
M U L T I D I M E N S I O N A L D Y N A M I C Q U A N T I L E H A S H I N G IS V E R Y E F F I C I E N T F O R
N O N - U N I F O R M R E C O R D DISTRIBUTIONS

Hans-Peter Kriegel* - Bernhard Seeger**

* Lehrstuhl fuer Informatik I, Universitaet Wuerzburg, D-8700 Wuerzburg, West Germany
** Institut fuer Informatik II, Universitaet Karlsruhe, D-7500 Karlsruhe, West Germany

Abstract:
Previous multidimensional dynamic hashing schemes exhi-
bit two obvious shortcomings. First, even for uniform
record distribution, the retrieval performance of these
schemes suffers from several disadvantages. In a recent pa-
per we have suggested a multidimensional dynamic hashing
scheme which exhibits better retrieval performance than its
competitors for uniform distribution. The even more severe
second disadvantage of all known multidimensional dynam-
ic hashing schemes is the very poor performance for non-
uniform record distributions. In this paper we present the
quantile method as a scheme which exhibits for non-
uniform distributions practically the same performance as
for uniform distributions. This is underlined by experimen-
tal runs with an implementation of our scheme. In addition
to its excellent performance, our scheme fulfills all the
necessary requirements to be used in an engineering data-
base system: it is dynamic, is suitable for secondary storage
devices, supports point data and spatial data objects and
supports spatial clustering (proximity queries}.

1. Introduet lon

Concerning database systems for standard applications, e.g.
commercial applications, there is a large variety of index
structures at the disposal of the database designer for the
implementation of the physical level of a database system.
As demonstrated in [Kri 84] there are efficient tree-based
index structures such as multidimensional B-trees, in par-
ticular kB-trees.

For non-standard databases, also called engineering data-
bases, used in applications such as image processing, design
and manufacturing (CAD/CAM} etc. none of the tree-
based index structures is suitable, since they cluster records
according to the lexicographical ordering. When designed
suitably, hash-based index structures cluster records which
are close together in the key space. This is the type of
clustering which we need in engineering databases. Furth-
ermore, multidimensional hashing schemes can be designed
to fulfill all the requirements for use in engineering data-

base systems: to be dynamic, to be suitable for secondary
storage devices and to support point and spatial objects.

However, multidimensional hashing schemes suffer from
two shortcomings. In most engineering applications, objects
are nonuniformly distributed in space. First, there is no
multidimensional hashing scheme which exhibits practically
the same retrieval performance for nonuniform distribution
as for uniform distribution. Second, even for uniform dis-
tribution, the retrieval performance of all known multidi-
mensional hashing schemes suffers either from a super-
linearly growing directory or from an uneven distribution
of the records over the pages of a file.

Thus we proceed in two steps. In step 1 we have designed a
multidimensional dynamic hashing scheme and we have
shown that it performs better than its competitors for uni-
form distribution. This scheme is suitably composed from
the following ingredients: linear hashing [Lit 80], order
preservation using bitcutoff functions and partial expan-
sions for improving performance [Lar 80]. Therefore we
call it multidimensional order preserving linear hashing
with partial expansions (MOLHPE). For a description of
this scheme we refer to [KS 86].

In this paper now we perform step 2 by adding on top of
our scheme the quantile method which guarantees that our
scheme performs for a nonuniform distribution practically
as well as for a uniform distribution. As mentioned before,
in most non-standard applications, objects are nonuniform-
ly distributed in space. Recently, the following variants ei-
ther of the grid file [NHS 84] or of multidimensional exten-
dible hashing [Oto 84] have been suggested all claiming a
graceful adaption of their scheme to the key distribution:
these variants include the 2-level grid file [Hin 85], the
multilevel grid file [KW 85], the interpolation based grid
file [Ouk 85] and the balanced multidimensional extendible
hash tree [Oto 86]. However, none of these structures ad-
justs so gracefully to the distribution that it exhibits practi-
cally the same retrieval performance for nonuniform distri-
bution as for uniform distribution. This is due to the fact
that the partitioning process in none of these structures
adapts well enough to the underlying distribution.

