
LCDL: An Extensible Framework for Wrapping Legacy
Code

Ernst Juhnke, Dominik Seiler, Thilo Stadelmann, Tim Dörnemann, Bernd Freisleben
Department of Mathematics & Computer Science, University of Marburg

Hans-Meerwein-Str. 3, D-35032 Marburg, Germany
{ejuhnke,seiler,stadelmann,doernemt,freisleb}@informatik.uni-marburg.de

ABSTRACT
If legacy code has to be integrated into an application, it
is often necessary to call this code available as source code
written in a particular programming language or available
in binary format for a particular computing platform from
another programming language or from a remote machine.
For this reason, wrapping code has to be developed for each
source code library or binary code to be integrated. This
paper presents an extensible framework that supports legacy
code integration by modeling legacy code not only in a way
that is programming (language) independent, but also by
supporting different input and output types and bindings.
This aim is achieved by the use of an integrated plug-in
mechanism.

Keywords
Legacy code wrapping, Interface definition languages

1. INTRODUCTION
Integrating existing software available as source code writ-

ten in a particular programming language or in binary for-
mat for a particular computing platform into other appli-
cations is a tedious task that has been considerably simpli-
fied by the introduction of the service-oriented architecture
(SOA) paradigm. It offers a standardized way to call services
and to exchange data between services possibly written in
different programming languages and running on distributed
computing platforms. In particular, a SOA based on web
service technology offers standardized means that cope with
security, data management, or stateful resources.

The juncture between existing code (which we will refer to
as“legacy code” later on) and a web service based computing
environment platform requires the development of wrapper
code in the programming language of the target platform for
the legacy code. This has to be repeated for all legacy code
and all platforms.

In this paper, we present an approach that is capable of
wrapping different types of legacy code on several levels of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2009 Kuala Lumpur, Malaysia
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

abstraction. The approach is based on an extensible frame-
work providing a legacy code description language for realiz-
ing the wrapping functionality. Neither its set of data types
nor the bindings are subject to any restrictions. Both can
be extended using a plug-in mechanism, e.g., to support new
transportation types such as Flex-SwA [9] or new binding
types like RESTful services [5]. Based on a reusable model
the integration of new abstraction levels only requires the
declaration of that level. For this aim it is neither necessary
to learn nor to use a different framework or language. A
use case from the area of speech processing is presented to
illustrate our approach.

The paper is organized as follows. In Section 2, a brief
overview of existing frameworks and approaches is given.
Section 3 describes the design of the presented approach.
Section 4 provides some implementation details. The evalu-
ation of the framework is carried out by a use case in Section
5. Section 6 concludes the paper and outlines areas for fur-
ther research.

2. RELATED WORK
The integration of legacy code into other applications has

a long tradition. Thus, several approaches supporting this
task have been proposed in the literature. Typically, they
map a special type of legacy code to a higher software com-
ponent level, which can be a web service, a Grid service or
something similar. Here is the difference to and the advan-
tage of our approach outlined in this paper.

Glatard et al. [7] present a service wrapper that is able to
integrate existing code into a service-based framework in an
application independent manner. Their service exposition
approach is based on a factory pattern to optimize services
dynamically by grouping them according to different strate-
gies. However, this interface of service changes can be con-
sidered harmful in a – contract-first – service-oriented archi-
tecture, because a third-party trying to execute the original
service may be unable to find it due to the optimization.

The “Grid Execution Management for Legacy Code Ar-
chitecture” (GEMLCA) introduced by Delaitre et al. [2] also
makes use of a factory pattern. Legacy code deployed on the
head node of a Globus Toolkit installation and executed on
the computed nodes managed by this head node is wrapped.
Delaitre et al. utilize a so-called “Legacy Code Interface De-
scription”, an XML based format. For service invocation, a
portal-based solution using Gridsphere is proposed. Since
user interfaces and their generation depend on the user’s
experience, there is no need to mix up service provisioning
and user interfacing. The authors use the power of stateful

services primarily to support a multi-user environment, but
not for the life cycle management of native code.

