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0. Introduction

The aim of this note is to show the existence of smooth quartic surfaces in IP3 on
which there lie

– 16 mutually disjoint smooth conics,

– altogether exactly 352 = 22 · 16 smooth conics.

Up to now the maximal number of smooth conics, that can lie on a smooth
quartic surface, seems not to be known. So our number 352 should be compared
with 64, the maximal number of lines that can lie on a smooth quartic [S].

We construct the surfaces as Kummer surfaces of abelian surfaces with a polar-
ization of type (1, 9). Using Saint-Donat’s technique [D] we show that they embed
in IP3. In this way we only prove their existence and do, unfortunately, not find
their explicit equations.

So there are the following obvious questions, which we cannot answer at the
moment:

• What is the maximal number of smooth conics (or more general: of smooth
rational curves of given degree d) on a smooth quartic surface in IP3?

• What are the equations of the quartics in our (three–dimensional) family of
surfaces, which contain 352 smooth conics?

• Using abelian surfaces with other polarizations, it is easy to write down can-
didates for Kummer surfaces containing 16 skew smooth rational curves of
degree d ≥ 2. Do they embed as smooth quartics in IP3?

The authors are indebted to I. Naruki for helpful conversations.
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1. Preliminaries

To describe the relation between an abelian surface A and its (desingularized) Kum-
mer surface X we always use the following notation:

σ γ
ei ←− Ei −→ Di

∩ ∩
A ←− Ã −→ X

blow up double
of the ei cover

(∗)

where

A is the abelian surface,

e1, ..., e16 ∈ A the half–periods,

E1, ..., E16 ⊂ Ã are the blow–ups of e1, ..., e16,

Ã −→ X is the double cover branched over D1, ..., D16, induced by the invo-
lution a 7−→ −a on A,

Ei −→ Di is bijective.

If C ⊂ X is an irreducible curve, not one of the Di, then its self–intersection
is related to the self–intersection of the corresponding curve F := σγ∗(C) ⊂ A as
follows: Let mi := C.Di = γ∗C.Ei. Then γ∗C +

∑
miEi ⊂ Ã descends to A, i.e.

σ∗F = γ∗C +
∑
miEi with mi the multiplicity of F at ei. This implies

F 2 = (σ∗F )2 = (γ∗C +
∑

miEi)
2 = 2C2 +

∑
m2
i . (1)

We shall consider a line bundle M on X with M.Di = 2 for i = 1, ..., 16. Then
γ∗M⊗O

Ã
(2
∑
Ei) descends to a line bundle L on A and

L.F = (γ∗M⊗O
Ã

(2
∑

Ei)).(γ
∗C ⊗O

Ã
(
∑

miEi)) = 2(M.C +
∑

mi). (2)

Sometimes we use the sloppy notation L−∑miei to denote the sheaf
∏ Imi

ei
· L

on A, respectively the line bundle σ∗L ⊗O
Ã

(
∑
miEi) on Ã.

2. Sixteen skew conics

First we analyze the

Situation: X ⊂ IP3 is a smooth quartic surface with sixteen mutually disjoint conics
D1, ..., D16 ⊂ X.
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By Nikulin’s theorem [N] there is a diagram (∗) representing X as the Kummer
surface of an abelian surface A. We denote by L̃ on Ã the pull–back of the line
bundle OX(1). Then the self–intersection numbers are

(OX(1).OX(1)) = 4, (L̃.L̃) = 8.

Since
(Ei.Ei) = −1 and (L̃.Ei) = (OX(1).Di) = 2,

the line bundle L̃ ⊗O
Ã

(2E1 + ...+ 2E16) descends to a symmetric line bundle L on
A with self–intersection

(L.L) = (L̃ ⊗ O
Ã

(2
∑

Ei).L̃ ⊗ OÃ(2
∑

Ei)) = 8 + 8 · 16− 4 · 16 = 72.

The general linear polynomial in H0(OX(1)) induces a section in L vanishing at
each ei to the second order. Therefore the line bundle L is totally symmetric. So
L = OA(2Θ) where OA(Θ) is a symmetric line bundle on A of type

(3, 3) or (1, 9).

