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0. Introduction

The aim of this note is to construct a two-dimensional family of smooth quartic
surfaces in P3 containing 16 mutually disjoint conics and altogether exactly 432
conics.

For an integer d ≥ 1 denote by N4(d) the maximal number of smooth rational
curves of degree d that can lie on a smooth quartic surface in P3. Schur [9] gave an
example of a smooth quartic surface with 64 lines and Segre [10] showed that there
are no smooth quartics containing more than 64 lines, so

N4(1) = 64 .

Up to now the numbers N4(d), d ≥ 2, seem to be unknown. The result of [1] gives
the lower bound

N4(2) ≥ 352 .

This was shown by embedding the smooth Kummer surface X of a generic polarized
abelian surface (A,L) of type (1, 9) into P3 via a certain line bundle ML on X
associated to L. These quartic surfaces contain 16 disjoint conics, which according
to Nikulin’s theorem [7] is the maximal number of disjoint smooth rational curves
that can lie on a smooth quartic surface.

In order to obtain an upper bound for N4(2) S.A. Strømme suggested to deter-
mine the number of conics in a generic pencil of quartic surfaces in P3. A Chern
class computation by the methods of [5] shows that this number is 5016. Thus

N4(2) ≤ 5016 .

Although the number of conics in a pencil of quartics seems to be too rough an
estimate for the number of conics on an individual quartic, this is the best upper
bound available at present.

In the present paper we first classify the smooth quartic surfaces in P3 containing
16 skew conics in terms of their abelian covers, i.e. we determine the precise condi-
tions on a polarized abelian surface (A,L) of type (1, 9) under which the associated
line bundleML on the smooth Kummer surface is very ample (see Sect. 2). Then, in
Sect. 3, we consider principally polarized abelian surfaces with endomorphism ring



2

Z[
√

7]. These surfaces carry a natural (1, 9)-polarization. Using the classification
given in Sect. 2 we show that their Kummer surfaces in fact embed into P3. The
quartic surfaces constructed in this way contain exactly 432 conics. So we obtain
the improved lower bound

N4(2) ≥ 432 .

The construction does not yield the equations of the quartic surfaces in our two-
dimensional family. It would be interesting to find these equations.

Convention. Throughout this note the base field is C.

1. Quartic surfaces with 16 skew conics and abelian surfaces
of type (1, 9)

In this section we describe the relation between smooth quartic surfaces in P3

containing 16 mutually disjoint conics and polarized abelian surfaces of type (1, 9).

Let A be an abelian surface. We denote by σ : Ã −→ A the blow-up of A in the
sixteen halfperiods e1, . . . , e16 and by E1, . . . , E16 ⊂ Ã the exceptional curves. Let
π : Ã −→ X be the projection onto the smooth Kummer surface X of A, i.e. onto
the quotient of Ã by the involution induced by a −→ −a, a ∈ A. The exceptional
curves E1, . . . , E16 map to (−2)-curves D1, . . . , D16 on X. We have a commutative
diagram

Ei ⊂ Ã
σ−→ A 3 ei

↓ π ↓ ↓
Di ⊂ X −→ K

where K is the (singular) Kummer surface of A.
Now let L be an ample symmetric line bundle on A. We will be particularly

interested in the linear system |2L ⊗
∏16

i=1 I2ei |
+ of even divisors of the totally sym-

metric line bundle 2L having multiplicity at least 2 in the sixteen halfperiods. This
noncomplete linear system on A corresponds to a complete linear system on X.
More precisely, there is a line bundle ML on X such that

π∗ML = 2σ∗L − 2
16∑
i=1

EiH
0(ML) ∼= H0(2L ⊗

16∏
i=1

I2ei)
+ .