10
CH2407-5/87/0000/0010501.00 © 1987 IEEE

In the following we consider a file of d-attribute compo-
site keys K ---- (kv..,kd). We assume the domain of the keys
to be the unit d-dimensional cube [0, 1) d. Obviously, this
requirement can easily be fulfilled for an arbitrary domain
by simple transformation.

2. The quantile m e t h o d

In this section we will present the qnantile method which is
applicable to any multidimensional hashing scheme with or
without directory. Obviously, we will apply the quantile
method to MOLHPE, since the quantile method is supposed
to yield practically the same retrieval performance for
nonuniform distributions as for uniform distributions and
MOLHPE performs better than its competitors for uniform
distributions. Thus we expect practically optimal behaviour
of the quantile method applied to MOLHPE for nonuni-
form distributions. All we have to know about MOLHPE
within the context of this paper is the fact that it is an ord-
er preserving generalization of linear hashing with partial
expansions to the multidimensional case. Thus MOLHPE
uses no directory, allows overflow records which are organ-
ized in separate chains and guarantees that the relative
load factors of all chains are between 0.5 and 1 (condition
(I)). Here, the relative load factor is defined as follows:

Let r be the record to be inserted next into the file and
Ca,...,Cm, m _>1 , be a disjunct partition of the file into
chains. Then the relative load factor lf(Ci) of chain Ci,
l < i < m , is given by

If(C0= Pb(reCo
max Pb(reCi)

l<_i<=

where Pb(r E C i) denotes the probability with which record
r is inserted into chain O i.

Even for nonuniform distributions we want to fulfill con-
dition (I). We will achieve this by selecting the partitioning
points depending on the distribution of objects.
Obviously, the choice of the partitioning points of the j-th
dimension should only depend on the distribution function
of the j-th attribute. Thus condition (I) can only be fulfilled
if the records follow an independent distribution. In case
this independence assumption is not fulfilled the method
which we will suggest will still be very efficient but not
practically optimal any more. Since in most applications
the distribution of objects is not known in advance, we will
approximate the unknown distribution using the records
presently in the file.

Burkhard was the first to use a stochastic approximation
process for adapting the partitioning points to the underly-
ing distribution [Bur 84]. We will call this process in the
following quantile method. In [Bur 84] the quantile method
is applied to the 1-dimensional interpolation-based index
maintenance scheme [Bur 83]. Algorithms for split and
reorganization of the file are only roughly sketched.

We will apply the quantile method to multidimensional
order preserving linear hashing with partial expansions and
we will present a rather detailed description of the algo-
rithm for reorganization. Furthermore, we will report on
experiments run with an implementation of our scheme
comparing MOLHPE with and without quantile method for
different nonuniform distributions.

Let us demonstrate our method considering 2-attribute
composite keys K ---- (k v 1%) and a 2-dimensional distribu-
tion function F with marginal distribution functions fl and
f2' We assume that the stochastic variables k I and 1% are
independent, i.e.

F(k v L 2) = f t (k ,) * f 2 (k ~)

For a E [O, 1] the a-quantile of the 1st (2rid) attribute is
the domain value x~ (y,) such that

f , (~) = ~ (f 2 (y -) = ~)
Now let us assume that starting from an empty file we

have to partition the key space [0,1) 2 for the first time and
we decide to partition the first dimension (axis). If ft is a
non-uniform distribution function, we will not partition the
first dimension in the middle, but we will choose the 1/2-
quantile as the partitioning point. This guarantees that a
new record will be stored with equal probability in the
page corresponding to the rectangle [0 , xll2) X [0 , 1) or
in the page corresponding to the rectangle [xl/2 , 1) X [0 ,
1), see figure 2.1. During the next expansion we will parti-
tion the second dimension (axis} and we will choose the
partitioning point Y~/v see figure 2.2.

k2 k2~

Yl/2 .