The map
A← Ã→ X ⊂ IP3

is given by a linear system consisting of (symmetric or anti–symmetric) sections in
L vanishing at the half–periods to the order two precisely. This implies that these
sections are symmetric. The map therefore is given by some linear subsystem of

H0(L⊗2 − 2(e1 + ...+ e16))
+.

First we exclude the case (3, 3):

Claim 1: Assume that Θ = 3T with a symmetric divisor T ⊂ A defining a principal
polarization on A. Then the linear system |L⊗2− 2

∑
ei| induces a linear system on

the (nonsingular) Kummer surface X, which is not very ample.

Proof. We show, that the linear system is not ample on the translates of T by
half–periods. In fact, if T is irreducible, then it contains six half–periods, hence

(L⊗2 − 2
∑

ei).T = 12− 12 = 0.

And if T = T1 + T2 with two elliptic curves Tj, then

(L⊗2 − 2
∑

ei).Tj = 6− 8 < 0.
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3. Abelian surfaces of type (1,9)

Here we show, that the general surface of type (1, 9) indeed leads to a smooth quartic
surface with 16 skew conics. To be precise, we assume: A is an abelian surface with
Néron–Severi group of rank 1, generated by the class of the (symmetric) line bundle
L of type (1, 9). We use the notation of diagram (∗).

Claim 2: The linear system |L⊗2−2
∑
ei|+ is free of (projective) dimension three.

Proof. Since h0(L⊗2)+ = 20 we have

h0(L⊗2 − 2
∑

ei)
+ = h0(L⊗2 −

∑
ei)

+ ≥ 20− 16 = 4.

On the (nonsingular) Kummer surface X of A there is a line bundle M with

σ∗(L⊗2 − 2
∑

ei) = γ∗(M), σ∗H0(L⊗2 − 2
∑

ei)
+ = γ∗H0(M).

If |M| has base points, then by [D, Corollary 3.2] it also has a base curve. This
corresponds to a base curve B ⊂ A of the linear system |L⊗2 − 2

∑
ei|+. Since the

linear system is symmetric and invariant under all half–period translations, so is B.
This implies B ' 2kΘ. If k > 0, then the class L⊗2−2

∑
ei−B = −2(k−1)B−2

∑
ei

cannot be effective. So B = 0 and the base locus on X can consist of curves Di

only. Since it is invariant under half–period translations, it is of the form k ·∑Di,
i.e.

h0(L⊗2 − 2
∑

ei)
+ = h0(L⊗2 − (2 + k)

∑
ei)

+ ≥ 4.

But this is impossible for k ≥ 1, because then the bundle L⊗2 − (2 + k)
∑
ei has

negative self–intersection.
So far we showed that our linear system is free. I.e., as a linear system on X

it is big and nef. Then by Ramanujam’s vanishing theorem [R] it has no higher
cohomology and from Riemann–Roch we find:

h0(L⊗2 − 2 ·
∑

ei)
+ = 4.

Claim 3: The line bundle M on X is ample.

Proof. We have to show that there is no irreducible curve C ⊂ X with intersection
numberM.C = 0. Any such curve would be a (−2)–curve different from D1, ..., D16.
For each i = 1, ..., 16 we use the Hodge index inequality

M2(C +Di)
2 ≤ (MC +MDi)

2

= (MDi)
2

= 4,

−4 + 2C.Di ≤ 1
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to find
mi := C.Di ≤ 2.

Let F ⊂ A be the curve σγ∗(C). It is symmetric and has at ei ∈ A the multi-
plicity mi. This implies

F 2 = 2C2 +
∑

m2
i

= −4 +
∑

m2
i

F.Θ =
∑

mi.

by (1) and (2). Since Θ generates the Néron–Severi group of A, the curve F is
homologous to dΘ for some 1 ≤ d ∈ ZZ. From

18 · d = F.Θ =
∑

mi ≤ 32

we conclude d = 1 and ∑
mi = 18,

∑
m2
i = 22.

This implies that two of the multiplicities are 2, while the other fourteen are 1. The
symmetric line bundle OA(F ) would have 14 odd half–periods, a contradiction with
[LB, Proposition 4.7.5]

Now we finally can prove

Claim 4: The bundle M on X is very ample.

