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1. Introduction

The elliptic curves in a projective plane are the smooth cubics. In [3] Hulek proved
that the only abelian surfaces in the product space Py x Py are the obvious ones,
i.e. the products of two plane cubics. Here we consider the analogous question for
abelian threefolds in Py x Py X Ps.

We prove:

Theorem. Let A be an abelian threefold over C, embedded in Py x Py x Py. Then
A is a product E1 X FEy x E3, where E1, Ey and E3 are smooth plane cubics.

We note that the existence of abelian threefolds in 6-dimensional products of
projective spaces was recently studied by Birkenhake [1] in the case of two factors.

2. The Projections

Let © = (1, P2, ¢3) : A = (Py)? be an embedding of an abelian threefold A over C
given by line bundles Ly, Lo, L3. Further, let m; : (Py)% — IP’S) denote the projection
onto the i-th factor and h; := [77Op,(1)] € H*((IP2)*,Z). By the Kiunneth formula
the class of A in H((P3)3,Z) is of the form

[A] = (lhthhg + E aijh?hj (*)
i,j=1,2,3
i#]

with integers a, a;; > 0.
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Lemma 2.1 The coefficients of [A] in (%) satisfy the equation

ala —27) = Z Ao (1),0(3)(9 = Ao(2),0(3))

oES3
Proof. The total Chern class of the normal bundle N J(Py)3 18

3
c(WNajeay) = [ (1 + 3hi + 317) - [A],

i=1
thus
Cg(NA/(PQ)B) = (27h1h2h3 + 9 Z ]’L?l%) . [A] = 27@ + 9 Z CLZ'j.
i#£] i#J
On the other hand we have
A =d"+ Z Ug(1),0(3)0o(2),0(3)

o€ES3

Now our assertion follows from the self-intersection formula A% = c3(Na,@,)) ([2],

p.103). L]
In the sequel we will need the following

Lemma 2.2 Let A be an abelian threefold, v : A — Py a morphism and E C A
an elliptic curve such that all the restrictions V|t*E, a € A, are embeddings. Then

Y(tEE) = (E) for all a € A.

Proof. Denote by P := P(H°(Py, Op,(3))) the projective space of plane cubics and
define a map

dP: A — P
a — Y(tE)

We choose ten points eq,...,e19 € E. Then

Z = {(a,C) € Ax P|C contains ¢(e; — a),...,¥(e;g —a)}
= {(6,C) e Ax P[C=4y(t,E)}
is a subvariety of A x P. The projection p : Z — A is bijective, hence an isomor-
phism by Zariski’s Main Theorem. The map ® is just the composition ® = gop~!,

where ¢ : Z — P is the second projection. So ® is a morphism and the image ®(A)
is a subvariety of P. If ®(A) is of dimension > 1, then ®(A) meets the hypersurface

{ singular plane cubics } C P,

Since this contradicts the assumption that all images of ® are smooth curves, we
conclude that ®(A) is a point. O

Further, we will frequently apply the following useful Lemma from [1]:



Lemma 2.3 Let X be an abelian variety of dimension g and ¢ : X — Py a
morphism with dimo(X) =n < g. Then L := ¢*Op, (1) is semipositive of rank n
and o fits into a commutative diagram

0 Y X >

where the upper row is an exact sequence of abelian varieties and f is a morphism,
which 1s finite onto its image.

Now we are ready to prove:
Proposition 2.4 At least one of the projections @1, pa, w3 is not surjective.

Proof. Suppose to the contrary that all of them are surjective. Because of the
surjectivity of 1 Lemma 2.3 gives a diagram

0 ‘El A \Sl >0

where the upper row is an exact sequence of abelian varieties, F; being an elliptic
curve and S; an abelian surface, and f; is a finite morphism of degree d;, say.
By Riemann-Roch on S; and [4], Theorem 3.3.3, we have

hence d; > 6. Since ¢1(FE7) is a point, we have
[E1] = ah?h3hs + Bhih3hy

with o, 5 > 0.
Claim: We have aw # 1 and 3 # 1.
Proof: By symmetry it is enough to consider a. Applying the projection formula
we get
a = Ey-hs = (p3):(E1) - Op,(1) = deg(ps| Er) - deg 3 (E1).

If we had a = 1, then the morphism ¢3|E; : Ey — @3(E;) would be of degree 1
onto a line in Py, which of course is impossible.

Let us distinguish between two cases:

Case I: a =0 or g =0.
Suppose a = 0, i.e. p3(F1) is a point. Since both of ¢1(E7) and ¢3(F;) are then
points, po must embed E; and all of its translates ¢} F;, a € A, into Py. By Lemma



2.2 then po(tEEy) = pa(E1) for all a € A. Since every point of A lies on a translate
of Ey, we conclude that ¢, is not surjective and the Proposition is proved in this
case.

Case II: «« > 2 and 8 > 2.
Let F} be a general fibre of ¢;. Then we obtain

[F\] = [A] - hi = agshih3hs + asyhihihs.
Furthermore, we have [F}] = d; - [F1], hence
gz =dy-a>6-2=12

and also azy > 12. Arguing in the same way with the projections o and 3 we
obtain
aij212 fOIi,j:1,273,i7éj.

Lemma 2.1 then yields

—183<a(a—27)= > ay(9—ay) < 216,
(i,j,k:)ES;:,

a contradiction. We conclude that not all of the projections ¢1, @2 and 3 can be
surjective. 0

3. The Product Decomposition
Now we can prove the Theorem stated in the Introduction:

Theorem 3.1 Let A be an abelian threefold over C, embedded in Py x Py x Py. Then
A is a product E1 X Ey x E3, where Ey, Ey and E3 are smooth plane cubics.

Proof. By Proposition 2.4 we may assume that ¢; is not surjective. By Lefschetz
hyperplane theorem there are no abelian threefolds in Py x Py, since Py x Py is simply
connected. Thus the image ¢;(A) C Pgl) must be a curve. Then we have a diagram

0 \Sl A \El >0

where E; is an elliptic curve, S; an abelian surface and f; a morphism, which is finite
onto its image. Since the image ¢1(S1) is a point, S; is embedded into ]P’gQ) X ng) by
(2, p3). According to [3], 2.1, S; is then a product of elliptic curves Ey = 2(S1)
and E3 = p3(S7). Identifying S; with its image under (9, p3) we may consider E,
Ej3 as elliptic curves on A.



Furthermore, we have ¢S] = tiEy x tiE3 for all @ € A. Since ¢(t551) is
again a point (2, p3) embeds tS;. In particular ¢o embeds each translate ¢} FEs.
According to Lemma 2.2 we must have ps(tfEs) = Fy. Hence g, is not surjective,
i.e. po(A) = E,. Thus we obtain a diagram

0 /S2 > A /Eé >0

NI

Py

with an abelian surface Sy, an elliptic curve E} and a finite morphism f,. Since
©2(S2) is a point, Sy is embedded into Pgl) X ng) by (1, p3) and again Ss = ¢1(S3) x
©3(9,) according to [3]. In fact Sy = F; x E3. The morphism f; is an isomorphism
because o embeds Es, hence E) = E,. Since E, is contained in A the exact sequence

0—85 —A—FE,—0

splits. Then it follows
AESQXEQgEHXEQXEg

and the Theorem is proved. L]
We conclude with the following

Question. Is every abelian variety of dimension n in (Py)™ a product of smooth
plane cubics?
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