable.

In case the meta-variable is directly in an input or output position of a judgment,
context binding or context lookup, we infer the non-terminal from the judgment or
context definition. Otherwise, we fetch all productions of the target language that
could possibly have produced the surrounding term and extract the non-terminal
from the corresponding position. If there is more than one production that could
have created that term, we try to disambiguate by the scope of the meta-variable.
In case there is still more than one production with different non-terminals for this
meta-variable, we raise an exception and this equality has to be made explicit in
the specification.

After this step, there are no implicit equalities left, i.e. all meta-variables within
a judgment are different. As a next step we analyze the premises of the typing rule
for dependencies. One premise depends on the other, if it uses meta-variables in
input positions that occur in an output position of another premise and not as an
input position in the conclusion. As we need to supply the input positions with
concrete terms to check if a premise holds, we can only evaluate a dependency if
we first evaluate all its dependencies. In the generation process we do two things:
We sort the premises topologically according to their dependencies and annotate
them with the output positions of the dependencies, as described in the previous
paragraph. The implementation of this ordering is almost standard. First we
collect all premises and their dependencies in a graph. Due to the nature of the
dependency it is more natural to create edges from a premise to the premises it

29

%x : ~T in $C
============== T-var

$C |- %x : ~T

Template(

Some("T-var")

, [(Lookup(

1

, [Var("X52")]

, [Var("X53")]

, None()

)

, []

)

]

, Conclusion(

1

, ([Var(Var("X52"))], [Ctx(1)])

, [Var("X53")]

)

)

Figure 5.2: Typing rule and template of T-Var

depends on. As it is easy to check if a premise has an input position that does
not occur in the conclusion but as the output of another premise. Therefore, the
resulting dependency graph is a transposed dependency graph. We sort this graph
topologically with the algorithm by Kahn [Kah62]. The result is the reversed order,
as we used the transposed dependency graph. Therefore we reverse the result of the
topological sort. If we encounter cycles in the dependency graph we report them
and abort the template generation.

After we have resolved implicit equalities and dependencies we begin to gener-
ate templates. This process is, except for technical subtleties, a straight forward
rewriting of the rules from the specification.

5.4 Constraint Template Optimization

In this section we describe and motivate the optimization strategies we have used
to reduce the number of non-syntax directed templates. However, the template
optimization phase can potentially do arbitrary modifications. We focus here on
optimization strategies that reduce ambiguities between the templates.

Informally, two templates are ambiguous if it is not known a priori which (if
any) of the templates can be used to extend a derivation to a successful derivation.
Therefore, we have to use the rules according to a heuristic and to backtrack if
the decision did not work out. The goal of the optimization strategies described in
this section is to eliminate some of those ambiguities before we even start to create
derivations.

Before introducing the optimization strategies, we define more formally what an
ambiguity is.

Definition 5.2. A template is when-ambiguous if there is another template such
that there is at least one term that matches the conclusion of both templates.

30

Definition 5.2 describes the general case of an ambiguity. There is an ambiguity
if there is a template that has an syntactic overlap with another template. We call
those ambiguities when-ambiguity, because it is not clear when (i.e. at which point
in the derivation) we have to apply an ambiguous template.

Definition 5.3. A template is which-ambiguous if there is another template such
that the set of terms matching the conclusion of both templates is equal.

Definition 5.3 aims at more limited ambiguities. Templates are which-ambiguous
if they match exactly the same terms. In other words their conclusions are equal
modulo variable renaming. As there are two (or more) templates that apply to
exactly the same terms, it is not the question when we have to apply a template, but
only which one we have to apply. The distinction of those two kinds of ambiguities
will help to implement optimization strategies. Of course all templates that are
which-ambiguous are also when-ambiguous.

Before describing the optimization strategies we implemented, we extend the
template language to make ambiguities explicit.

Definition 5.4. The following grammar defines the extended template language.

〈Template〉 ::= . . . | ‘Fork’ 〈Templates〉

〈Templates〉 ::= 〈Template〉 〈Template〉 | 〈Template〉 〈Templates〉

The new constructor Fork has a list that contains at least two templates. The
idea is that templates contained in Forks are all when-ambiguous to each other.
We later use those groups of ambiguous templates to decide at which point in the
derivation we have to decide which template we apply. A fork with less than two
templates contains no ambiguities and is therefore always decomposed.

We do four types of optimizations in the optimization phase. First we eliminate
which-ambiguities that are due to redundancies. Second we unfold when-ambiguous
templates by inserting all possible structures in the variables of the conclusion.
Directly after this we eliminate which-ambiguities that are due to redundancies and
were created by the unfolding. Third we remove all templates that have unsatisfiable
premises and fourth we remove all valid premisses from templates. After those
optimizations we order all templates in forks such that the most general templates
are evaluated at last.

5.4.1 Which-Ambiguities

Now we look now into the optimization of which-ambiguities. First we identify
all which-ambiguities and create Forks of them. We implemented this using a
strategy that groups lists of templates such that each group contains only which-
ambiguous templates. Two templates are which-ambiguous if they have the same
judgment number (i.e. the position in the judgment declaration section) and if the
term pattern and context pattern of the conclusion are equal modulo variables. Of
the resulting template groups we wrap all groups with more than one element into
a Fork.

We optimize forks containing which-ambiguities by checking whether a template
of a fork is subsumed by a template that is which-ambiguous to that template.

31

Definition 5.5. A template t1 subsumes another template t2 if t1 and t2 are which-
ambiguous to each other and the following formula holds

∀FV (p1, q1, . . . , pn, qm) . ((p1 ∧ · · · ∧ pn) =⇒ (q1 ∧ · · · ∧ qm)) (5.1)

where p1 . . . pn and q1 . . . qm are the premisses of t2 and t1 respectively.

A template t2 that is subsumed by a template t1 can be removed without chang-
ing the semantics of the type system. To show this, we have to argue that at any
position where t2 can be applied, we can also apply t1. As the conclusion of both
templates matches the exact same terms, we can attempt to apply both templates
at the same positions. Now we have to ensure that whenever all premisses of t2 are
satisfied, all premises of t1 are satisfied as well. Which is exactly our definition of
subsumption.

In Example 20 we have two subtyping rules for records. The rule Depth-1 is
the standard depth subtyping rule for records from Appendix A.2. The other rule
Depth-2 was introduced to make depth subtyping of records reflexive.

Example 20.

judgments Type{I} "<:" Type{I}.

rules

~T <: ~S
{ $R } <: { $U }

=============================== Depth-1

{ %l : ~T $R } <: { %l : ~S $U }

~T = ~S
{ $R } <: { $U }

=============================== Depth-2

{ %l : ~T $R } <: { %l : ~S $U }

Now we consider the presence of a general reflexivity rule for the subtyping
relation, like:

T = S

====== Refl

T <: S

In the presence of rule Refl the rule Depth-2 is subsumed by the rule Depth

-1 as the conclusions of both rules are equal modulo variables and we can prove
with the help of a first-order formula representation of rule Refl that the following
formula holds.