Proof. By [D, Theorem 6.1.iii] it remains to show that M defines a morphism of
degree 1. By [D, Theorem 5.2] we have to exclude the possibilities that there is

either an elliptic curve C ⊂ X with M.C = 2,

or an irreducible curve H ⊂ X with H2 = 2 and M = OX(2H).

The latter, however, cannot happen becauseM2 = 4. So let C ⊂ X be elliptic with
M.C = 2 and F ⊂ A the symmetric curve σγ∗(C). Let again mi = C.Di be the
multiplicity of F at ei. For each i we use the Hodge index inequality

4(2C +Di)
2 =M2(2C +Di)

2 ≤ (2M.C +M.Di)
2 = 36

to conclude again mi ≤ 2.
As above we find

F.Θ = 2 +
∑

mi and F 2 =
∑

m2
i .

Again we assume F is homologous with dΘ, 1 ≤ d ∈ ZZ. Hence

18d = 2 +
∑

mi ≤ 34 and d = 1.

So we find ∑
mi = 16 and

∑
m2
i = 18.

This implies that one of the multiplicities is 2, while one is 0 and the other fourteen
ones are 1. This leads to the same kind of contradiction as above.
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4. Conics on the surface

Here we assume that X = Km(A) is a surface as considered in the preceding section,
by the linear system |M| embedded in IP3 as a smooth quartic surface.

First we prove

Claim 5: There are no lines on a quartic surface X as above.

Proof. Assume that C ⊂ X is a line, i.e. MC = 1. This implies for the symmetric
pre–image F = σγ∗C ⊂ A

ΘF = 1 +
∑

mi.

As F is homologous to some dΘ, d ≥ 1, the intersection number ΘF = 18d is
even and

∑
mi is odd. But on the other hand, by Riemann–Roch on Ã the Euler–

Poincare–characteristic of γ∗C is

χ(γ∗C) =
1

2
γ∗C(γ∗C −

∑
Ei) + χ(O

Ã
) = C2 − 1

2

∑
CDi + χ(O

Ã
),

which implies that
∑
mi =

∑
CDi is even, a contradiction.

Now we specify several divisors on X:

i) For each i = 1, ..., 16 the exceptional curve Ei over ei maps bijectively into IP3

Because of

(L⊗2 − 2 ·
16∑
1

Ei).Ei = 2

the image curve Di is a conic.

ii) That a divisor L ∈ |L⊗2 − 2
∑
ej|+ may have not only a double point, but a

triple point in ei, this imposes three additional conditions on L. So for each
i = 1, ..., 16 there is a divisor

Li ∈ |(L⊗2 − 2
∑

ej)− 2 · ei| = |L⊗2 − 2 ·
∑
j 6=i

Ej − 4 · Ei|.

Because of
(L⊗2 − 2 ·

∑
Ej).Li = 72− 4 · 15− 8 = 4

the proper transform of Li in Ã maps two–to–one to a conic in IP3, which we
denote by Ci.

iii) Let e1, ..., e6 ∈ A be the odd half–periods and e7, ..., e16 be the even ones. All
odd sections from H0(L)− vanish in the ten even half–periods. As h0(L)− = 4,
we may impose three conditions on such a section. So for each triplet i, j, k ⊂
{1, ..., 6} of numbers there is a divisor Li,j,k ∈ |L|− passing through ei, ej and
ek, and having then double points in these three half–periods. Because of

[L⊗2−2 ·
∑

Ei].[L− (E7 + ...+E16)−2 · (Ei+Ej +Ek)] = 36−2 ·10−4 ·3 = 4

the proper transform of Li,j,k in Ã maps two–to–one to a conic Ci,j,k ⊂ IP3.
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Claim 6: The curves Cijk ⊂ X are uniquely determined by the triplet {i, j, k}. For
{i, j, k} 6= {l,m, n} the curves Cijk and Clmn are different.

Proof. If there would be two different curves Lijk ∈ |L|− through the same odd
half–periods ei, ej, ek, or if Lijk = Llmn for {i, j, k} 6= {l,m, n}, then there would be
some divisor L ∈ |L|− passing through four odd half–periods ei, ej, ek, el. Choose
some half–period e such that ej = ei + e. The divisor L+ e then passes

• twice through ei and ej,

• once through the four odd half–periods em, i, j 6= m = 1, ..., 6,

• twice through the even half–periods ek + e, el + e,

• once through six more even half–periods.

