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Abstract:  
Previous multidimensional dynamic hashing schemes exhi- 
bit two obvious shortcomings. First, even for uniform 
record distribution, the retrieval performance of these 
schemes suffers from several disadvantages. In a recent pa- 
per we have suggested a multidimensional dynamic hashing 
scheme which exhibits better retrieval performance than its 
competitors for uniform distribution. The even more severe 
second disadvantage of all known multidimensional dynam- 
ic hashing schemes is the very poor performance for non- 
uniform record distributions. In this paper we present the 
quantile method as a scheme which exhibits for non- 
uniform distributions practically the same performance as 
for uniform distributions. This is underlined by experimen- 
tal runs with an implementation of our scheme. In addition 
to its excellent performance, our scheme fulfills all the 
necessary requirements to be used in an engineering data- 
base system: it is dynamic, is suitable for secondary storage 
devices, supports point data and spatial data objects and 
supports spatial clustering (proximity queries}. 

1. Introduet lon 

Concerning database systems for standard applications, e.g. 
commercial applications, there is a large variety of index 
structures at the disposal of the database designer for the 
implementation of the physical level of a database system. 
As demonstrated in [Kri 84] there are efficient tree-based 
index structures such as multidimensional B-trees, in par- 
ticular kB-trees. 

For non-standard databases, also called engineering data- 
bases, used in applications such as image processing, design 
and manufacturing (CAD/CAM} etc. none of the tree- 
based index structures is suitable, since they cluster records 
according to the lexicographical ordering. When designed 
suitably, hash-based index structures cluster records which 
are close together in the key space. This is the type of 
clustering which we need in engineering databases. Furth- 
ermore, multidimensional hashing schemes can be designed 
to fulfill all the requirements for use in engineering data- 

base systems: to be dynamic, to be suitable for secondary 
storage devices and to support point and spatial objects. 

However, multidimensional hashing schemes suffer from 
two shortcomings. In most engineering applications, objects 
are nonuniformly distributed in space. First, there is no 
multidimensional hashing scheme which exhibits practically 
the same retrieval performance for nonuniform distribution 
as for uniform distribution. Second, even for uniform dis- 
tribution, the retrieval performance of all known multidi- 
mensional hashing schemes suffers either from a super- 
linearly growing directory or from an uneven distribution 
of the records over the pages of a file. 

Thus we proceed in two steps. In step 1 we have designed a 
multidimensional dynamic hashing scheme and we have 
shown that it performs better than its competitors for uni- 
form distribution. This scheme is suitably composed from 
the following ingredients: linear hashing [Lit 80], order 
preservation using bitcutoff functions and partial expan- 
sions for improving performance [Lar 80]. Therefore we 
call it multidimensional order preserving linear hashing 
with partial expansions (MOLHPE). For a description of 
this scheme we refer to [KS 86]. 

In this paper now we perform step 2 by adding on top of 
our scheme the quantile method which guarantees that our 
scheme performs for a nonuniform distribution practically 
as well as for a uniform distribution. As mentioned before, 
in most non-standard applications, objects are nonuniform- 
ly distributed in space. Recently, the following variants ei- 
ther of the grid file [NHS 84] or of multidimensional exten- 
dible hashing [Oto 84] have been suggested all claiming a 
graceful adaption of their scheme to the key distribution: 
these variants include the 2-level grid file [Hin 85], the 
multilevel grid file [KW 85], the interpolation based grid 
file [Ouk 85] and the balanced multidimensional extendible 
hash tree [Oto 86]. However, none of these structures ad- 
justs so gracefully to the distribution that it exhibits practi- 
cally the same retrieval performance for nonuniform distri- 
bution as for uniform distribution. This is due to the fact 
that the partitioning process in none of these structures 
adapts well enough to the underlying distribution. 
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In the following we consider a file of d-attribute compo- 
site keys K ---- (kv..,kd). We assume the domain of the keys 
to be the unit d-dimensional cube [ 0, 1) d. Obviously, this 
requirement can easily be fulfilled for an arbitrary domain 
by simple transformation. 