• I t

kl k 1 Xl/2 xl/2
Figur 2.1 Figur 2.2

Figure 2.3 shows the file consisting of 16 pages, where each
axis has been partitioned at the 1/4, 1/2 and 3/4 quantile.
As depicted in figure 2.3, the partitioning points are stored
in binary trees which can easily be stored in main memory.
The most important property of these binary trees of par-
titioning points is the following: for each type of operation
a nonuniformly distributed query value kj, j ---- 1,2 , is
transformed into a uniformly distributed a E [0, 1] by
searching the corresponding binary tree of partitioning
points. This uniformly distributed a E [0, 1] is then used

ll

1 1

k2

Figure 2.3

kl

as an input to the retrieval and update algorithms of
MOLttFE.

Now we will present a more formal description of the
quantile method. Let F denote the d-dimensional distribu-
tion function of the d-attribute composite keys. Then fl,
1 < i < d, denotes the 1-dimensional distribution function of
the marginal distribution. For 0 < a < : l and iE{1,...,d} the

- quantile of the i-th attribute is the domain value x(a)
of the i-th attribute such that

fi(x(~)) = ~ .

In [RM 55] the quantile method has been described for the
first time. A survey on the theory of quantile mehtods can
be found in [KC 78]. For each fi, l < i < d we will approxi-
mate the proper quantiles according to the following itera-
tive scheme.
Let x(c~) be the c~-quantile of one of the 1-dimensional dis-
tribution functions fi, 1 < i <d . Furthermore let x,(~) be
our best initial guess for x(a). Let {k; y } be the sequence of
i-th component keys which have been inserted into the file.
Then we define for n > i

(i) m(n , l)= l { k; y I xl(c~)>kj, l < j < n } I
where the sequence {xt (a)} of estimates is given by

(ii) xt+,(c~)= xt(~)-at*(m(n,l) -c~)
B

Here {at} is a sequence with

(a) ~ a,--*oo for k--*oo
/={
k

(b) ~ a? ~ converges for k- -*~
I = l

Obviously, re(n,/) denotes the number of records whose i-th
component key is below the I-th estimate xt(a) of the a-
quantile when n records are presently in the file. The ex-
pected value of m(n,/)/n corresponds to fi(zt(a)) According
to (ii) the (l+l)s t estimate of x(a) can be computed only
after at least i records are stored in the file.

The sequence {at} = {1//), l > l , fulfills conditions (a)
and (b). However, in order to guarantee a fast adaption to
the distribution we have to choose at depending on the file
size. In our implementation where d=2 , we choose at =
1/2(L air d), where L is the present level of the file. As
l---,oo the sequence { xt(c~) } converges to x(a) with proba-
bility 1, if fl is continuous almost everywhere.

3. Application of the quantile method to multidi-
mensional order preserving linear hashing with
partial expansions

As i n [KS 86], we say that the file is on level L, where

L = E L ; , to indicate that the file has doubled in size L

times. Now the i-th axis is partitioned by 2L'-I partitioning
points pp(a), 0 < ~ < 1 . Each of the pp(~) is the newest es-
timate of the ~-quantile, computed using the quantile
method. The set of pointLs ' is given by

Pi = { PP((~) c~:,~=lbi*2-i,bi¢{O, 1} }

Obviously, each pp(a) can be characterized by a bitstring.
Using this characterization we can associate to each parti-
tioning point exactly one node in a binary search tree in
the obvious way. For computing a new estimate of pp(a)
we need the number of records whose i-th component key is
below pp(a). Therefore, in each node of the binary tree,
we store in s.ddition to pp(a) the number of records whose
i-th component key is in the interval [pp(a'),pp(a)], where

and ~' are given by

ol~--~- ~ by*2 -1 where z < L{ and b, = 1
i = 1

z - I

a '~ - - ~by*2 -i
j = l

The most important propertv of these binary trees of parti-
tioning points is the following: for each type of operation
and each attribute Aj, l _ < j < d, a nonuniformly distributed
query value xj ¢ domain (Aj) is transformed into a uniform-
ly distributed ~e [0,1] by searching the corresponding
binary tree of partitioning points. This uniformly distribut-
ed c~e [0,1] is then used as an input to the retrieval and up-
date algorithms of MOLHPE.

