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1. Introduction

The elliptic curves in a projective plane are the smooth cubics. In [3] Hulek proved
that the only abelian surfaces in the product space P2 × P2 are the obvious ones,
i.e. the products of two plane cubics. Here we consider the analogous question for
abelian threefolds in P2 × P2 × P2.

We prove:

Theorem. Let A be an abelian threefold over C, embedded in P2 × P2 × P2. Then
A is a product E1 × E2 × E3, where E1, E2 and E3 are smooth plane cubics.

We note that the existence of abelian threefolds in 6-dimensional products of
projective spaces was recently studied by Birkenhake [1] in the case of two factors.

2. The Projections

Let ϕ = (ϕ1, ϕ2, ϕ3) : A ↪→ (P2)
3 be an embedding of an abelian threefold A over C

given by line bundles L1, L2, L3. Further, let πi : (P2)
3 −→ P(i)

2 denote the projection
onto the i-th factor and hi := [π∗iOP2(1)] ∈ H2((P2)

3,Z). By the Künneth formula
the class of A in H6((P2)

3,Z) is of the form

[A] = ah1h2h3 +
∑

i,j=1,2,3
i 6=j

aijh
2
ihj (∗)

with integers a, aij ≥ 0.
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Lemma 2.1 The coefficients of [A] in (∗) satisfy the equation

a(a− 27) =
∑
σ∈S3

aσ(1),σ(3)(9− aσ(2),σ(3))

Proof. The total Chern class of the normal bundle NA/(P2)3 is

c(NA/(P2)3) =
3∏
i=1

(1 + 3hi + 3h2i ) · [A],

thus
c3(NA/(P2)3) = (27h1h2h3 + 9

∑
i 6=j

h2ihj) · [A] = 27a+ 9
∑
i 6=j

aij.

On the other hand we have

A2 = a2 +
∑
σ∈S3

aσ(1),σ(3)aσ(2),σ(3)

Now our assertion follows from the self-intersection formula A2 = c3(NA/(P2)3) ([2],
p.103).

In the sequel we will need the following

Lemma 2.2 Let A be an abelian threefold, ψ : A −→ P2 a morphism and E ⊂ A
an elliptic curve such that all the restrictions ψ|t∗aE, a ∈ A, are embeddings. Then
ψ(t∗aE) = ψ(E) for all a ∈ A.

Proof. Denote by P := P(H0(P2,OP2(3))) the projective space of plane cubics and
define a map

Φ : A −→ P

a 7−→ ψ(t∗aE)

We choose ten points e1, . . . , e10 ∈ E. Then

Z := {(a, C) ∈ A× P | C contains ψ(e1 − a), . . . , ψ(e10 − a)}
= {(a, C) ∈ A× P | C = ψ(t∗aE)}

is a subvariety of A× P . The projection p : Z −→ A is bijective, hence an isomor-
phism by Zariski’s Main Theorem. The map Φ is just the composition Φ = q ◦ p−1,
where q : Z −→ P is the second projection. So Φ is a morphism and the image Φ(A)
is a subvariety of P . If Φ(A) is of dimension ≥ 1, then Φ(A) meets the hypersurface

{ singular plane cubics } ⊂ P,

Since this contradicts the assumption that all images of Φ are smooth curves, we
conclude that Φ(A) is a point.

Further, we will frequently apply the following useful Lemma from [1]:
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Lemma 2.3 Let X be an abelian variety of dimension g and ϕ : X −→ PN a
morphism with dimϕ(X) = n < g. Then L := ϕ∗OPN

(1) is semipositive of rank n
and ϕ fits into a commutative diagram

0−−→ Y −−→X −−→ Z −−→ 0

ϕ
@

@@

y f

PN

where the upper row is an exact sequence of abelian varieties and f is a morphism,
which is finite onto its image.

Now we are ready to prove:

Proposition 2.4 At least one of the projections ϕ1, ϕ2, ϕ3 is not surjective.

Proof. Suppose to the contrary that all of them are surjective. Because of the
surjectivity of ϕ1 Lemma 2.3 gives a diagram

0−−→E1 −−→A−−→ S1 −−→ 0

ϕ1
@
@@

y f1

P(1)
2

where the upper row is an exact sequence of abelian varieties, E1 being an elliptic
curve and S1 an abelian surface, and f1 is a finite morphism of degree d1, say.

