Übungen zur Differentialgeometrie 2

– Blatt 3 – Abgabe Donnerstag: 7.05

Aufgabe 1. Sei \mathbb{K} gleich \mathbb{R} oder \mathbb{C} . Der Grassmansche Raum $G_{n,k}(\mathbb{K}) \equiv G_{n,k}$ is die Menge aller k-dimensionalen lineaeren Unterräume von \mathbb{K}^n . Sei $\operatorname{Hom}(\mathbb{R}^k, \mathbb{R}^n)$ die Menge aller linearen Abbildungen $\mathbb{R}^k \to \mathbb{R}^n$. Gegeben $i = (i_1, \ldots, i_k)$ mit $1 \leq i_1 < i_2 \cdots < i_k \leq n$, sei $D_i(A)$ die Determinante der $k \times k$ Untermatrix von A gegeven durch die Spalten i_1, \ldots, i_k . Die Menge $H_i = \{D_i(A) \neq 0\}$ ist offen in $\operatorname{Hom}(\mathbb{R}^k, \mathbb{R}^n)$ (warum?). Sei $\operatorname{Hom}_0(\mathbb{R}^k, \mathbb{R}^n)$ die Menge aller Matrizen mit $\ker(A) = 0$, bzw die Vereinigung aller H_i .

Definiere $\rho: \operatorname{Hom}_0(\mathbb{R}^k, \mathbb{R}^n) \to G_{n,k}$ durch $\rho(A) = A(\mathbb{R}^k)$.

a) Zeigen Sie, dass ρ surjektiv ist.

 $G_{n,k}$ hat die Struktur einer glatten Mannigfaltigkeit sodass ρ eine Submersion ist. Sei $\alpha: GL(n,\mathbb{K}) \times \operatorname{Hom}_0(\mathbb{R}^k,\mathbb{R}^n) \to \operatorname{Hom}_0(\mathbb{R}^k,\mathbb{R}^n)$ gegeben durch $\alpha(g,A) = g \circ A$. Wir difinieren $\beta: GL(n,\mathbb{K}) \times G_{n,k} \to G_{n,k}$ durch $\beta(g,V) = g(V)$.

- b) Zeigen Sie, dass α und β Gruppewirkungen sind und dass $\rho(\alpha(g,A)) = \beta(g,\rho(A))$.
- c) Zeigen Sie, dass α und β glatt sind.
- d) Zeigen Sie, dass $G_{n,k} \cong GL(n)/P$, wo P die Untergruppe

$$P = \left\{ A \in GL(n, \mathbb{K}) : g = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}, \ A \in GL(k), \ B = k \times (n-k) \text{-Matrix}, \ C \in GL(n-k) \right\}$$

e) Zeigen Sie, dass $G_{n,k}$ kompakt ist.