2. The quantile m e t h o d  

In this section we will present the qnantile method which is 
applicable to any multidimensional hashing scheme with or 
without directory. Obviously, we will apply the quantile 
method to MOLHPE, since the quantile method is supposed 
to yield practically the same retrieval performance for 
nonuniform distributions as for uniform distributions and 
MOLHPE performs better than its competitors for uniform 
distributions. Thus we expect practically optimal behaviour 
of the quantile method applied to MOLHPE for nonuni- 
form distributions. All we have to know about MOLHPE 
within the context of this paper is the fact that it is an ord- 
er preserving generalization of linear hashing with partial 
expansions to the multidimensional case. Thus MOLHPE 
uses no directory, allows overflow records which are organ- 
ized in separate chains and guarantees that the relative 
load factors of all chains are between 0.5 and 1 ( condition 
(I)). Here, the relative load factor is defined as follows: 

Let r be the record to be inserted next into the file and 
Ca,...,Cm, m _>1 , be a disjunct partition of the file into 
chains. Then the relative load factor lf(Ci) of chain Ci, 
l < i < m ,  is given by 

If(C0= Pb(reCo 
max Pb(reCi) 

l<_i<= 

where Pb(r E C i) denotes the probability with which record 
r is inserted into chain O i. 

Even for nonuniform distributions we want to fulfill con- 
dition (I). We will achieve this by selecting the partitioning 
points depending on the distribution of objects. 
Obviously, the choice of the partitioning points of the j-th 
dimension should only depend on the distribution function 
of the j-th attribute. Thus condition (I) can only be fulfilled 
if the records follow an independent distribution. In case 
this independence assumption is not fulfilled the method 
which we will suggest will still be very efficient but not 
practically optimal any more. Since in most applications 
the distribution of objects is not known in advance, we will 
approximate the unknown distribution using the records 
presently in the file. 

Burkhard was the first to use a stochastic approximation 
process for adapting the partitioning points to the underly- 
ing distribution [Bur 84]. We will call this process in the 
following quantile method. In [Bur 84] the quantile method 
is applied to the 1-dimensional interpolation-based index 
maintenance scheme [Bur 83]. Algorithms for split and 
reorganization of the file are only roughly sketched. 

We will apply the quantile method to multidimensional 
order preserving linear hashing with partial expansions and 
we will present a rather detailed description of the algo- 
rithm for reorganization. Furthermore, we will report on 
experiments run with an implementation of our scheme 
comparing MOLHPE with and without quantile method for 
different nonuniform distributions. 

Let us demonstrate our method considering 2-attribute 
composite keys K ---- (k v 1%) and a 2-dimensional distribu- 
tion function F with marginal distribution functions fl and 
f2' We assume that the stochastic variables k I and 1% are 
independent, i.e. 

F(k v L 2 ) = f t ( k , ) * f 2 ( k ~ )  

For a E [ O, 1] the a-quantile of the 1st (2rid) attribute is 
the domain value x~ (y,) such that 

f , ( ~ ) =  ~ ( f 2 ( y - ) = ~ )  
Now let us assume that starting from an empty file we 

have to partition the key space [0,1) 2 for the first time and 
we decide to partition the first dimension (axis). If ft is a 
non-uniform distribution function, we will not partition the 
first dimension in the middle, but we will choose the 1/2- 
quantile as the partitioning point. This guarantees that a 
new record will be stored with equal probability in the 
page corresponding to the rectangle [0 , xll2) X [0 , 1) or 
in the page corresponding to the rectangle [xl/2 , 1) X [0 , 
1), see figure 2.1. During the next expansion we will parti- 
tion the second dimension (axis} and we will choose the 
partitioning point Y~/v see figure 2.2. 

k2 k2~ 

Yl/2 . . . . . . . . . . . . . . . . . . . . .  