The basic observation underlying the approach of [1] is the following

Proposition 1.1 For a smooth surface X the following conditions are equiva-
lent:

i) X can be embedded into P3 as a quartic surface with 16 skew conics.
ii) X is the smooth Kummer surface of a polarized abelian surface (A,L) of type

(1, 9) and the line bundle ML on X is very ample.
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Proof. As for ii)=⇒i): By Kodaira vanishing ML has no higher cohomology, so
we get h0(ML) = χ(ML) = 4 by Riemann-Roch. Thus ML defines an embedding
X ↪→ P3. Because of MLDj = (2σ∗L − 2

∑16
i=1Ei)Ej = 2 for 1 ≤ j ≤ 16 the

(−2)-curves D1, . . . , D16 map to skew conics.
As for i)=⇒ii): According to Nikulin’s theorem [7] the quartic X is the smooth

Kummer surface of an abelian surface A, the 16 skew conics being the (−2)-
curves D1, . . . , D16 corresponding to the halfperiods on A. We have (π∗OX(1) +
2
∑16

i=1Ei)Ej = 0 for j = 1, . . . , 16, so the line bundle π∗OX(1) + 2
∑
Ei descends

to a line bundle on A, which is totally symmetric, hence of the form 2L for some
symmetric line bundle L. Since L is effective and

L2 = (1
2
π∗OX(1) +

∑
Ei)

2 = 18

the bundle L is ample of type (1, 9) or (3, 3). Assume the latter case. Then L =

OA(3Θ) where Θ is an effective symmetric divisor of type (1, 1). Let Θ̂ be its proper

transform on Ã. Since Θ contains at least six halfperiods, we find

OX(1) · π(Θ̂) = LΘ−
16∑
i=1

multei(Θ) ≤ 0 ,

a contradiction. So L is in fact of type (1, 9).
Finally, we have π∗OX(1) = π∗ML, so ML is numerically equivalent – hence

isomorphic – to OX(1).

2. The classification

It was shown in [1] that for a generic polarized abelian surface (A,L) of type
(1, 9) the line bundle ML is in fact very ample. In this section we will determine
the precise conditions on L under which this happens. We prove:

Theorem 2.1 Let A be an abelian surface and let L be an ample symmetric line
bundle of type (1, 9) on A. Then we have:

a) ML fails to be ample if and only if the polarization L splits in one of the
following four ways:

I) L = OA(E1 + 9E2), where E1 and E2 are elliptic curves with E1E2 = 1.
II) L = OA(P + 4E), where P is a divisor defining a principal polarization

and E is an elliptic curve with PE = 2.
III) L = OA(E1 + 3E2), where E1 and E2 are elliptic curves with E1E2 = 3.
IV) L = OA(P + 2E), where P is a divisor defining a principal polarization

and E is an elliptic curve with PE = 4.
b) Assume that ML is ample. Then it fails to be very ample if and only if L is

of the form L = OA(P1 +P2), where P1 and P2 are ample divisors of type (1, 2) with
P1P2 = 5.
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First we recall from [1, Sect. 1] how the intersection numbers of curves on the
smooth Kummer surface X relate to those of their symmetric preimages on the
abelian surface A. Here and in the sequel we abbreviate M =ML.

Lemma 2.2 Let C ⊂ X be an irreducible curve, different from D1, . . . , D16, and let
F = σπ∗C be the corresponding symmetric curve on A. Further, let mi = multei(F )
for 1 ≤ i ≤ 16. Then we have:

a) F 2 = 2C2 +
∑16

i=1m
2
i

b) LF =MC +
∑16

i=1mi

Now we show:

Proposition 2.3 M is ample except in the cases I)-IV) of the theorem.