For the integration of legacy code into Triana, a scientific
workflow system, a two-stage approach has been presented
by Huang et al. [10]. In the first step, a Java wrapper is
created by the “Java-C Automatic Wrapper” (JACAW). In
the second step, this Java class is mediated into the Triana
workflow system using the “Mediation of Data and Legacy
Code Interface”.

Zou and Kontogiannis [15] describe a framework that wraps
legacy code as CORBA objects. Furthermore, the authors
design a concept for a service repository, including the regis-
tration and localization of services. In a way, their approach
somehow resembles UDDI. Although the authors addition-
ally introduce an “extensible service description language”,
extensibility is limited to environmental descriptions, e.g.,
operating systems etc.

3. DESIGN
The design of the presented framework called LCDL (Legacy

Code Description Language) is based on the internal model
shown in Figure 1. The model is taken and transformed into
executable wrapper code. The model shows which informa-
tion is needed to – declaratively – describe legacy code both
in binary and source code library form. One of the main ob-
jectives of this design is to keep the model extensible. This
includes new types of bindings as well as new input and
output sources and types, but is not limited to those.

The main element is the Service element. It is the con-
tainer for the Operations and Bindings. The first ones con-
tain an Execute element including its Input and Output

parameters and a definable environment as well. The Oper-

ations describe which type this service should be exposed
by. A more detailed description of the elements is given
below.

A Service contains one or more Operations that in turn
represent methods of the legacy code. An Operation is iden-
tified by a symbolic name which other elements can refer to.
An Operation possesses an Execute element that is the gen-
eralization of the Library and Binary type of legacy code.
Both types need the path information of the legacy code. In
some cases, it is necessary to specify auxiliary information
for the Binary type. It might be insufficient to pass a given
argument directly to the binary, since a parameter speci-
fication like -preEmphasizeFactor=0.5 is needed. To map
this, -preEmphasizeFactor is the prefix attribute and = is
the infix attribute of the parameter element of the Binary.
Input arguments are determined by a type attribute, re-

ferring to an XML Schema Type [14] that itself is identi-
fied by its qualified Name (QName). To reflect the call-by-
reference pattern, the mode attribute can be used to set an
input parameter either as in, in-out or out. The binding
has to take care of handling this correctly.

As an Input, the following elements are realized as a spe-
cialization. The ElementInput models a parameter that
takes an arbitrary argument with a given type and passes
it to the Binding. An OptionInput models an optional
flag. This may have a value that can be set by a caller.
The StaticInput models a parameter that is always set.
Like the OptionInput, the StaticInput can have a settable
value. FileInput models a file as an input parameter. The
concrete treatment of this file is defined by the Binding.

The Output consists of two elements. One is the Return-

Source element that declares the source for the return value.
Common sources are standard out (StdOutSource), stan-
dard error (StdErrSource) and the return code of a binary
(ReturnCodeSource) or a file that has been created by the
legacy code (FileSource). Sometimes, legacy code prints
its information on standard out as well as standard error,
without printing any error information. In this situation,
the StdComposite can be used. It merges standard out and
standard error and ignores the error semantics of standard
error. Besides the ReturnSource element, the Output is en-
dowed with the ReturnType element. It defines how the
ReturnSource data should be passed back, i.e., returned.
In most cases, the ElementReturn may be used for the Re-

turnType. For the Java binding, this is the return type
of a method. Another type is the FileReturn that turns
the return type into a file type. The concrete return for
the FileReturn depends on the Binding. For example, the
JavaProxy may use the java.io.File, whereas the Webser-

vice may use a Base64 encoded string. An Operation can
be equipped with an Environment containing information
about a working directory or an environment variable. The
latter one may needed to be set to execute the legacy code,
like LD LIBRARY PATH.