Now for each axis j, l < f _ < d, we organize the partition-
ing points within a binary tree which may be stored expli-
citly (using pointers) or implicitly (stored within an array

12

using no pointers). These d binary trees have a total
storage requirement of 0(d/b , n l/d) where n is the number
of records in the file and b is the capacity of a data page.
The storage requirement of the d binary trees is compar-
able to that of the linear scales in the grid file. Thus these
binary trees can easily be kept in central memory. The al-
gorithms for retrieval and expansion are basically the same
as for MOLPHE without quantile approximation. There-
fore, they are not presented here. Let us only mention, that
the file is cyclically expanded or contradicted depending on
the number of records stored in the file. Instead, we will
treat the important problem of reorganization extensively.

4. Reorganizat ion o f the file

None of the previous multidimensional dynamic hashing
schemes gracefully adapts to the distribution of the records
in key space. Using the suggested quantile method, we reor-
ganize the file by adapting the partition of the key space to
the present distribution. This is done incrementally by
computing a new estimate for a partitioning point pp(cQ
using (ii) and adjusting the partition of the key space to the
new partitioning hyperplane. We say that we move a parti-
tioning hyperplane. We call the rule which determines
whether the file will be reorganized or not the control
function for the reorganization of the file. We will consider
the following possible control functions:
(C1) The file is reorganized before each expansion (or con-

traction).
(C2) Let a be the quantile to be reorganized next and pp

(a) be the present estimate of the a-quantile. Then we
compute the confidence interval I for a. If a E I, then
pp(a) is accepted as a-quantile. Otherwise a new esti-
mate is computed for pp((~) according to equation (ii),
and the file is reorganized by moving the pp(a)-
hyperplane. Then a is advanced to the a-value which
will be reorganized next. This step is performed after
a predefined number of insertions and deletions.

(C3) Let i 0 E {1,...d} be the axis to be considered next for
reorganization. Compute the number of records with
i0-th component key between two neighboring parti-
tioning points pp(aL),and pp(an) , pp(aL) < pp(t~R).
Substract (a a - aL)*n which is the corresponding ex-
pected value. Take the maximum of this difference
over all possible aR'S on axis i 0. Compute a new esti-
mate for this pp(an) and advance the axis to be reor-
ganized next cyclically.

Control function (CI) has the following property if we as-
sume that the expansion of the file is controlled by storage
utilization. The partition of the key space remains invari-
ant if after an expansion of the file continuously a record is
inserted and a different record is deleted. Thus the distri-
bution of records in key space may change without adapt-
ing the partition of the key space.

Such undesirable behaviour is prevented by control func-
tion (C2). Furthermore (C2) exhibits the following desir-
able property: before computing a new estimate for a quan-
tile approximation we can decide whether the old estimate
already suffices.

Control function (C3) determines the worst estimate over
each axis. Thus it requires computation for all partitioning
points and searching for the maximum difference of present
estimate and expected value. Obviously, this needs inten-
sive computation. Summarizing we can say that (C2) and
(C3) are adequate control functions for the reorganization
of the file.

As mentioned before, during reorganization one parti-
tioning hyperplane is moved. If this move is done in one
step, it requires 0(n l-l/d) pages accesses for performing the
reorganization. Although this may sound very high, the
same number of page accesses is required by the grid file
when adding a new partitioning hyperplane to the grid
directory. If moving hyperplanes is done in one step, the
quantile method (and the same is true for the grid file)
looses its dynamic character. Since reorganization only im-
proves retrieval performance and is not as crucial as res-
tructuring in the grid file, we will amortize the time re-
quired for moving one partitioning hyperplane over a se-
quence of insert and delete operations. Thus, step by step,
we will adjust a pair of chains separated by the hyperplane
to be moved to the new estimate. We call a reorganization
local, if the expected value for the number of page accesses
during reorganization is constant. The corresponding con-
trol function for reorganization of the file is called linear.
Obviously, local reorganization is only possible for hashing
schemes without directory. Similar as for the expansion of
a file, we define the following variables: ra E{1,...d}
denotes the axis (dimension) whose partitioning points will
be recomputed next. We call this axis reorganization axis.