Proof. Assume thatM is not ample. Then there is an irreducible curve C ⊂ X with
MC ≤ 0. If C is such a curve, then C2 = −2 and C is different from D1, . . . , D16.
We consider its symmetric preimage F := σπ∗C on A. It satisfies

LF ≤
16∑
i=1

miF
2 = −4 +

16∑
i=1

m2
i

where the mi are the multiplicities of F in the halfperiods ei of A.
We claim that mi ≤ 2 for 1 ≤ i ≤ 16. In order to prove this, first suppose

MC = 0. Applying the Hodge inequality to M and C +Di we find

4(−4 + 2CDi) =M2(C +Di)
2 ≤ (M(C +Di))

2 = 4 ,

hence mi = CDi ≤ 2. Now suppose MC < 0. So C is a fixed component of |M|.
If Di is fixed in |M| as well, then we must have h0(C + Di) = 1. We may assume
CDi > 0, i.e. that C +Di is connected. Then h1(C +Di) = h0(OC+Di

)− 1 = 0 and
Riemann-Roch gives

h0(C +Di) = 2 +
1

2
(C +Di)

2 ,

implying mi = CDi = 1. On the other hand, if Di is not fixed in |M|, then it is not
fixed in |M − C| either, hence (M− C)Di ≥ 0, which implies mi = CDi ≤ 2. So
the claim is proved.

For k = 1, 2 we denote by nk the number of subscripts i, 1 ≤ i ≤ 16, such that
mi = k. Then we have

FL ≤ n1 + 2n2F
2 = −4 + n1 + 4n2 .

Next we apply the Hodge inequality to L and F to obtain

18(−4 + n1 + 4n2) = L2F 2 ≤ (LF )2 ≤ (n1 + 2n2)
2 (1)
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Since n1 is the number of odd halfperiods of the symmetric line bundle OA(F ), by
[6, Proposition 4.7.5] it can only take the values 0,4,6,8,10,12,16. Using n1+n2 ≤ 16
and (1) we find the following list of possible values for n1, n2:

n1 n2 F 2 LF
0 0 −4 0
0 1 0 ≤ 2
4 0 0 ≤ 4
6 0 2 6

12 0 8 12
16 0 12 ≤ 16

Obviously (n1, n2) = (0, 0) is impossible. If (n1, n2) = (0, 1), then F 2 = 0 implies
that F is a sum of two algebraically equivalent elliptic curves. But a symmetric
elliptic curve contains either four halfperiods or none at all. In the cases (n1, n2) =
(6, 0) and (n1, n2) = (12, 0) the Hodge index theorem implies that L and F are
proportional: L ≡alg 3F resp. 2L ≡alg 3F . But this is impossible, because the
line bundle L is primitive. In case (n1, n2) = (16, 0) the bundle OA(F ) is totally
symmetric. But this is impossible, because then F 2 would have to be divisible by 8.

After all we see that we must have (n1, n2) = (4, 0), F being an elliptic curve
and LF ≤ 4.

If LF = 1, then L is a product polarization, so we are in Case I).
In case LF = 2 we consider the line bundle L − 4F . Because of

(L − 4F )2 = 2, (L − 4F )L = 10

it is ample of type (1, 1). Denoting by P the divisor in |L − 4F | we obtain

L = OA(P + 4F )PF = 2

so that we are in Case II).
If LF = 3, then we have

(L − 3F )2 = 0, (L − 3F )L = 9 .

According to Lemma 2.4 below the bundle L−3F is effective. Let E be a divisor in
|L − 3F |. Then we have L = OA(E + 3F ) and EF = 3. The divisor E is either an
elliptic curve or a sum of three algebraically equivalent elliptic curves. The latter
however cannot happen, since then L would be of type (3, 3). We conclude that we
are in Case III).

Finally, if LF = 4, we find

(L − 2F )2 = 2, (L − 2F )L = 10

implying that we are in Case IV).
Conversely, if the polarization L is of one of the types I)-IV), then there is an

elliptic curve on A whose image C in X satisfies MC ≤ 0, hence M is not ample.
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Lemma 2.4 Let L be a line bundle on an abelian surface A such that L2 = 0 and
LL0 > 0 for some ample line bundle L0. Then L is effective.