• I t  

kl  k 1 Xl/2 xl/2 
Figur 2.1 Figur 2.2 

Figure 2.3 shows the file consisting of 16 pages, where each 
axis has been partitioned at the 1/4, 1/2 and 3/4 quantile. 
As depicted in figure 2.3, the partitioning points are stored 
in binary trees which can easily be stored in main memory. 
The most important property of these binary trees of par- 
titioning points is the following: for each type of operation 
a nonuniformly distributed query value kj, j ---- 1,2 , is 
transformed into a uniformly distributed a E [ 0, 1] by 
searching the corresponding binary tree of partitioning 
points. This uniformly distributed a E [ 0, 1] is then used 
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as an input to the retrieval and update algorithms of 
MOLttFE. 

Now we will present a more formal description of the 
quantile method. Let F denote the d-dimensional distribu- 
tion function of the d-attribute composite keys. Then fl, 
1 <  i <  d, denotes the 1-dimensional distribution function of 
the marginal distribution. For 0 < a < : l  and iE{1,...,d} the 

- quantile of the i-th attribute is the domain value x(a) 
of the i-th attribute such that 

fi(x(~)) = ~ .  

In [RM 55] the quantile method has been described for the 
first time. A survey on the theory of quantile mehtods can 
be found in [KC 78]. For each fi, l < i < d  we will approxi- 
mate the proper quantiles according to the following itera- 
tive scheme. 
Let x(c~) be the c~-quantile of one of the 1-dimensional dis- 
tribution functions fi, 1 < i  <d .  Furthermore let x,(~) be 
our best initial guess for x(a). Let {k; y } be the sequence of 
i-th component keys which have been inserted into the file. 
Then we define for n > i 

(i) m(n , l )= l  { k; y I xl(c~)>kj,  l < j < n }  I 
where the sequence {xt ( a )} of estimates is given by 

(ii) xt+,(c~)= xt(~)-at*( m(n,l) -c~) 
B 

Here {at} is a sequence with 

(a) ~ a,--*oo for k--*oo 
/={  
k 

(b) ~ a? ~ converges for k- -*~ 
I = l  

Obviously, re(n,/) denotes the number of records whose i-th 
component key is below the I-th estimate xt(a) of the a-  
quantile when n records are presently in the file. The ex- 
pected value of m(n,/)/n corresponds to fi(zt(a)) According 
to (ii) the ( l+l)s t  estimate of x(a) can be computed only 
after at least i records are stored in the file. 

The sequence {at} = {1//),  l > l ,  fulfills conditions (a) 
and (b). However, in order to guarantee a fast adaption to 
the distribution we have to choose at depending on the file 
size. In our implementation where d=2 ,  we choose at = 
1/2(L air d), where L is the present level of the file. As 
l---,oo the sequence { xt(c~) } converges to x(a) with proba- 
bility 1, if fl is continuous almost everywhere. 

3. Application of the quantile method to multidi- 
mensional order preserving linear hashing with 
partial expansions 

As i n  [KS 86], we say that the file is on level L, where 

L =  E L ; ,  to indicate that the file has doubled in size L 

times. Now the i-th axis is partitioned by 2L'-I partitioning 
points pp(a), 0 < ~ < 1 .  Each of the pp(~) is the newest es- 
timate of the ~-quantile, computed using the quantile 
method. The set of pointLs ' is given by 

Pi = { PP((~) c~:,~=lbi*2-i,bi¢{O, 1} } 

Obviously, each pp(a) can be characterized by a bitstring. 
Using this characterization we can associate to each parti- 
tioning point exactly one node in a binary search tree in 
the obvious way. For computing a new estimate of pp(a) 
we need the number of records whose i-th component key is 
below pp(a). Therefore, in each node of the binary tree, 
we store in s.ddition to pp(a) the number of records whose 
i-th component key is in the interval [pp(a'),pp(a)], where 

and ~'  are given by 

ol~--~- ~ by*2 -1 where z < L{ and b, = 1 
i = 1  

z - I  

a '~ - -  ~by*2 -i  
j = l  

The most important propertv of these binary trees of parti- 
tioning points is the following: for each type of operation 
and each attribute Aj, l _ < j <  d, a nonuniformly distributed 
query value xj ¢ domain (Aj) is transformed into a uniform- 
ly distributed ~e [0,1] by searching the corresponding 
binary tree of partitioning points. This uniformly distribut- 
ed c~e [0,1] is then used as an input to the retrieval and up- 
date algorithms of MOLHPE. 