∀r, u, t, s . ((t = s ∧ record(r) <: record(s)) =⇒
(t <: s ∧ record(r) <: record(s))) (5.2)

The first conjunct of the conclusion can be proven by applying the first conjunct
of the premise to the first-order formula representation of rule Refl and the second
conjunction is verbatim the second conjunct of the premise.

32

We try to prove that a template subsumes another for all which-ambiguous
templates using vampire by transforming the templates into a first-order formula
representation and generating the formula of Definition 5.5. If the proof succeeds
we remove the subsumed template from the fork. If no proof can be found in the
given time limit we assume the template is not subsumed and do not delete it. The
translation of templates into a first-order formula representation is similar to the
translation of specifications into a first-order formula representation and actually
reuses most of the code.

5.4.2 When-Ambiguities

Introducing the rule Refl rendered one of the depth subtyping rules for records re-
dundant and we were able to detect and remove that redundancy. However the rule
Refl introduces a when-ambiguity into the type system, as its conclusion matches
all types and not just records and there is not just only the rule Refl.

For the examples we now assume we have the type system specification of Ap-
pendix A.2, where types are defined as following:

〈Type〉 ::= ‘Int’ | 〈Type〉 ‘->’ 〈Type〉 | ‘{’ 〈Record〉 ‘}’

〈Record〉 ::= ε | 〈ID〉 ‘:’ 〈Type〉 〈Record〉

A template within a fork that has only variables in its conclusion judgment
is always ambiguous as a fork contains at least two templates. We unfold such
templates to make them syntax directed. Unfolding means that we create templates
with all possible structural variants of the variables. To do this we first look up the
non-terminals of the variables in the judgment definition. For all non-terminals we
then fetch the corresponding SDF productions from the target language. Then we
generate templates where we instantiate the variables with all possible combinations
of the productions. Non-terminals in the productions are replaced by fresh variables.

Example 21.

Int = Int

========== R1

Int <: Int

~A -> ~B = Int

=============== R2
~A -> ~B <: Int

Int = ~C -> ~D
=============== R3

Int <: ~C -> ~D

~A -> ~B = ~C -> ~D
==================== R4
~A -> ~B <: ~C -> ~D

{ R } = Int

============ R5

{ R } <: Int

Int = { S }

============ R6

Int <: { S }

{ R } = C -> D

=============== R7

{ R } <: C -> D

A -> B = { S }

=============== R8

A -> B <: { S }

{ R } = { S }

=============== R9

{ R } <: { S }

Example 21 shows the unfolding for the template Refl. That unfolding creates
from non-syntax directed templates a set of syntax directed templates. Of course
the unfolding can create new ambiguities and not all templates are applicable at all.
In the current optimization step we will try to eliminate the newly created which
ambiguities. We do this in the same way as described before, except that we now

33

also try to proof the formula from Definition 5.5 by structural induction. Before
we describe how we do the induction, we explain the problem at Example 21.

When comparing the typing rules from Example 21 and the typing rules from the
type system specification of the simply typed lambda calculus from Appendix A.2
we see that the following two rules have the same conclusion modulo variable re-
naming.

~A -> ~B = ~C -> ~D
==================== R4
~A -> ~B <: ~C -> ~D

~C <: ~A
~B <: ~D
==================== S-arrow
~A -> ~B <: ~C -> ~D

We can try to show that one of these templates subsumes the other. We now
try to prove that the left template is subsumed by the right template.

∀a, b, c, d . (a->b = c->d =⇒ (c <: a ∧ b <: d)) (5.3)

∀a, b, c, d . (a = c ∧ b = d =⇒ (c <: a ∧ b <: d)) (5.4)

∀a, b, c, d . (c = a ∧ b = d =⇒ (c <: a ∧ b <: d)) (5.5)

5.4 follows from the injectivity of the type constructor -> and 5.5 from the
symmetry of equality. But now we are stuck as we cannot show c = a =⇒ c <: a
nor b = d =⇒ b <: d, because we have removed the general reflexivity rule.
However we can prove 5.3 by structural induction on a, b, c, and d. We will now
prove some cases of the induction, the other cases are analogous. We first show the
base case with a = b = c = d = Int.

Int -> Int = Int -> Int =⇒ (Int <: Int ∧ Int <: Int) (5.6)

The premise of the implication in the base case 5.6 is valid as the terms are
syntactically equal. The conclusion of the implication holds because of rule R1,
which was created by the unfolding.

Now we show a step case with a = a1->a2, b = Int, c = c1->c2 and d = Int.

(a1->a2)->Int = (c1->c2)->Int =⇒ (c1->c2 <: a1->a2 ∧ Int <: Int) (5.7)

(a1->a2) = (c1->c2) ∧ Int = Int =⇒ (c1->c2 <: a1->a2 ∧ Int <: Int) (5.8)

(a1->a2) = (c1->c2) =⇒ c1->c2 <: a1->a2 (5.9)

(c1->c2) = (a1->a2) =⇒ c1->c2 <: a1->a2 (5.10)

(a1 <: c1) ∧ (c2 <: a2) =⇒ c1->c2 <: a1->a2 (5.11)

5.8 follows from the injectivity of the type constructor ->. We can drop Int =
Int from the premise of the implication as it is valid and make the second conjunct
of the conclusion true by applying rule R1, which leads to 5.9. 5.10 follows from
symmetry of equality and 5.11 by applying the induction hypothesis to (c1->c2) =
(a1->a2). 5.11 holds as it is a variant of rule S-arrow.

Note that we can apply rule S-arrow as we want to retain this rule, but not R4
as we are trying to show that this rule is redundant. If we would need it, it would
not be redundant.

34

We now show the case where a = {r}, b = Int, c = {s}, and d = Int.

{r}->Int = {s}->Int =⇒ ({s} <: {r} ∧ Int <: Int) (5.12)

{r} = {s} ∧ Int = Int =⇒ ({s} <: {r} ∧ Int <: Int) (5.13)

{r} = {s} =⇒ {s} <: {r} (5.14)

{s} = {r} =⇒ {s} <: {r} (5.15)

Here 5.13 again follows from the injectivity of the type constructor ->. We can
cancel out Int = Int as it is valid and the second conjunct of the conclusion follows
from rule R1, which leads to 5.14. Now 5.15 follows from symmetry of equality and
it holds as it is a variant of rule R9. Those were the three interesting cases of the
induction the other cases follow analogous.

Now we have shown that template R4 is subsumed by template S-arrow, thus
we can remove template R4. As it would be tedious to proof those propositions
by hand, we have implemented a tactic that attempts fully automated structural
induction proofs of this kind.

After unfolding the non-syntax directed templates we collect which-ambiguous
templates and attempt for each pair a direct proof that one is subsumed by the
other. If this proof fails we attempt a structural induction on all free variables.

The induction cases are generated by collecting the non-terminals for each vari-
able we do induction on. If there are multiple non-terminals for a variable we
collect all of them to be sure that we do not miss a case. After we have collected
the non-terminals we fetch the corresponding productions and create every possible
combination of productions under consideration of the variable position. All non-
terminal productions are replaced by fresh and arbitrary constants. We introduce
constants instead of variables to be able to control where induction hypothesis are
applied.

Example 22. Suppose we have two variables x1 and x2 for which we have collected
the non-terminal Type, with the following productions.