The Binding element that can occur multiple times within
a Service element defines the (so-called) binding of the
legacy code. So far, the LCDL model has neither informa-
tion nor references about the type of wrapper that will wrap
this legacy code. The mapping is specified by the Binding

element. A JavaProxy binding generates a Java interface for
the legacy code, whereas a WebService binding generates a
web service (for a specific web service container).

As already mentioned above, the extensibility of this frame-
work is an important issue. In Figure 2, an extension of the
Input is shown. As a new input type, Flex-SwA [9] is intro-
duced. Flex-SwA serves as an input type for the wrapper
code in order to manage the data handling. When using
Flex-SwA instead of directly passing huge binary objects,
only small references have to be exchanged. In conjunction
with service orchestration, this allows for speeding up the
whole application, because the usually emerging bottleneck
at the orchestration node is circumvented.

Figure 2: Extension of the Binding by a Flex-SwA
element

4. IMPLEMENTATION
The UML diagram in Section 3 was created by dint of the

Eclipse Modeling Framework (EMF) [4]. The EMF plug-in

Figure 1: UML Diagram of the LCDL

permits a graphical modeling of the UML diagram as well
as the generation of the corresponding model classes and a
simple table based editor (for testing purposes). In addition
to the editor, the EMF creates a (basic) validator that is
capable of checking the (syntactical) constraints given by
the UML diagram.

Based on this approach, a prototypical implementation
has been developed. This implementation takes the XML
representation of the LCDL model, uses the Eclipse EMF
API for loading and validating and then generates the ser-
vice or proxy depending on the actually defined binding(s).

Figure 3: Generator process

The generator process of a JavaProxy binding is shown
in Figure 3. To generate a Java interface, all Operation

elements are mapped to Java methods and the XML Schema
types of the input and output types are also mapped to their
corresponding Java types. This mapping is based on the
mapping defined in Apache Axis ([1]). Finally, the generated
interface is annotated with the XML model file, and both
the model file and the compiled interface are packed into a
Java archive (jar) file.

At runtime (in the Java case), a factory implementation
LcdlFactory is the main component for invoking legacy code

via the LCDL. In the JavaProxy case, the LCDL factory is
called by a Java class that will be calling the legacy code.
This class gets an instance of the JavaProxy by using the fac-
tory. This instance is created in the following way. At first,
the model file is loaded, by using the Annotations within the
Java interface. With the aid of the Dynamic Proxy concept
of Java, an invocation of a method of the JavaProxy is then
redirected to an AInvocation implementation. This one an-
alyzes the called method and – together with the LCDL
model – creates a Runnable that in turn takes the given ar-
guments and executes either the binary or makes a library
call. For optimization purposes, this Runnable is cached
within the factory. This is illustrated in Figure 4.

Figure 4: Runtime behavior

For library calls, the Java Native Access (JNA) [11] API
is used. This offers a platform independent way of calling
library code and – in contrary to the Java Native Interface
(JNI) [12] – JNA works on a given library, on top of which
the adequate Java code can be generated. Anyway, JNI
takes a Java class prepared with special keywords (native)

and generates a header file for C/C++, which in turn has to
be implemented. In the extreme case, an appropriate JNI
wrapper has to be implemented for each single Java wrapper.
The use of JNA together with the LCDL description avoids
this recurring (and costly) activity.

The implementation of the Binding element works as fol-
lows. The JavaProxy creates a Java interface within the
specified package, whereas the Webservice creates an Axis
web service [1] with the given target namespace and the
RPC or document style. If the legacy code has a state, like
libraries that need to be initialized with certain parameters,
the usage of a WsrfService binding is reasonable. Unlike
web services, which represent stateless resources, WSRF-
Services has a state, which is preserved between several in-
vocations. One of them might be an initialization and the
other one(s) might be the actual call. The create and destroy
operations of the factory pattern are reflected by both the
createOperation and the destroyOperation attribute of the
WsrfService. They reference to the symbolic name of the
operation, e.g., to perform an initialization. This enables the
framework to create a WSRF Service for the Globus Toolkit
[6] that is capable of deploying and executing WSRF ser-
vices.