Now for each axis j, l < f _ <  d, we organize the partition- 
ing points within a binary tree which may be stored expli- 
citly (using pointers) or implicitly (stored within an array 
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using no pointers). These d binary trees have a total 
storage requirement of 0(d/b , n l/d) where n is the number 
of records in the file and b is the capacity of a data page. 
The storage requirement of the d binary trees is compar- 
able to that of the linear scales in the grid file. Thus these 
binary trees can easily be kept in central memory. The al- 
gorithms for retrieval and expansion are basically the same 
as for MOLPHE without quantile approximation. There- 
fore, they are not presented here. Let us only mention, that 
the file is cyclically expanded or contradicted depending on 
the number of records stored in the file. Instead, we will 
treat the important problem of reorganization extensively. 

4. Reorganizat ion  o f  the file 

None of the previous multidimensional dynamic hashing 
schemes gracefully adapts to the distribution of the records 
in key space. Using the suggested quantile method, we reor- 
ganize the file by adapting the partition of the key space to 
the present distribution. This is done incrementally by 
computing a new estimate for a partitioning point pp(cQ 
using (ii) and adjusting the partition of the key space to the 
new partitioning hyperplane. We say that we move a parti- 
tioning hyperplane. We call the rule which determines 
whether the file will be reorganized or not the control 
function for the reorganization of the file. We will consider 
the following possible control functions: 
(C1) The file is reorganized before each expansion (or con- 

traction). 
(C2) Let a be the quantile to be reorganized next and pp 

(a) be the present estimate of the a-quantile. Then we 
compute the confidence interval I for a. If a E I, then 
pp(a) is accepted as a-quantile. Otherwise a new esti- 
mate is computed for pp((~) according to equation (ii), 
and the file is reorganized by moving the pp(a)- 
hyperplane. Then a is advanced to the a-value which 
will be reorganized next. This step is performed after 
a predefined number of insertions and deletions. 

(C3) Let i 0 E {1,...d} be the axis to be considered next for 
reorganization. Compute the number of records with 
i0-th component key between two neighboring parti- 
tioning points pp(aL),and pp(an) , pp(aL) < pp(t~R). 
Substract (a a - aL)*n which is the corresponding ex- 
pected value. Take the maximum of this difference 
over all possible aR'S on axis i 0. Compute a new esti- 
mate for this pp(an) and advance the axis to be reor- 
ganized next cyclically. 

Control function (CI) has the following property if we as- 
sume that the expansion of the file is controlled by storage 
utilization. The partition of the key space remains invari- 
ant if after an expansion of the file continuously a record is 
inserted and a different record is deleted. Thus the distri- 
bution of records in key space may change without adapt- 
ing the partition of the key space. 

Such undesirable behaviour is prevented by control func- 
tion (C2). Furthermore (C2) exhibits the following desir- 
able property: before computing a new estimate for a quan- 
tile approximation we can decide whether the old estimate 
already suffices. 

Control function (C3) determines the worst estimate over 
each axis. Thus it requires computation for all partitioning 
points and searching for the maximum difference of present 
estimate and expected value. Obviously, this needs inten- 
sive computation. Summarizing we can say that (C2) and 
(C3) are adequate control functions for the reorganization 
of the file. 

As mentioned before, during reorganization one parti- 
tioning hyperplane is moved. If this move is done in one 
step, it requires 0(n l-l/d) pages accesses for performing the 
reorganization. Although this may sound very high, the 
same number of page accesses is required by the grid file 
when adding a new partitioning hyperplane to the grid 
directory. If moving hyperplanes is done in one step, the 
quantile method (and the same is true for the grid file) 
looses its dynamic character. Since reorganization only im- 
proves retrieval performance and is not as crucial as res- 
tructuring in the grid file, we will amortize the time re- 
quired for moving one partitioning hyperplane over a se- 
quence of insert and delete operations. Thus, step by step, 
we will adjust a pair of chains separated by the hyperplane 
to be moved to the new estimate. We call a reorganization 
local, if the expected value for the number of page accesses 
during reorganization is constant. The corresponding con- 
trol function for reorganization of the file is called linear. 
Obviously, local reorganization is only possible for hashing 
schemes without directory. Similar as for the expansion of 
a file, we define the following variables: ra E{1,...d} 
denotes the axis (dimension) whose partitioning points will 
be recomputed next. We call this axis reorganization axis. 