〈Type〉 ::= ‘Int’ | 〈Type〉 ‘->’ 〈Type〉

From this we create the following cases:

• x1 = Int and x2 = Int

• x1 = Int and x2 = c1->c2

• x1 = c1->c2 and x2 = Int

• x2 = c1->c2 and x2 = c3->c4

What is left to do is the generation of induction hypothesis. While creating the
induction cases we keep track of the non-terminals of the constants. In Example 22
all variables have the non-terminal Type. Now we create induction hypothesis for
each case, by substituting constants into the proposition we then to prove such that
the type of the variables in the proposition matches the type of the substituted
constants. We can do this for all constants, as each constant is structurally smaller
than the term in the induction case. This is the case because we substituted only
non-terminals within a substructure with constants.

35

5.4.3 Unsatisfiable Templates

The optimization in the previous section left us with a bunch of templates that do
not seem to be applicable at all. For example look at template R2 in Example 21.
This template has the premise ~A -> ~B = Int which is unsatisfiable, as those
terms are syntactically different. However, to apply a template, we have to satisfy
all its premises. Therefore, template R2 is not applicable at all.

We remove templates with an unsatisifable premise by attempting a proof that
the negation of the premise is valid. If this proof succeeds we remove the whole
template, otherwise we cannot be sure and keep the template.

Applying this strategy to all templates of Example 21 after the optimization of
the previous section the following templates of the unfolding remain:

Int = Int

========== R1

Int <: Int

{ R } = { S }

=============== R9

{ R } <: { S }

5.4.4 Valid Premises

Now that we have remove templates that contain unsatisfiable premises, we can
look at premises that are always satisfied, i.e. at valid premises. As they are always
satisfied, we do not have to check whether they are satisfied during type checking
and can remove them from the corresponding template.

Following the same scheme as in the previous section, we attempt a proof that
a premise is valid. If that attempt succeeds we remove the premise from the corre-
sponding template, otherwise we cannot be sure and keep the premise.

If we look at the remaining rules in the previous section, we observe that Int

= Int is a valid premise. Therefore the resulting set of unfolded templates looks
like:

========== R1

Int <: Int

{ R } = { S }

=============== R9

{ R } <: { S }

If we compare the remaining rules with a set of hand-crafted syntax directed
subtyping rules for the type system in Appendix A.2, we see that the only possible
further optimization is to show that template R9 is redundant. However this cannot
be optimized with the current strategies as we can only check if which-ambiguous
templates subsume each other and R9 is strictly when-ambiguous.

5.4.5 Ordering

At the end of the optimization phase we sort the templates in the remaining forks.
Templates with a more special conclusion are in front of forks with a more general
conclusion. This ordering has the advantage that we can evaluate the templates
in a fork from left to right, so that no general template will catch all terms. More
formally, we sort the templates within a fork by <, which is defined as

36

t1 < t2 ⇐⇒ ∃ϕ . t2 · ϕ = t1 (5.16)

where ϕ is some substitution and · is substitution application. We implement
the comparison as a Stratego strategy and use the quick sort implementation of the
Stratego standard library. The comparison strategy does the following: It checks
whether the judgment number is equal, which is always satisfied as we compare
templates within a fork. Then it checks whether the constructors of the term and
context pattern of the left operand match the constructors of the term and context
pattern of the right operand modulo variable names.

5.5 Constraint Generation

Constraint generation is the first phase of the generated type checker. The inputs
of this phase are templates generated from a type system specification and the
program that should be type checked. The only input method for expression we
currently support is via the conjecture section of the specification. However it
should be straightforward to extend this phase with support for e.g. stdin.

The constraint generation phase is structured as follows. First we initialize
contexts and then generate constraints according to the program’s structure and
the templates. After generating the constraints we pass to the constraint solver
whether the expression should be well-typed or not.

Lets first look at the implementation of contexts. We store all contexts in a hash
table (called context store), with the context number as key. The contexts itself are
hash tables extended with a list that keeps track of the insertion order. Hash tables
are a convenient data structure in the Stratego standard library to store (multiple)
data points at a key. They reflect the intuition of the context declarations as cross
products of the terms corresponding to non-terminals. It is important to track the
insertion order, because some type systems (e.g. ordered type systems) might rely
on the ordering within contexts. For every program expression a fresh context store
is created and initialized according to the program expression.

For the context representation we decided to use hash tables instead of nor-
mal key-value lists to reduce the lookup time in realistic programs which declare
identifiers much less then they refer to them. However we do not have experimen-
tal evidence if this actually speeds up type checking, because we do not have a
key-value list implementation of contexts for reference.

Implementing contexts using extended hash tables forced us to separate context
operations from normal inputs. On the one hand this creates more exceptional cases
(e.g. more complex matching algorithms that are described in Section 5.4) and on
the other hand it leads to a modular context implementation with the potential to
exchange the implementation easily.

Before we can explain how we generate constraints, we have to define the con-
straint language.

Definition 5.6. Constraint Language

〈Constraint〉 ::= ‘CFail’ 〈Error〉
| ‘CEq’ 〈Term〉 〈Term〉 〈Error〉
| ‘CNeq’ 〈Term〉 〈Term〉 〈Error〉

37

We annotate all constraints with error messages. These error messages are either
generated during the constraint generation or passed through from the specification.
The constraint solver shows the error messages if a constraint cannot be solved. In
Definition 5.6 are three types of constraints. The constraint CFail corresponds
to false and cannot be solved. Further CEq and CNeq are equality respectively
inequality constraints.

To start the constraint generation, we need besides the templates and the pro-
gram, information about the initial contexts, the judgment number of the typing
judgment and the output positions of that judgment. This information are available
as we read the program expression from the conjecture section of the type system
specification. If we would only read the program expression (e.g. from stdin) we
would need to pass information about the initial contexts, the judgment number
and the output positions separately. In this case it makes sense to hard-code that
information, as it is unlikely to change frequently.

We have divided the main logic of constraint generation into three Stratego
strategies: generate selects the template that matches the current term, generate
’ applies the current term to the conclusion of the selected template and execute

evaluates the premises of the template. All three strategies return a tuple of the
computed outputs and the generated constraints. We wrap the computed outputs
into Option to model the absence of outputs and constraints in cases of errors.

After initializing the contexts we call the strategy generate with the judgment
number and the inputs of the conjecture. We also pass the expected outputs and
set the parameter init to true. This parameter is false for all other cases except
the initial call to generate and used to generate an equality constraint for the
expected and actual outputs.

Now generate calls find-match to find a template whose conclusion matches
the inputs, judgment number and the current state of the contexts. Before find-

match tests the inputs and the current state of the contexts it filters all templates
with the correct judgment number and tests only those templates for matches. In
the case of a Template find-match checks whether the constructors of the term
pattern in the conclusion and of the input term match. They can have variables for
whole levels and match if they have the same constructors on all levels. In addition
the context pattern of the conclusion has to reflect the current state of the contexts.
The context pattern reflects the state of the contexts if it can be applied from left
to right to the context without failures. In case of Fork only those templates are
retained int the Fork that match.

find-match safely takes the first template that matches, because in Section 5.4
we have ensured that there is only one template that matches. Remember Fork is
a template as well. If no template matches, we return None for the outputs and the
singelton list containing the constraint that always fails with an appropriate error
message. If find-match succeeds to find a template it calls generate’ with that
template.