This shows
L.(L+ e) ≥ 2 · 4︸︷︷︸

ei,ej

+ 2︸︷︷︸
ek,el

+ 2 · 2︸︷︷︸
ek+e,el+e

+6 = 20.

Since L is irreducible, we conclude L = L + e is invariant under translation by
e. So L would descend to some curve L′ on A/e of self–intersection 18/2 = 9, a
contradiction.

By construction

Li + 2Ei ≡ Lijk + Llmn ∈ |L⊗2 − 2
∑

Eν |+

for {i, j, k, l,m, n} = {1, ..., 6}. So the pairs of conics Ci +Di and Cijk +Clmn lie in
the same plane.

The sixteen conics Ci as well as the sixteen conics Di form an orbit under the
half–period translation group of A. Each conic Cklm however creates a whole orbit
of sixteen conics Ci

klm. All curves in the orbit are different, because the line bundle
L does not admit half–period translations. Altogether we found

(2 +

(
6
3

)
) · 16 = 22 · 16 = 352

smooth conics on the quartic surface X, falling into 22 orbits of 16 ones.

It is a natural question to ask, whether the 16 conics Ci
klm, i = 1, ..., 16 in the

same orbit are skew or not. In fact we have:

Claim 7: In the orbit of sixteen conics Ci
klm, i = 1, ..., 16 each conic is disjoint from

three other ones and meets 12 other ones in two points.

Proof. After reordering of subscripts we may assume {k, l,m} = {1, 2, 3}. It suffices
to consider C123 ∩ Ci

123 for all half–periods ei 6= 0. Now translation by ei maps the
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sixtuplet e1, ..., e6 of odd half–periods to a sixtuplet e1 + ei, ..., e6 + ei containing two
odd and four even half–periods. Then there are the following two possibilities:

1) The triplet e1 + ei, e2 + ei, e3 + ei meets the triplet e1, e2, e3 in two points, say

e2 = e1+ei, {e7, ..., e10} = {e3+ei, ..., e6+ei}, {e11, ..., e16} = {e11+ei, ..., e16+ei}

up to reordering. (This happens for three different ei). Then the curves L123 and
Li123 have the following multiplicities at the half–periods

L123 Li123 intersection
e1, e2 2 2 2 · 4
e3 2 1 2
e7 1 2 2

e11, ..., e16 1 1 6 · 1

.

The intersection multiplicities add up to 18 = L123.L
i
123. The proper transforms of

these curves on Ã therefore are disjoint.
2) The triplets e1 + ei, e2 + ei, e3 + ei and e1, e2, e3 are disjoint, say

e1 + ei = e4, e2 + ei = e7, e3 + ei = e8, e5 + ei = e9, e6 + ei = e10,

{e11 + ei, ..., e16 + ei} = {e11, ..., e16}

up to renumbering. Now the multiplicities

L123 Li123 intersection
e2, e3 2 1 2 · 2
e7, e8 1 2 2 · 2

e11, ..., e16 1 1 6 · 1

add up to 14. This implies that the conics C123 and Ci
123 meet in two points.

The 352 conics we found so far are all the conics which there are on the surface:

Claim 8: A quartic surface X as considered above contains exactly 352 smooth
conics.

Proof. Let C ⊂ X be some smooth conic. We show that C is one of the curves
Di, Ci, C

i
k,l,m. The conic C satisfies

MC = 2 and C2 = −2.

If C is different from D1, ..., D16, then by (1) and (2), for its symmetric pre–image
F = σγ∗C ⊂ A we find

ΘF = 2 +
∑

mi and F 2 = −4 +
∑

m2
i .

Using that F is homologous to dΘ for some d ≥ 1 we get

18d = 2 +
∑

mi and 18d2 = −4 +
∑

m2
i .
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Both C and Di are conics, so mi = CDi ≤ 4. If mi ≥ 3, then C and Di lie in the
same plane, hence C = Ci. Therefore we may assume mi ≤ 2. This implies d = 1
and we find ∑

mi = 16 and
∑

m2
i = 22 .

Then necessarily three of the multiplicities mi are 2, while ten of them are 1 and
the other three are 0. Since OA(F ) is one of the 16 symmetric translates of OA(Θ)
this implies that F is one of the curves Ci

k,l,m.
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