The pair of chains to be reorganized next is specified by 
d reorganization pointers rpv...,rPd. Now the chain 
G(rpv...,rPd ) and its right neighbor chain with respect to 
axis ra will be adjusted during the next local reorganiza- 
tion. The address G(rpv..,rPd } is computed in two steps. 
For every j, 1 < j <d,  rpj is computed using an one di- 
meusional order'-preserving hashing function. Then the d- 
dimensional index (rpv..,rPd) and the address function G 
[KS 86] is used to compute the address. 

Mter inserting a record we will either expand the file or 
perform a local reorganization of the file. More presisely, 
after each insertion which does not require an expansion, a 
local reorganization will be carried out. This strategy is 
supported by the following observation obtained from ex- 
perimental runs on our implementation: For most nonuni- 
form distributions the expected value of page accesses for 
insertion is considerably lower with quantile method than 
without quantile method. Since this phenomenon is mostly 
unexpected, it justifies our strategy even more. 
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We will now present an algorithm for local reorganization 
using control function (C2): 

Algorithm for local reorganization 

1. For chain Next ~ G(rpv...,rpd ) compute the 
right partitioning point PP{~R) on axis ra; 

2. IF r~ = 0 for all i E {1,...,d} - {ra} THEN 
compute a confidence interval I for a R and 
PP(aa); 
IF and  THEN 

rp~ :~-- rp~+l;  
IF rp~ ---- 2L~-I THEN 

r a : ~ - r a M O D d + l  
END; 
rh  :---- 0 for all i E {1,...,d} 

ELSE 
compute a new estimate for PP(~R) us- 
ing equation (ii) 

END; 
3. Adjust chain Next and the right neighbor chain 

with respect to axis ra to the new estimate for 
pp(OIR). 

4. Advance (rpv...,rPd) to the next value. 

Step 3 of the algorithm physically performs the local reor- 
ganization. Steps 3 and 4 are illustrated using the following 
example. 

Example: 
Let us consider the situation in Figure 2.3 and let us as* 
sume that the estimates of the quantiles are stored in the 
nodes of the binary trees. Thus we have the following 
parameters: d=2,  Lt----2 , L2----2 , L----4. Furthermore we 
consider rp----(0,1) and ra----2 and assume that the file will 
not be expanded during the following four insertions. This 
implies that the reorganization algorithm is executed after 
each of these insertions. 

An insertion of a record triggers a computation of a new 
estimate Yl/2 of the 1/2-quantile with respect to the second 
dimension (Fig. 4.1). Then we adjust the page Next ----- 
G(rp) to the new estimate by removing all corresponding 
records from the upper neighbor page. We advance the 
reorganization pointer to the next page which is still limit- 
ed by the old estimate Yl/- (Fig. 4.2). After two more 
insertions we have adjusted the partition of two more pairs 
of pages to the new estimate (Fig 4.3,4.4). Eventually, 
after one more insertion, we adjust the last pair of pages 
and reorganize the binary tree of the second dimension 
(Fig. 4.5). 

° °  

Yl/2 

rP 2 
t 

rPt | 

Figure 4.1 

k2 

kl 

k2 

rP2 

rPa i 

Figure 4.2 

rp~ 

rPl 

Figure 4.3 

kl 

k2 

k2 

rPz 

rPl t 

Figure 4.4 

1 1 

rrPl 

Figure 4.5 

kl 

kl 

rP2 

k 2 , 

kl  

14 



5. Experimental result~ 

In order to demonstrate the performance of the quantile 
method for. nonuniform distributions, we have implemented 
it on top of MOHLPE in MODULA-2 on an Olivetti M24 
PC with 640 KB RAM and with hard disk. In MOLHPE 
the following parameters were chosen: the control function 
for the expansion of the file is expansion after 28 insertions, 
the capacity of a primary page is 31 records, and that of a 
secondary page is 7 records. From all the experiments, we 
select the following two for demonstrating the graceful 
adaption of the quantile method to a nonuniform distribu- 
tion. 