The rule generate’ now evaluates the selected template according to the given
input. In order to evaluate the premisses of the selected template we need to extract
parts of the current input term. We call the substitution of terms for variables
instantiation. For example in a rule for function application we have to obtain the
body of the function to check its type.

We initialize variables in inputs of a judgment using a term and a pattern
which describes the structure of the term. We search a variable in the pattern

38

to instantiate it, by walking through the abstract syntax tree of the pattern and
record the path to the variable. Every variable is distinct as we resolved every
implicit equality in the templates and have introduced no new implicit equality.
Therefore we can take the first and only occurrence of the variable that matches. If
we find a path to that variable, we use it to retrieve terms from the corresponding
term, by walking along the path and fetching the node at its end. We ensure that
the pattern and term always have the same structure, otherwise we would retrieve
false positives. Because there are also other sources (e.g. premise dependencies) we
extend the term and pattern if needed. We call adding to this tuple bringing into
scope.

If the selected rule is a fork, the evaluation works as follows. In correspondence
to the bindings in the conclusions context pattern, we pop all terms from the
contexts and bring them into scope. This is needed for example in the typing
rules for the freshness condition in SystemF, see Appendix A.1.

If a variable is bound by the outputs of the conclusion and used as the input of
a premise but neither an output of an other premise or an input of the conclusion,
we bring the variable into scope with the expected outputs of the conclusion. This
allows to deal with typing rules that have free variables in their premises as for
instance in the subsumption rule for subtyping.

Example 23.

$C |- ~e : ~S
~S <: ~T
============= T-Sub

$C |- ~e : ~T

Example 23 shows a subsumption rule for the type system in Appendix A.2. In
the rule ~T occurs free in the second premise. Binding it to the expected output of
~T allows to still evaluate this premise.

Now we have to replace all variables introduced by the selected template with
fresh variables, otherwise applying a template twice would lead to collisions. All
variables introduced in the previous phases have a prefix different from Y. Therefore
we replace all variables that do not have the prefix Y with a fresh variable with
the prefix Y. Additionally this allows to verify visually whether all variables in a
constraint set are fresh.

Now we evaluate the premises of the template. A key element in the evaluation
is the instantiation of the variables in the premises as explained above.

In Section 5.3 we have described that the premises are topologically sorted.
Therefore we can evaluate them in the given order. However, to ensure that the
terms of all dependencies are available during evaluation, we have to accumulate
the outputs of the evaluated premises and add those to the patterns and terms used
for the instantiation.

The strategy execute does the evaluation of the premises. We call execute
for each premise with a copy of the contexts to ensure that one premise cannot
pollute the contexts of another premise. We have implemented a safe version of
the strategy hashtable-copy from the standard library to ensure that after the
evaluation of the premise all copies are destroyed.

We now describe what execute does for the different types of premises.

39

Lookup: The inputs of the lookup are instantiated, then the resulting term is
looked up in the corresponding context. If the lookup succeeds, the result is
returned as an output, together with a constraint set that contains equality
constraint between the output pattern and the looked up output. Those
constraints are annotated with the corresponding error message, which is
instantiated and in which the hole ({}) is replaced by the output variables. If
the lookup fails, None is return as output together with the CFail constraint
and an appropriate error message.

(In)equality: Equalities and inequalities are initialized and returned as con-
straints, together with the output None as they have no output positions.

Judgment: If the premise is a judgment it is first instantiated. Then we call
generate on the resulting input term with a version of the store that has
been updated according to the context pattern of the judgment. In addition,
we instantiate the expected outputs of the judgment to make the binding of
free variables in premises more precise. After the call to generate returns
we generate equality constraints for the bindings in the context pattern of
the premise. Further, we generate equality constraints between the output
pattern and the computed output and instantiate the corresponding error
messages. The hole ({}) in the error messages is here replaced by the output
variables.

In case generate’ encounters a fork it evaluates all templates contained in
the fork by calling generate’. It tries to solve the resulting constraint set and
returns the outputs of the first evaluation that succeeds. If no templates can be
evaluated to a solvable constraint set we return the constraint that always fails with
an appropriate error message. Because of the ordering of forks in Section 5.4 this
procedure ensures that rules that potentially produce solvable constraint sets but
do not make real progress are deferred to the end.

5.6 Constraint Solving

Constraint solving is the last phase of the type checker. The constraint language
is simple because it only consists of three constructs, the algorithm to solve a
constraint set is simple as well.

We use unification to solve the constraint sets. To be even more precise we use
a variant of Robinson unificiation [Rob65]. During the unification we compute a
Most General Unifier (MGU) to instantiate the variables in the outputs and (in case
of ill-typed programs) in the error messages that we collect every time a constraint
cannot be solved.

During unification we ensure that a certain kind of malformed constraint set
does not lead to infinite loops in the unification. If there are only inequalities
left that contain at least one variable, we abort unification. As inequality is not
transitive, we can never solve those constraint sets.

40

Chapter 6

Evaluation

In this chapter we present three type system specifications, discuss how the speci-
fication language affected the formulation of typing rules, and which optimization
strategies are successful.

6.1 SytemF

We have implemented a version of the polymorphic lambda calculus SystemF that is
close to the version described in Figure 23-1 in [Pie02]. The complete implementa-
tion can be found in Appendix A.1. There are three notable differences between the
version in [Pie02] and our implementation, which we will describe in the following.

In [Pie02] term and type variable bindings are collected in a single context. We
need two separate contexts, one for the term variable binding and one for the type
variable binding, because we can only define homogeneous contexts.

contexts

TermBinding := ID{I} x Type{O}

TypeBinding := ID{I}

Context TermBinding is the term variable binding and associates identifier with
types. TypeBinding binds type variables. Type variables are associated to nothing
because we have no notion of kinds in SystemF . In our implementation variable
and type identifiers are build from the same set of identifiers.

The typing judgment has to reflect that we have two contexts. Therefore our
typing judgment is defined as follows:

judgments

TermBinding{I} "|" TypeBinding{I} "|-" Exp{I} ":" Type{O}.

The second difference is that in [Pie02] it is assumed “that the names of (term
and type) variables should be chosen so as to be different from all names already
bound” by the context. We enforce this by defining an explicit freshness check
in the type system specification for term and type variables. The freshness check
is implemented in a separate module, which is imported in the specification of
SystemF. In the following we show the judgments and rules of the freshness check.

41

judgments

ID{I} "fresh in" TermBinding{I}.

ID{I} "fresh in" TypeBinding{I}.

ID{I} "!=" ID{I} is Neq.

rules

========================= Fresh-Term-Empty

%x fresh in (TermBinding)

========================= Fresh-Type-Empty

%x fresh in (TypeBinding)

%x != %y

%x fresh in $C
========================== Fresh-Term-Step

%x fresh in (%y : ~T ; $C)

%x != %y

%x fresh in ?C

===================== Fresh-Type-Step

%x fresh in (%y ; ?C)

The last difference between the text book version and our implementation is
of the same kind as the last difference. In the text book version type substitution
is assumed to be defined outside of the type system. We had to implement type
substitution within our specification language as we have no built-in substitution
mechanism. However type substitution is implemented in the same fashion like in a
functional programming language with pattern matching. Substitution is also im-
plemented as a separate module and then imported into the SystemF specification.

judgments

Type{O} "= [" ID{I} "->" Type{I} "]" Type{I}.