5. USE CASE: SPEECH PROCESSING
Typical use cases for the LCDL arise frequently in a mul-

timedia analysis project conducted in our research group:
there, new algorithms are often implemented in C/C++ for
the sake of speed of processing and compatibility with ex-
isting libraries; when coupling them with our Java based
user interfaces (or making prototypes available for other re-
searchers via the web), legacy code wrapping for a certain
binding becomes necessary.

A specific example is speech processing: recently, we have
developed a tool that is able to make intermediate results
of a typical speech processing chain audible. In this way, a
user can perceive the effects of different parameter settings.
This fosters rapid understanding and thus quick and accu-
rate application of audio processing techniques like feature
extraction [13].

Previous publications focused on the signal processing as-
pects of the problem as well as on how the code, exposed
as a web service, can be accompanied with an easy-to-use
client for prospective users. Here, we focus on the prior
step of wrapping the application as a Java application. The
software has originally been implemented as a MS Windows
binary called SCrec written in C++ and contains different
methods related to speaker recognition.

The first step is the modeling of the LCDL information.
This can be done using a basic LCDL editor, as shown in
Figure 5. All information is entered there and a basic vali-
dation can also be performed, in order to check whether all
needed elements and attributes are set. The corresponding
XML file is shown in Listing 1.

1 <lcdl:Service xmlns:lcdl="http://fb12.de/lcdl↘

→/1.1" name="SCrec">
<operations name="screc">

3 <output >
<source xsi:type="lcdl:StdOutSource"/>

5 <type xsi:type="lcdl:ElementReturn"
name="returnValue"

7 type="{http://www.w3.org /2001/ XMLSchema↘

→}string"/>
</output >

Figure 5: Basic LCDL editor

9 <inputs xsi:type="lcdl:FileInput"
name="audioFile" mode="in"

11 type="{...} any" />
<inputs xsi:type="lcdl:ElementInput"

13 name="preEmphasizeFactor" mode="in"
type="{...} double" />

15 <inputs xsi:type="lcdl:StaticInput"
name="method" mode="in" value="28"

17 type="{...} int" />
<execute xsi:type="lcdl:Binary"

19 file="SCrec">
<parameters name="audioFile"/>

21 <parameters name="method"/>
<parameters prefix="-featureMfcc.↘

→preEmphasizeFactor"
23 name="preEmphasizeFactor" infix="="/>

</execute >
25 </operations >

<bindings xsi:type="lcdl:JavaProxy"
27 packageName="de.fb12.sclib"/>

</lcdl:Service >

Listing 1: LCDL model (namespaces are omitted for
reasons of readability)

The particular method under consideration (method=28)
takes as an additional parameter the filename of an audio
file for which standard speech features are extracted. The
LCDL model describing it is depicted in Listing 1. Virtually
any parameter of the feature extraction procedure can be
controlled. We only take the featureMfcc.preEmphasis pa-
rameter as an example here – it controls the high frequency
boost prior to further signal processing, which is clearly au-
dible in the result: an audio file containing the resynthesized
features. The method we have defined above is reflected in
the StaticInput element in lines 14 – 16. The name of the
file is written to standard out by the program. This infor-
mation is captured and returned by the LCDL framework
as a string.

package de.fb12.sclib;
2 import de.fb12.lcdl.runtime.java.↘

→LcdlAnnotation;

4 @LcdlAnnotation(model="SCrec")
public interface ISCrec {

6 public java.lang.String screc(
java.io.File audioFile ,

8 java.lang.Double preEmphasizeFactor);
}

Listing 2: Generate Java Interface

1 // ...
File audioFile = new File("input.wav");

3 double preEmphasize = 0.97;

5 ISCrec screcService = (ISCrec)
LcdlFactory.getInstance(ISCrec.class);

7

String filename = screcService.
9 screc(audioFile , preEmphasize);

// ...