Experiment 5.1: 
For k i. 610,1] , i =1,2,  we have: 

eb(k i < 1/4 ) ---- 9/16 
Pb(l~ _< 1/2 ) = 7/8 

where Pb denotes the probability with which k i. is in the 
specified interval, i ---~ 1,2. However, we only accept com- 
ponent keys ~ which follow the distribution and are not in 
[0.6, 0.7]. The application of the quantile method yields 
the partition of the key space depicted in figure 5.1. In fig- 
ure 5.2 we have plotted the average number of page 
accesses in a successful exact match query with and without 
using the quantile method as a function of the level of the 
file. Figure 5.3 depicts the average storage utilization with 
and without quantile method for various levels of the file. 

Let us remark that level = 9 corresponds to 15,000 records 
in the file and that the implemented version of MOLHPE 
uses p ~--- 1 partial expansions. The implementation for 
p > 2  is currently on the way. 

The advantage of the quantile method is obvious. The 
average number of page accesses in a successful exact 
match query is reduced from more than 4 to less than 1.5, 
the average storage utilization is improved from approxi- 
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mately 60% to more than 75%. Let us remark that 
although the grid file is tailorcut for best exact match per- 
formance it is easily outperformed by the quantile method. 
It will be interesting to observe the very superlinear growth 
of the grid directory for this nonuniform distribution. 

E x p e r i m e n t  5.2: 
For each Iq., i =-- 1,2, the component keys follow a Gaussian 
distribution with expected value 0.5 and variance 1. Furth- 
ermore, the component keys are multiplied with the factor 
1/8 and the composite keys are in [0,1] 2 . The application 
of the quantile method yields the partition of the key space 
depicted in figure 5.4 . This partition gives an idea of the 
graceful adaption, depicted for level ---- 10. In figure 5.5 
we have plotted the average number of page accesses in a 
successful exact match query with and without the quantile 
method for levels ---- 8,0,10. Here level ~ 10 corresponds 
to 30,000 records. Since the performance of our scheme 
without quantile method is cyclic and stationary, we did 
not extend this experiment beyond level ---- 10. However, 
figure 5.6 clearly shows the positive trend for the perfor- 
mance of the quantile method with increasing file size. We 
do not depict storage utilization. Using the quantile method 
it exceeds 70% for levels larger than 9. 

The improvement in page accesses by using the quantile 
method is even more drastic in this experiment than in the 
previous one. For level ~ 9 the number of page accesses is 
improved from approximately 8 to less than 2. Comparing 
exact match queries is clearly to the advantage of the grid 
file. But even for this type of query the quantile method 
outperforms the grid file for large enough files. For file 
sizes around 108 we expect the quantile method to perform 
successful exact match queries in practically 1 disk access. 
The most drastic advantage of the quantile method over 
the grid file for nonuniform distributions will turn out for 
complex queries such as range queries. Here the possibly 
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exponential growth of the grid file will result in very poor 
query times. Experiments to compare very efficient grid 
file versions and the quantile method for range queries are 
under way. 

6 .  C o n c l u s i o n s  

Our goal was twofold. First, for uniform record distribu- 
tion we have suggested multidimensional order preserving 
linear hashing with partial expansions (MOLHPE) [KS 86] 
which performs better than its competitors. Second, for 
nonuniform record distributions all known multidimension- 
al dynamic hashing schemes exhibit very poor performance. 
By presenting the quantile method in this paper and apply- 
ing it to MOLHPE we suggest a scheme which exhibits for 
nonuniform distributions practically the same ideal perfor- 
mance as for uniform distributions. First experimental runs 
of an implementation of our scheme underline this fact and 
show how graceful our scheme adapts to nonuniform distri- 
butions. Exact match queries can be performed in almost 
one disk access even for very nonuniform distributions. We 
expect an even clearer advantage of our scheme over the 
various grid file versions in case of more complex queries 
such as range queries. Experiments for this comparison are 
under way. 
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