ID{I} "!=" ID{I} is Neq.

rules

===================== Subst-Eq
~S = [%x -> ~S] %x@1 @implicit %x " does not equal " %x@1.

%y != %x

==================== Subst-Neq

%y = [%x -> ~S] %y

~U = [%x -> ~S] ~T
== Subst-All

(all %y . ~U) = [%x -> ~S] (all %y . ~T)

====================== Subst-Int

int = [%x -> ~S] int

42

~U1 = [%x -> ~S] ~T1
~U2 = [%x -> ~S] ~T2
==================================== Subst-Arrow
~U1 -> ~U2 = [%x -> ~S] ~T1 -> ~T2

This demonstrates that our specification language is well suited to express stan-
dard type systems in a way close to text books as only one difference in the imple-
mentation is due to a restriction of our specification language. The other differences
occur natural as we had to define concepts explicitly that were left implicit before.

The generated templates for our SystemF specification show that there is only
one ambiguity, namely between Subst-Eq and Subst-Neq. This ambiguity cannot
be solved as we would have to decide the equality of terms, before actually knowing
these terms. Nevertheless the creation of forks in the template optimization phase
is helpful. As we have only one fork, we know that all templates besides Subst-Eq
and Subst-Neq are syntax directed.

6.2 Lambda-Calculus with Subtyping

We have implemented a variant of the simply typed lambda calculus with records
and subtyping as described in [Pie02]. The specification for this type system is
divided into two modules. One module specifies the type system without subtyping
and the other module extends the first module with subtyping. The implementation
of the type system without subtyping differs in two aspects from the text book
formalization. First, we have to implement the freshness condition explicitly, as in
the previous section. Second, we have to model rules that talk about all elements
of a record inductively.

Formula 6.1 shows the formalization of the record typing rule from [Pie02]. This
rule says that a record is well-typed if all its elements are well-typed. In 6.1 this is
expressed by quantification over the elements of the record.

for each i Γ ` ti : Ti

Γ ` {li = ti
i∈1...n} : {li : Ti

i∈1...n}
(6.1)

This quantification is not possible in our specification language. Therefore we
model this condition inductively as shown in the following.

============= base

$C |- {} : {}

$C |- ~e : ~T
$C |- { $R } : { $S }

===================================== step

$C |- { %l = ~e $R } : { %l : ~T $S }

Here we ensure with rule step that the first element is well-typed and the
record without the first element is well typed. Rule base is the base case for
this definition and assigns the empty record the empty record type. Note that we
support in contrast to [Pie02] the empty record. We included the empty record in
our definition to demonstrate a top rule for records in the subtyping module. We
have implemented the membership test for the projection typing rule T-proj in a
similar way.

The module implementing subtyping for this lambda calculus contains a typing
rule for function application that can deal with subtyping and the definition of a

43

subtyping relation. We have added the typing rule for function application in favor
of a general subsumption rule, because we do not have optimization strategies to
inline the subsumption rule into the function application rule. We are able to detect
that the function application rule with subtyping is more general (in the case of an
reflexive subtyping relation) than the function application rule without subtyping
and therefore are able to remove the latter.

The subtyping relation is defined by a generic reflexivity rule S-refl and a rule
for function types S-arrow such that the argument type is contravariant and the
return type is covariant.

======== S-refl
~S <: ~S

~T1 <: ~S1
~S2 <: ~T2
======================== S-arrow
~S1 -> ~S2 <: ~T1 -> ~T2

As we have seen in Section 5.4.2 rule S-refl is non-syntax directed and can be
safely replaced by the following two rules.

==========

int <: int

{ R } = { S }

==============

{ R } <: { S }

The subtyping relations have a further rule that defines the empty record {}

to be the top element of records, as well as rules for with and depth subtyping
and permutation of record elements. In conclusion we can specify a variant of the
simply typed lambda calculus with an intuitive subtyping relation and reduce the
non-determinism in the type system.

44

Chapter 7

Related Work

JavaCOP: Declarative Pluggable Types for Java JavaCOP [MME+10] is
a framework for pluggable type systems in Java. It hooks directly into javac and
therefore integrates nicely into the normal development cycle. JavaCOP provides
three tools: A declarative language to describe structural constraints on the AST of
Java programs in a flow-insensitive manner, an API to use the declarative language
for flow-sensitive data flow analysis and a test harness which helps to test that a
program that is well-typed actually satisfies the invariants of the type system. In
contrast to [Ber07] the syntax of Java cannot be extended.

A Generator for Type Checkers Gast introduces in [Gas05] a type checker
generator that can produce type checkers from declarative type system specifications
for functional as well as imperative and object-oriented programming languages.
Type checking is done by a specialized proof search, which is based on unification
and backtracking. A distinguishing feature of Gast’s work is the possibility to
annotate the typing rules with optimizations. For example it is possible to reuse
(potentially incomplete) proofs using subproof extraction. Gast also provides a
formal foundation for his proof search. However, the resulting type checkers do not
report specialized error messages on ill-typed programs.

Automatic Generation of Object-Oriented Type Checkers Ortin et al.
present in [OZQG14] the framework TyS for the implementation of type checkers for
object-oriented programming languages. TyS provides a type checker constructor
TyCC which produces a type checker when given a file that specifies the types
together with the subtyping relation and operations on these types. Operations on
types correspond to typing rules and are implemented using an API that is provided
by TyS. Currently only Java is supported for the implementation of the operations.
The addition of new languages requires the replication of the API in that language.

TyS can be used in conjunction with different parser generator tools and has
been tested with flex, bison, yacc, and ANTLR. It supports the generation of static
and dynamic type checkers and was applied (among others) to the object-oriented
language Drill and the imperative language Frog. TyS does not support polymor-
phic types.

In contrast to the present work the TyS framework does not provide a high-
level specification language in favor of readable generated code and is tied to object

45

oriented languages. It however delivers a tool that has been successfully integrated
in existing tool chains.

Typmix: A Framework for Implementing Modular Extensible Type Sys-
tems Typmix [Ber07] is a framework for implementing type systems for the ex-
tensible compiler xoc. Although type systems can be implemented in xoc directly,
the author claims that they are often verbose and contain redundancies. Type
system specifications in Typmix are written in two languages. One describes the
context modifications, which are called scoperules. The other describes typing rules
using premises and conclusions. The contexts in the typing rules are referred to
as Env and concrete contexts as Env.Ctx. This separation of concerns increases
modularity, e.g. adding a context to a judgment requires only changes were it is
actually used. Typmix is used to implement a type system for an ML-like language
and for FeatherweightJava.

As typmix is integrated in an extensible compiler, its focus is on extending type
systems. Although the scope and type language are declarative it has no interface
to proof assistants.