Listing 3: Usage of the generated interface

To use the legacy code in a Java program, the code snip-
pets shown in Listing 2 and 3 come into play. In Listing 3, it
is shown how the LCDL factory is utilized to get an instance
of the SCrec service (lines 4 – 5). To invoke a method of the
generated interface in Listing 2, a simple Java method call
is necessary (lines 6 – 7).

6. CONCLUSIONS
In this paper, we have presented the LCDL framework, an

extensible approach for wrapping legacy code. It supports
different types of legacy code and is based on a plug-in mech-
anism to support several input and output types as well as
binding mechanisms. A use case from the area of speech
processing has been presented to illustrate our approach.

There are several areas for future work: (1) the integra-
tion of the complete XML Schema for representing complex
data types as they are used in library calls; (2) the exten-
sion of the Environment element to cope with JSDL infor-
mation, i.e., hardware requirements etc., and to facilitate
an automated deployment of the legacy code on appropri-
ated computing nodes, such as Cloud computing nodes [3],
or on desktop pools [8]; (3) the incorporation of additional
interfaces – bindings for Restful Services, Matlab interfaces
or an integration into (Java) Message Bus Systems are con-
ceivable.

7. ACKNOWLEDGEMENTS
This work is supported by the German Ministry of Edu-

cation and Research (BMBF) (D-Grid Initiative) and by the
German Research Foundation (DFG) (SFB/FK 615).

8. REFERENCES
[1] Apache Foundation. Apache Axis.

http://ws.apache.org/axis/.

[2] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky,
S. Winter, and P. Kacsuk. Gemlca: Running legacy
code applications as grid services. Journal of Grid
Computing, 3(1):75–90, 2005.

[3] Amazon Web Services LLC, Amazon Elastic Compute
Cloud (EC2).
http://aws.amazon.com/ec2/.

[4] Eclipse Foundation. Eclipse modeling framework
project. http://www.eclipse.org/modeling/emf/.

[5] R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
UNIVERSITY OF CALIFORNIA, 2000.

[6] I. Foster. Globus Toolkit Version 4: Software for
Service-Oriented Systems. In IFIP International
Conference on Network and Parallel Computing, pages
2–13. Springer-Verlag, 2006.

[7] T. Glatard, D. Emsellem, and J. Montagnat. Generic
web service wrapper for efficient embedding of legacy
codes in service-based workflows. In Grid-Enabling
Legacy Applications and Supporting End Users
Workshop (GELA’06), Paris, France, 2006.

[8] M. Heidt, T. Dörnemann, K. Dörnemann, and
B. Freisleben. Omnivore: Integration of Grid
Meta-Scheduling and Peer-to-Peer Technologies. In
Proceedings of the 8th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid ’08),
pages 316–323. IEEE Press, 2008.

[9] S. Heinzl, M. Mathes, T. Friese, M. Smith, and
B. Freisleben. Flex-SwA: Flexible Exchange of Binary
Data Based on SOAP Messages with Attachments. In
Proc. of the IEEE International Conference on Web
Services, Chicago, USA, pages 3–10. IEEE Press, 2006.

[10] Y. Huang, I. Taylor, D. Walker, and R. Davies.
Wrapping legacy codes for grid-based applications. In
Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, page 7, 2003.

[11] Java Native Access (JNA).
https://jna.dev.java.net/.

[12] Java Native Interface Specification. http://java.sun.
com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html.

[13] T. Stadelmann, S. Heinzl, M. Unterberger, and
B. Freisleben. WebVoice: A Toolkit for Perceptual
Insights into Speech Processing. In Proc. of 2nd
International Conference on Image and Signal
Processing CISP’09, page to appear, 2009.

[14] W3C. Xml schema.
http://www.w3.org/XML/Schema.

[15] Y. Zou and K. Kontogiannis. Web-based specification
and integration of legacy services. In Proceedings of
the 2000 conference of the Centre for Advanced
Studies on Collaborative research. IBM Press, 2000.