The pair of chains to be reorganized next is specified by
d reorganization pointers rpv...,rPd. Now the chain
G(rpv...,rPd) and its right neighbor chain with respect to
axis ra will be adjusted during the next local reorganiza-
tion. The address G(rpv..,rPd } is computed in two steps.
For every j, 1 < j <d, rpj is computed using an one di-
meusional order'-preserving hashing function. Then the d-
dimensional index (rpv..,rPd) and the address function G
[KS 86] is used to compute the address.

Mter inserting a record we will either expand the file or
perform a local reorganization of the file. More presisely,
after each insertion which does not require an expansion, a
local reorganization will be carried out. This strategy is
supported by the following observation obtained from ex-
perimental runs on our implementation: For most nonuni-
form distributions the expected value of page accesses for
insertion is considerably lower with quantile method than
without quantile method. Since this phenomenon is mostly
unexpected, it justifies our strategy even more.

13

We will now present an algorithm for local reorganization
using control function (C2):

Algorithm for local reorganization

1. For chain Next ~ G(rpv...,rpd) compute the
right partitioning point PP{~R) on axis ra;

2. IF r~ = 0 for all i E {1,...,d} - {ra} THEN
compute a confidence interval I for a R and
PP(aa);
IF and THEN

rp~ :~-- rp~+l;
IF rp~ ---- 2L~-I THEN

r a : ~ - r a M O D d + l
END;
rh :---- 0 for all i E {1,...,d}

ELSE
compute a new estimate for PP(~R) us-
ing equation (ii)

END;
3. Adjust chain Next and the right neighbor chain

with respect to axis ra to the new estimate for
pp(OIR).

4. Advance (rpv...,rPd) to the next value.

Step 3 of the algorithm physically performs the local reor-
ganization. Steps 3 and 4 are illustrated using the following
example.

Example:
Let us consider the situation in Figure 2.3 and let us as*
sume that the estimates of the quantiles are stored in the
nodes of the binary trees. Thus we have the following
parameters: d=2, Lt----2 , L2----2 , L----4. Furthermore we
consider rp----(0,1) and ra----2 and assume that the file will
not be expanded during the following four insertions. This
implies that the reorganization algorithm is executed after
each of these insertions.

An insertion of a record triggers a computation of a new
estimate Yl/2 of the 1/2-quantile with respect to the second
dimension (Fig. 4.1). Then we adjust the page Next -----
G(rp) to the new estimate by removing all corresponding
records from the upper neighbor page. We advance the
reorganization pointer to the next page which is still limit-
ed by the old estimate Yl/- (Fig. 4.2). After two more
insertions we have adjusted the partition of two more pairs
of pages to the new estimate (Fig 4.3,4.4). Eventually,
after one more insertion, we adjust the last pair of pages
and reorganize the binary tree of the second dimension
(Fig. 4.5).

° °

Yl/2

rP 2
t

rPt |

Figure 4.1

k2

kl

k2

rP2

rPa i

Figure 4.2

rp~

rPl

Figure 4.3

kl

k2

k2

rPz

rPl t

Figure 4.4

1 1

rrPl

Figure 4.5

kl

kl

rP2

k 2 ,

kl

14

5. Experimental result~

In order to demonstrate the performance of the quantile
method for. nonuniform distributions, we have implemented
it on top of MOHLPE in MODULA-2 on an Olivetti M24
PC with 640 KB RAM and with hard disk. In MOLHPE
the following parameters were chosen: the control function
for the expansion of the file is expansion after 28 insertions,
the capacity of a primary page is 31 records, and that of a
secondary page is 7 records. From all the experiments, we
select the following two for demonstrating the graceful
adaption of the quantile method to a nonuniform distribu-
tion.

Experiment 5.1:
For k i. 610,1] , i =1,2, we have:

eb(k i < 1/4) ---- 9/16
Pb(l~ _< 1/2) = 7/8

where Pb denotes the probability with which k i. is in the
specified interval, i ---~ 1,2. However, we only accept com-
ponent keys ~ which follow the distribution and are not in
[0.6, 0.7]. The application of the quantile method yields
the partition of the key space depicted in figure 5.1. In fig-
ure 5.2 we have plotted the average number of page
accesses in a successful exact match query with and without
using the quantile method as a function of the level of the
file. Figure 5.3 depicts the average storage utilization with
and without quantile method for various levels of the file.