Automatic Type Inference via Partial Evaluation Tomb and Flana-
gan [TF05] use Prolog to implement type inference. If typing rules are syntax
directed Prolog can type check a program efficiently. A Prolog type checker can be
easily changed to infer types by leaving type variables unbound. However this can
easily diverge due to Prologs depth-first search. This inefficiency is solved in [TF05]
by a two phase approach. In the first phase some Prolog clauses are evaluated,
which is determined by a partitioning parameter. This parameter is usually set
such that relations that depend on types associated with type variables are delayed
into the second phase. These two phases resemble a constraint generation and a
constraint solving phase. The result of the first phase may contain arbitrary Prolog
terms, but the authors claim that for common cases, the result is simple and can
be efficiently solved by e.g. Datalog. This approach also applies to non-syntax
directed typing rules but might be less efficient.

Just as the present work [TF05] generates a two-phase constraint-based type
inference system from a high-level specification. The advantage of choosing a logic
language like Prolog is that the correctness of the type inference algorithms is
entailed by the correctness of the partial evaluator. However, the current approach
does only work for language definitions in Prolog and does not attempt to reduce
the non-determinism that is introduced from non-syntax directed rules.

46

Chapter 8

Summary

8.1 Conclusion

In this thesis we have presented an optimizing type checker generator that optimizes
declarative type system specifications according to automatically conducted proofs.

We have introduced a high-level declarative type system specification language
that can be used with most SDF syntax specifications of programming languages.
This specification language allows to define type systems modular and close to the
notation of text books. Further we have developed a translation of type system
specifications into equivalent first-order formulas and have shown that those are
suitable for type checking using automated theorem provers.

Based on the type system specification language and the first-order model for
specifications, we have developed an optimizing type checker generator. Our type
checker generator is modular, constraint based and uses a normalized intermediate
representation of the specifications. With the optimization phase of the type checker
generator we make a step towards to generation of efficient and syntax directed type
checkers from non-syntax directed high-level specifications.

8.2 Future Work

In this thesis we build the foundation to create more sophisticated optimizing type
checkers. The main future goal is twofold. On the one hand we want to develop
more strategies to optimize type system specifications, for example to detect redun-
dancies between strictly when-ambiguous templates. On the other hand we want
to investigate into a more expressive and efficient way of proving the properties
needed for the optimization strategies.

Besides that, it is desirable to extend the specification language with constructs
to quantify over syntactic constructs. This would allow for example to express that
all elements of a record are well typed without explicit recursion. Another im-
provement of the specification language would be a more modular way of specifying
contexts. For example inspired by Typmix [Ber07].

Furthermore, there is room for improvements with regard to usability. Currently
a project hast to be recompiled on changes of meta-variables, contexts, and judg-
ments. SugarJ[ERKO11] provides syntax definition on the fly that could solve this

47

problem. Another usability concern is the lack of editor integration, for example
the highlighting of type errors in the program.

To improve the performance of the type checker it would be useful to explore dif-
ferent context implementations and to implement or use a state of the art constraint
solver.

48

Bibliography

[Ber07] Tom Bergan. Typmix: a framework for implementing modular,
extensible type systems. Master’s thesis, University of California
Los Angeles, 2007.

[ERKO11] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus
Ostermann. Sugarj: Library-based syntactic language extensibility.
In ACM SIGPLAN Notices, volume 46, pages 391–406. ACM, 2011.

[ERKO12] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and
Klaus Ostermann. Layout-sensitive generalized parsing. In
Krzysztof Czarnecki and Görel Hedin, editors, SLE, volume 7745
of Lecture Notes in Computer Science, pages 244–263. Springer,
2012. URL: http://dblp.uni-trier.de/db/conf/sle/sle2012.
html#ErdwegRKO12.

[EvdSV+13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte
Boersma, Remi Bosman, William R. Cook, Albert Gerritsen, An-
gelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pe-
dro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler,
Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido H. Wachsmuth, and Jimi van der Won-
ing. The state of the art in language workbenches. In Martin
Erwig, RichardF. Paige, and Eric Van Wyk, editors, Software Lan-
guage Engineering, volume 8225 of Lecture Notes in Computer Sci-
ence, pages 197–217. Springer International Publishing, 2013. URL:
http://dx.doi.org/10.1007/978-3-319-02654-1_11, doi:10.

1007/978-3-319-02654-1_11.

[Gas05] Holger Gast. A generator for type checkers. 2005.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism sdf. SIGPLAN Not., 24(11):43–75, November
1989. URL: http://doi.acm.org/10.1145/71605.71607, doi:

10.1145/71605.71607.

[Joh75] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Tech-
nical report, 1975.

[Kah62] A. B. Kahn. Topological sorting of large networks. Commun. ACM,
5(11):558–562, November 1962. URL: http://doi.acm.org/10.
1145/368996.369025, doi:10.1145/368996.369025.

49

http://dblp.uni-trier.de/db/conf/sle/sle2012.html#ErdwegRKO12
http://dblp.uni-trier.de/db/conf/sle/sle2012.html#ErdwegRKO12
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://doi.acm.org/10.1145/71605.71607
http://dx.doi.org/10.1145/71605.71607
http://dx.doi.org/10.1145/71605.71607
http://doi.acm.org/10.1145/368996.369025
http://doi.acm.org/10.1145/368996.369025
http://dx.doi.org/10.1145/368996.369025

[KV10] Lennart C. L. Kats and Eelco Visser. The Spoofax language work-
bench: rules for declarative specification of languages and IDEs. In
William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors,
Proceedings of the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2010, pages 444–463, Reno/Tahoe, Nevada, 2010.
ACM. doi:http://doi.acm.org/10.1145/1869459.1869497.

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A do-
main specific language for source code analysis and manipulation.
In Source Code Analysis and Manipulation, 2009. SCAM’09. Ninth
IEEE International Working Conference on, pages 168–177. IEEE,
2009.

[MHR+12] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tan-
ter, and Andreas Stefik. An empirical study of the influence
of static type systems on the usability of undocumented soft-
ware. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’12, pages 683–702, New York, NY, USA, 2012.
ACM. URL: http://doi.acm.org/10.1145/2384616.2384666,
doi:10.1145/2384616.2384666.

[MME+10] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Mill-
stein, Chris Andreae, and James Noble. Javacop: Declarative
pluggable types for java. ACM Trans. Program. Lang. Syst.,
32(2):4:1–4:37, February 2010. URL: http://doi.acm.org/10.

1145/1667048.1667049, doi:10.1145/1667048.1667049.

[OZQG14] Francisco Ortin, Daniel Zapico, Jose Quiroga, and Miguel Garcia.
Automatic generation of object-oriented type checkers. Lecture
Notes on Software Engineering, 2(4), 2014.

[PHR14] Pujan Petersen, Stefan Hanenberg, and Romain Robbes. An em-
pirical comparison of static and dynamic type systems on api usage
in the presence of an ide: Java vs. groovy with eclipse. In Proceed-
ings of the 22Nd International Conference on Program Compre-
hension, ICPC 2014, pages 212–222, New York, NY, USA, 2014.
ACM. URL: http://doi.acm.org/10.1145/2597008.2597152,
doi:10.1145/2597008.2597152.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, MA, USA, 2002.