By Riemann-Roch on S1 and [4], Theorem 3.3.3, we have

3 ≤ h0(L1) =
1

2
d1,

hence d1 ≥ 6. Since ϕ1(E1) is a point, we have

[E1] = αh21h
2
2h3 + βh21h

2
3h2

with α, β ≥ 0.
Claim: We have α 6= 1 and β 6= 1.
Proof: By symmetry it is enough to consider α. Applying the projection formula

we get
α = E1 · h3 = (ϕ3)∗(E1) · OP2(1) = deg(ϕ3|E1) · degϕ3(E1).

If we had α = 1, then the morphism ϕ3|E1 : E1 −→ ϕ3(E1) would be of degree 1
onto a line in P2, which of course is impossible.

Let us distinguish between two cases:
Case I: α = 0 or β = 0.

Suppose α = 0, i.e. ϕ3(E1) is a point. Since both of ϕ1(E1) and ϕ3(E1) are then
points, ϕ2 must embed E1 and all of its translates t∗aE1, a ∈ A, into P2. By Lemma
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2.2 then ϕ2(t
∗
aE1) = ϕ2(E1) for all a ∈ A. Since every point of A lies on a translate

of E1, we conclude that ϕ2 is not surjective and the Proposition is proved in this
case.

Case II: α ≥ 2 and β ≥ 2.
Let F1 be a general fibre of ϕ1. Then we obtain

[F1] = [A] · h21 = a23h
2
1h

2
2h3 + a32h

2
1h

2
3h2.

Furthermore, we have [F1] = d1 · [E1], hence

a23 = d1 · α ≥ 6 · 2 = 12

and also a32 ≥ 12. Arguing in the same way with the projections ϕ2 and ϕ3 we
obtain

aij ≥ 12 for i, j = 1, 2, 3, i 6= j.

Lemma 2.1 then yields

−183 ≤ a(a− 27) =
∑

(i,j,k)∈S3

aij(9− akj) ≤ −216,

a contradiction. We conclude that not all of the projections ϕ1, ϕ2 and ϕ3 can be
surjective.

3. The Product Decomposition

Now we can prove the Theorem stated in the Introduction:

Theorem 3.1 Let A be an abelian threefold over C, embedded in P2×P2×P2. Then
A is a product E1 × E2 × E3, where E1, E2 and E3 are smooth plane cubics.

Proof. By Proposition 2.4 we may assume that ϕ1 is not surjective. By Lefschetz
hyperplane theorem there are no abelian threefolds in P2×P2, since P2×P2 is simply
connected. Thus the image ϕ1(A) ⊂ P(1)

2 must be a curve. Then we have a diagram

0−−→ S1 −−→A−−→E1 −−→ 0

ϕ1
@

@@

y f1

P(1)
2

where E1 is an elliptic curve, S1 an abelian surface and f1 a morphism, which is finite
onto its image. Since the image ϕ1(S1) is a point, S1 is embedded into P(2)

2 ×P(3)
2 by

(ϕ2, ϕ3). According to [3], 2.1, S1 is then a product of elliptic curves E2 = ϕ2(S1)
and E3 = ϕ3(S1). Identifying S1 with its image under (ϕ2, ϕ3) we may consider E2,
E3 as elliptic curves on A.
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Furthermore, we have t∗aS1 = t∗aE2 × t∗aE3 for all a ∈ A. Since ϕ1(t
∗
aS1) is

again a point (ϕ2, ϕ3) embeds t∗aS1. In particular ϕ2 embeds each translate t∗aE2.
According to Lemma 2.2 we must have ϕ2(t

∗
aE2) = E2. Hence ϕ2 is not surjective,

i.e. ϕ2(A) = E2. Thus we obtain a diagram

0−−→ S2 −−→A−−→E ′2 −−→ 0

ϕ2
@

@@

y f2

P(2)
2

with an abelian surface S2, an elliptic curve E ′2 and a finite morphism f2. Since

ϕ2(S2) is a point, S2 is embedded into P(1)
2 ×P

(3)
2 by (ϕ1, ϕ3) and again S2 = ϕ1(S2)×

ϕ3(S2) according to [3]. In fact S2 = E1 ×E3. The morphism f2 is an isomorphism
because ϕ2 embeds E2, hence E ′2

∼= E2. Since E2 is contained in A the exact sequence

0 −→ S2 −→ A −→ E2 −→ 0

splits. Then it follows
A ∼= S2 × E2

∼= E1 × E2 × E3

and the Theorem is proved.

We conclude with the following

Question. Is every abelian variety of dimension n in (P2)
n a product of smooth

plane cubics?
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