Let us remark that level = 9 corresponds to 15,000 records
in the file and that the implemented version of MOLHPE
uses p ~--- 1 partial expansions. The implementation for
p > 2 is currently on the way.

The advantage of the quantile method is obvious. The
average number of page accesses in a successful exact
match query is reduced from more than 4 to less than 1.5,
the average storage utilization is improved from approxi-

k 2

)/a

1/2

IUMIIII
Illllllllll
IIIIIIIIIII
IIUlIUlII
llIIIIlllll
IIIIIlllllI
IlllIIIIllI
IillllllliI
IillllllliI
IillllllliI
IilllllllliI
IilllllllliI
IillliIiliI
IillllllliI
IilllllllliI
IIIIIIIIIIPIII

11a 112 314
k I

page a c c e s s e s

without quantile method

~l

\ ,

2 with quantile method

Level

Fig.5.2: Average number of page
accesses in a successful exact
match query as a function of
the level of the file

storage utilization

80 ,%
with quantile method

70 %

/without quantile method

L e v e l

8

Fig.5.3: Average storage utilization
as a function of the level of
the file

Figure 5.1: partition of the key space

15

mately 60% to more than 75%. Let us remark that
although the grid file is tailorcut for best exact match per-
formance it is easily outperformed by the quantile method.
It will be interesting to observe the very superlinear growth
of the grid directory for this nonuniform distribution.

E x p e r i m e n t 5.2:
For each Iq., i =-- 1,2, the component keys follow a Gaussian
distribution with expected value 0.5 and variance 1. Furth-
ermore, the component keys are multiplied with the factor
1/8 and the composite keys are in [0,1] 2 . The application
of the quantile method yields the partition of the key space
depicted in figure 5.4 . This partition gives an idea of the
graceful adaption, depicted for level ---- 10. In figure 5.5
we have plotted the average number of page accesses in a
successful exact match query with and without the quantile
method for levels ---- 8,0,10. Here level ~ 10 corresponds
to 30,000 records. Since the performance of our scheme
without quantile method is cyclic and stationary, we did
not extend this experiment beyond level ---- 10. However,
figure 5.6 clearly shows the positive trend for the perfor-
mance of the quantile method with increasing file size. We
do not depict storage utilization. Using the quantile method
it exceeds 70% for levels larger than 9.

The improvement in page accesses by using the quantile
method is even more drastic in this experiment than in the
previous one. For level ~ 9 the number of page accesses is
improved from approximately 8 to less than 2. Comparing
exact match queries is clearly to the advantage of the grid
file. But even for this type of query the quantile method
outperforms the grid file for large enough files. For file
sizes around 108 we expect the quantile method to perform
successful exact match queries in practically 1 disk access.
The most drastic advantage of the quantile method over
the grid file for nonuniform distributions will turn out for
complex queries such as range queries. Here the possibly

k 2

I I I I I
m m

t /z

t /a

1/a t/2

ii
|1

k I

Figure 5.4: partition of the key space (Gaussian distribution)

page accesses
w i t h o u t q u a n t i l e method

,./ 1/

with quantile method
...,-, ., % ~ Mo -Ho

' ' " , . i . , ,a .o, ,~, r . . . " ~ ' ' ' " " = ' ~ - . s . . ~ , ~

L e v e l

Fig.5.5:

I I

9 I0

Average number of page
accesses in a successful
exact match query

page accesses

,I~~/\ with quantile method
." ~ . , I /,'~,

L e v e l
I I I I I

5 6 7 8 9]0

Fig.&& Average number of page accesses
in a successful exact match query
as a function of the level of the
file

16

exponential growth of the grid file will result in very poor
query times. Experiments to compare very efficient grid
file versions and the quantile method for range queries are
under way.