[Rek92] Jan Rekers. Parser generation for interactive environments, 1992.

[Rob65] John Alan Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[SM06] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J.Sel. A. Commun., 21(1):5–19, September 2006.
URL: http://dx.doi.org/10.1109/JSAC.2002.806121, doi:10.
1109/JSAC.2002.806121.

50

http://dx.doi.org/http://doi.acm.org/10.1145/1869459.1869497
http://doi.acm.org/10.1145/2384616.2384666
http://dx.doi.org/10.1145/2384616.2384666
http://doi.acm.org/10.1145/1667048.1667049
http://doi.acm.org/10.1145/1667048.1667049
http://dx.doi.org/10.1145/1667048.1667049
http://doi.acm.org/10.1145/2597008.2597152
http://dx.doi.org/10.1145/2597008.2597152
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121

[TF05] Aaron Tomb and Cormac Flanagan. Automatic type inference via
partial evaluation. In Proceedings of the 7th ACM SIGPLAN inter-
national conference on principles and practice of declarative pro-
gramming, pages 106–116. ACM, 2005.

[Thi02] Peter Thiemann. Programmable type systems for domain specific
languages, 2002.

[VdBdJKO00] M. G. T. Van den Brand, H. A. de Jong, P. Klint, and P. A.
Olivier. Efficient annotated terms. Softw. Pract. Exper.,
30(3):259–291, March 2000. URL: http://dx.doi.org/10.1002/
(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y,
doi:10.1002/(SICI)1097-024X(200003)30:3<259::

AID-SPE298>3.0.CO;2-Y.

[vdBSVV02] M.G.J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized lr parsers. In
Compiler Construction (CC’02, pages 143–158. Springer-Verlag,
2002.

[vdBvdMSH10] M. G. J. van den Brand, A. P. van der Meer, A. Serebrenik,
and A. T. Hofkamp. Formally specified type checkers for do-
main specific languages: Experience report. In Proceedings of
the Tenth Workshop on Language Descriptions, Tools and Appli-
cations, LDTA ’10, pages 12:1–12:7, New York, NY, USA, 2010.
ACM. URL: http://doi.acm.org/10.1145/1868281.1868293,
doi:10.1145/1868281.1868293.

[Vis01a] Eelco Visser. Scoped dynamic rewrite rules. In Rule Based Pro-
gramming (RULE’01), volume 59/4 of Electronic Notes in Theo-
retical Computer Science, pages 1–1. Elsevier Science Publishers,
2001.

[Vis01b] Eelco Visser. Stratego: A language for program transformation
based on rewriting strategies. In Aart Middeldorp, editor, Rewrit-
ing Techniques and Applications, 12th International Conference,
RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceed-
ings, volume 2051 of Lecture Notes in Computer Science, pages
357–362. Springer, 2001. doi:http://link.springer.de/link/

service/series/0558/bibs/2051/20510357.htm.

[Vor95] Andrei Voronkov. The anatomy of vampire. Journal of Automated
Reasoning, 15(2):237–265, 1995. URL: http://dx.doi.org/10.
1007/BF00881918, doi:10.1007/BF00881918.

51

http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://doi.acm.org/10.1145/1868281.1868293
http://dx.doi.org/10.1145/1868281.1868293
http://dx.doi.org/http://link.springer.de/link/service/series/0558/bibs/2051/20510357.htm
http://dx.doi.org/http://link.springer.de/link/service/series/0558/bibs/2051/20510357.htm
http://dx.doi.org/10.1007/BF00881918
http://dx.doi.org/10.1007/BF00881918
http://dx.doi.org/10.1007/BF00881918

52

Appendix A

Type System Specifications

A.1 SystemF

module SystemF/Typesystem

imports SystemF/Freshness hiding (language meta-variables)

SystemF/Substitution hiding (language)

// Available at https://www.github.com/pSub/master-thesis

language specifications/SystemF/SystemF

contexts

TermBinding := ID{I} x Type{O}

TypeBinding := ID{I} // Used to check freshness of type variables

meta-variables Term "~" { Type Exp }

TermCtx "$" { TermBinding }

TypeCtx "?" { TypeBinding }

Id "%" { ID }

Num "&" { Int }

judgments

TermBinding{I} "|" TypeBinding{I} "|-" Exp{I} ":" Type{O}.

Type{O} "= [" ID{I} "->" Type{I} "]" Type{I}.

ID{I} "!=" ID{I} is Neq.

rules

%x : ~T in $C1
@error %x "should have type" ~T "but has type" {}.

=============== T-Var

$C1 | ?C2 |- %x : ~T

53

============== T-int

$C1 | ?C2 |- &i : int

(%x : ~T1 ; $C1) | ?C2 |- ~t2 : ~T2
@error ~t2 "should have type" ~T2 "but has type" {}.

%x fresh in $C1
@error %x "is not fresh".

==================================== T-Abs

$C1 | ?C2 |- \ %x : ~T1 . ~t2 : ~T1 -> ~T2

$C1 | ?C2 |- ~t1 : ~T11 -> ~T12
@error ~t1 "should have type" ~T11 "->" ~T12 "but has type" {}.

$C1 | ?C2 |- ~t2 : ~T11
@error ~t2 "should have type" ~T11 "but has type" {}.

================================ T-App

$C1 | ?C2 |- ~t1 ~t2 : ~T12

$C1 | (%x ; ?C2) |- ~t2 : ~T2
@error ~t2 "should have type" ~T2 "but has type" {}.

%x fresh in ?C2

@error %x "is not fresh".

======================================= T-Tabs

$C1 | ?C2 |- \ %x . ~t2 : all %x . ~T2

~U = [%x -> ~S] ~T
@error ~U "is not" ~T "where" %x "is replaced by" ~S.
$C1 | ?C2 |- ~e : all %x . ~T
@error ~e "should have type all" %x "." ~T "but has type" {}.

============================== T-Tapp

$C1 | ?C2 |- ~e [~S] : ~U

54

module SystemF/Freshness

// Available at https://www.github.com/pSub/master-thesis

language specifications/SystemF/SystemF

contexts

TermBinding := ID{I} x Type{O}

TypeBinding := ID{I}

meta-variables TermCtx "$" { TermBinding }

TypeCtx "?" { TypeBinding }

Type "~" { Type }

Id "%" { ID }

judgments

ID{I} "fresh in" TermBinding{I}.

ID{I} "fresh in" TypeBinding{I}.

ID{I} "!=" ID{I} is Neq.

rules

========================= Fresh-Term-Empty

%x fresh in (TermBinding)

========================= Fresh-Type-Empty

%x fresh in (TypeBinding)

%x != %y

%x fresh in $C
========================== Fresh-Term-Step

%x fresh in (%y : ~T ; $C)

%x != %y

%x fresh in ?C

===================== Fresh-Type-Step

%x fresh in (%y ; ?C)

55

module SystemF/Substitution

// Available at https://www.github.com/pSub/master-thesis

language specifications/SystemF/SystemF

contexts

meta-variables Term "~" { Type Exp }

Id "%" { ID }

judgments

Type{O} "= [" ID{I} "->" Type{I} "]" Type{I}.