6 . C o n c l u s i o n s

Our goal was twofold. First, for uniform record distribu-
tion we have suggested multidimensional order preserving
linear hashing with partial expansions (MOLHPE) [KS 86]
which performs better than its competitors. Second, for
nonuniform record distributions all known multidimension-
al dynamic hashing schemes exhibit very poor performance.
By presenting the quantile method in this paper and apply-
ing it to MOLHPE we suggest a scheme which exhibits for
nonuniform distributions practically the same ideal perfor-
mance as for uniform distributions. First experimental runs
of an implementation of our scheme underline this fact and
show how graceful our scheme adapts to nonuniform distri-
butions. Exact match queries can be performed in almost
one disk access even for very nonuniform distributions. We
expect an even clearer advantage of our scheme over the
various grid file versions in case of more complex queries
such as range queries. Experiments for this comparison are
under way.

References

[Bur 83]

[Bur 841

[Hin 85]

[Kri 84]

[KS 86]

[KW 851

Burkhard, W.A.:'Interpolation - based index
maintenance', BIT 23, 274 - 294 (1983)
Burkhard, W.A.:'Index maintenance for nou-
uniform record distributions', Proc. 3rd ACM
SIGACT/SIGMOD Symp. on PODS, 173 - 180
(1984)
Hinrichs, K.: 'The grid file system: implementa-
tion and case studies of applications',Ph.D.
Dissertation, Swiss Federal Institute of Tech-
nology, Zurich (1985)
Kriegel, H.P.: 'Performance comparison of in-
dex structures for multi-key retrieval', Proc.
1984 ACM/SIGMOD Int. Conf. on Manage-
ment of Data, 186 - 196
Kriegel, H.P., Seeger, B.: 'Multidimensional
order preserving linear hashing with partial
expansions',Proc. ICDT'86, International
Conference on Database Theory, Rome, Sept
8-10,1986, Proceedings to appear in the Lec-
ture Notes in Computer Science series
Krishnamurthy, R., Whang, K.-Y.: 'Multilevel
grid files', Draft Report, IBM Research Lab.,
Yorktown Heights (1985)

[KC 78]

[Lar 8O]

[Lit 80]

[NHS 84]

[oto 84]

[Oto 85]

[oto 88]

[Ouk 851

[Rob 81]

[RM 55]

Kushner, H.J., Clark, D.S.:'Stochastic approxi-
mation methods for constrained and uncon-
strained systems', Applied Mathematical Sci-
ences No. 26, Springer-Verlag (1978)
Larson, P.-A.: 'Linear hashing with partial ex-
pansions', Proc. 6 th Int. Conf. on VLDB, 224 -

232 (1980)
Litwin, W.: 'Linear hashing: a new tool for file
and table addressing', Proc. 6 th Int. Conf. on
VLDB, 212 - 223 (1980)
Nievergelt, J., Hinterberger, H., Sevcik, K.C.:
'The grid file: an adaptable, symmetric multi-
key file structure', ACM TODS, 9, 1, 38 - 71
(108'4)
Otoo, E.J.: 'A mapping function for the direc-
tory of a multidimensional extendible hashing',
Proc. 10 th Int. Conf. on VLDB, 491 - 506
(1984)
Otoo, E.J.: 'Symmetric dynamic index mainte-
nance scheme', Proc. of Int. Conf. on Founda-
tions of Data Org., 283 - 296 (1985)
Otoo, E.J.: 'Balanced multidimensional exten-
dible hash tree', Proc. 5 th ACM
SIGACT/SIGMOD Symp. on PODS, (1986)
Ouksel, M.: 'The interpolation-based grid file',
Proc. 4 th ACM SIGACT/SIGMOD Symp. on
PODS, 20- 27 (1985)
Robinson, J.T.: 'The K-D-B-tree: a search
structure for large multidimensional dynamic
indexes', Proc. 1981 ACM/SIGMOD Int.
Conf. on Management of Data, 10 - 18 (1981)
Robbins, H., Monro, S.: 'A stochastic approxi-
mation method ', Annals of Mathematical
Statistics 22, 400-407 (1955)

17