ID{I} "!=" ID{I} is Neq.

rules

===================== Subst-Eq
~S = [%x -> ~S] %x@1 @implicit %x " does not equal " %x@1.

%y != %x

==================== Subst-Neq

%y = [%x -> ~S] %y

~U = [%x -> ~S] ~T
== Subst-All

(all %y . ~U) = [%x -> ~S] (all %y . ~T)

====================== Subst-Int

int = [%x -> ~S] int

~U1 = [%x -> ~S] ~T1
~U2 = [%x -> ~S] ~T2
==================================== Subst-Arrow
~U1 -> ~U2 = [%x -> ~S] ~T1 -> ~T2

56

A.2 Simply Typed Lambda Calculus with Subty-
ing and Records

module Typesystem

// Available at https://www.github.com/pSub/master-thesis

language specifications/Subtyping-Algo/SimplyTypedLambdaCalculus

contexts Context := ID{I} x Type{O}

meta-variables Term "~" { Type Exp }

Ctx "$" { Context }

Id "%" { ID }

R "$" {TRecordEntries RecordEntries}

Num "&" { Int }

judgments

Context{I} "|-" Exp{I} ":" Type{O}.

TRecordEntries{I} "has" Exp{I} ":" Type{I}.

ID{I} "fresh in" Context{I}.

ID{I} "!=" ID{I} is Neq.

rules

============== T-int

$C |- &i : int

%x : ~T in $C
============== T-var

$C |- %x : ~T

(%x : ~T1 ; $C) |- ~e : ~T2
================================= T-abs

$C |- \ %x : ~T1 . ~e : ~T1 -> ~T2

$C |- ~e1 : ~T -> ~S
$C |- ~e2 : ~T
========================= T-app

$C |- ~e1 ~e2 : ~S

$C |- ~e : { $R }

$R has %l : ~T
========================= T-proj

$C |- ~e . %l : ~T

57

============= T-empty

$C |- {} : {}

$C |- ~e : ~T
$C |- { $R } : { $S }

===================================== T-record

$C |- { %l = ~e $R } : { %l : ~T $S }

%m != %l

$R has %l : ~T
====================== Record-step

%m : ~T $R has %l : ~T

====================== Record-contained

%l : ~T $R has %l : ~T

/* Freshness Condition */

==============

%x fresh in ()

%x != %y

%x fresh in $C
==========================

%x fresh in (%y : ~T ; $C)

58

module Subtyping

imports Typesystem hiding (language)

// Available at https://www.github.com/pSub/master-thesis

language specifications/Subtyping-Algo/SimplyTypedLambdaCalculus

contexts

meta-variables

judgments Type{I} "<:" Type{I}.

rules

$C |- ~e1 : ~T11 -> ~T12
$C |- ~e2 : ~T2
~T2 <: ~T11
========================= T-app

$C |- ~e1 ~e2 : ~T12

======== S-refl
~S <: ~S

~T1 <: ~S1
~S2 <: ~T2
======================== S-arrow
~S1 -> ~S2 <: ~T1 -> ~T2

============ S-top

{ $R } <: {}

~T <: ~S
{ $R } <: { $U }

=============================== S-depth

{ %l : ~T $R } <: { %l : ~S $U }

== S-width

{ %m : ~S %l : ~T $R } <: { %l : ~T $R }

== S-perm

{ %l1 : ~T1 %l2 : ~T2 $R } <: { %l2 : ~T2 %l1 : ~T1 $R }

59

A.3 Information Flow Security Type System

module Typesystem

// Available at https://www.github.com/pSub/master-thesis

language specifications/STWL/STWL

contexts Domain := ID{I} x Type{O}

meta-variables Exp "~" { Exp Type }

AExp "~1" { AExp }

BExp "~2" { BExp }

Dom "$" { Domain }

Id "%" { ID }

Num "&" { Int }

judgments

Domain{I} "|-" AExp{I} ":" Type{O}.

Domain{I} "|-" BExp{I} ":" Type{O}.

Domain{I} "|" Type{I} "|-" Exp{I}.

rules

================ num

$dom |- &n : low

%x : low in $dom
================ var

$dom |- %x : low

$dom |- ~1e1 : low

$dom |- ~1e2 : low

========================= opa

$dom |- ~1e1 + ~1e2 : low

================== true

$dom |- true : low

=================== false

$dom |- false : low

$dom |- ~2e : low

===================== not

$dom |- not ~2e : low

$dom |- ~1e1 : low

$dom |- ~1e2 : low

========================= opr

$dom |- ~1e1 < ~1e2 : low

60

$dom |- ~2e1 : low

$dom |- ~2e2 : low

=========================== opb

$dom |- ~2e1 and ~2e2 : low

================== higha

$dom |- ~1e : high

================== highb

$dom |- ~2e : high

================== skip

$dom | ~pc |- skip

$dom | high |- ~e
================= sub

$dom | low |- ~e

%x : high in $dom @error %x "should have type high".

======================== assgnh

$dom | ~pc |- %x := ~1e

$dom |- ~1e : low

======================= assgnl

$dom | low |- %x := ~1e

$dom | ~pc |- ~e
$dom | ~pc |- ~f
===================== seq

$dom | ~pc |- ~e ; ~f

$dom |- ~2b : ~pc
$dom | ~pc |- ~e
================================ while

$dom | ~pc |- while ~2b do ~e od

$dom |- ~2b : ~pc
$dom | ~pc |- ~e
$dom | ~pc |- ~f
==================================== ite

$dom | ~pc |- if ~2b then ~e else ~f

61

conjectures

===

(z : high ;()) | high |- if z < 0 then z := 0 else z := 1

// Order of domain makes a difference in proof search!

// For the next two conjectures the applied rules are given

// VerificationSuccess(["lookup base","var","assgnl",

// "goal","opa"])

===

(x : low ; y : low ; z : high ; ()) | low |- z := x + y

// VerificationSuccess(["lookup base","assgnh","goal"])

===

(z : high ; y : low ; x : low ; ()) | low |- z := x + y

===

(x : low ; y : low ; ()) | low |- x := x + y

===

(x : low ; y : low ; ()) |- (x + 5) + y : high

/===

(x : low ; y : high ; ()) | low |- x := y

/===

(h : high; l : low ; ()) | high |- if h < 1 then l := 1 else skip

62

	List of Figures
	Introduction
	Motiviation
	Contributions
	Structure

	Preliminaries
	Tools
	SDF
	Stratego/XT
	Spoofax
	Vampire
	Alternatives

	Type Systems

	Specification Language
	Language Design
	Design Assessment
	Implementation

	Formula Generation
	Goals
	Translations
	Implementation
	Editor Support

	Type Checker Generation
	Goals
	Architecture
	Template Generation
	Templates
	Generation

	Constraint Template Optimization
	Which-Ambiguities
	When-Ambiguities
	Unsatisfiable Templates
	Valid Premises
	Ordering

	Constraint Generation
	Constraint Solving

	Evaluation
	SytemF
	Lambda-Calculus with Subtyping

	Related Work
	Summary
	Conclusion
	Future Work

	Bibliography
	Type System Specifications
	SystemF
	Simply Typed Lambda Calculus with Subtying and Records
	Information Flow Security Type System