Proof. Let K(L) be the kernel of the homomorphism A −→ Â, a 7−→ t∗aL − L
and let E be the connected component of K(L) containing the origin of A. The
assumptions on L imply that the hermitian form of L is of rank 1, hence E is an
elliptic curve. We have K(L|E) = E, thus L|E ∈ Pic0(E) by [6, Lemma 2.4.7].
Replacing L by a suitable translate we may therefore assume that L|E is trivial.
According to [6, Lemma 3.3.2] then L descends to a line bundle L on the elliptic
curve X/E and H0(L) ∼= H0(L). Because of LL0 > 0 the line bundle L must be of
positive degree, hence h0(L) = h0(L) > 0.

Next we show:

Proposition 2.5 If M is ample, then it is globally generated.

Proof. Assume that the linear system |M| has base points. Since M is ample, it
follows from [8, Proposition 8.1] that M is of the form

M = OX(kE + Γ)

where E,Γ ⊂ X are irreducible curves such that E2 = 0, Γ2 = −2, EΓ = 1 and

|M| = |kE|+ Γ = |E|+ . . .+ |E|+ Γ .

We have 4 =M2 = 2k − 2, hence k = 3. Since the linear system |2L − 2
∑
ei|+ on

A is invariant under translation by halfperiods, the base part Γ ofM cannot be one
of the curves D1, . . . , D16. Therefore we have ΓDi ≥ 0, thus

2 =MDi = 3EDi + ΓDi

implies EDi = 0 . We consider the symmetric preimage G ⊂ A of the elliptic curve
E ⊂ X. Because of EDi = 0 it must be a sum of two algebraically equivalent elliptic
curves. But this is a contradiction with

LG =ME +
∑

mi = ΓE +
∑

EDi = 1 .

Now we complete the proof of Theorem 2.1 by

Proposition 2.6 Suppose that M is ample. Then M is very ample if and only if
L is not of the form

L = OA(P1 + P2)

where P1, P2 are ample divisors of type (1, 2) with P1P2 = 5.
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Proof. According to [8, Theorem 5.2 and Theorem 6.1.iii] M is very ample if and
only if

i) there is no elliptic curve C ⊂ X with MC = 2, and
ii) there is no irreducible curve H ⊂ X with H2 = 2 and M = OX(2H).
Because of M2 = 4 condition ii) is certainly fulfilled. Now assume that there is

a curve C ⊂ X as in i). Then we have

LF = 2 +
∑

miF
2 =

∑
m2

i

for its symmetric preimage F ⊂ A. The Hodge inequality forM and 2C +Di gives

4(2C +Di)
2 =M2(2C +Di)

2 ≤ (M(2C +Di))
2 = 36 ,

thus mi = CDi ≤ 2. So we can write

LF = 2 + n1 + 2n2F
2 = n1 + 4n2

with n1, n2 defined as before. Using n1 + n2 ≤ 16 and

18(n1 + 4n2) = L2F 2 ≤ (LF )2 = (2 + n1 + 2n2)
2

we find that there are only the following 3 possibilities:
1) n1 = n2 = 0, F 2 = 0, LF = 2
2) n1 = 0, n2 = 16, F 2 = 64, LF = 34
3) n1 = 16, n2 = 0, F 2 = 16, LF = 18
In Case 1) the curve F consists of two elliptic curves F1, F2 with LF1 = LF2 =

1. But then L would be a product polarization and M would not be ample by
Proposition 2.3.

In Case 2) the line bundle OA(F ) is totally symmetric, hence it is the square of
an ample line bundle OA(F0) of selfintersection 16. For the bundle L − F0 we have

(L − F0)
2 = 0, (L − F0)L = 1

so by Lemma 2.4 the system |L − F0| contains an elliptic curve. But then L would
again be a product polarization.

Finally we consider Case 3). Here OA(F ) is the square of an ample line bundle
OA(P1) of type (1, 2). Because of

(L − P1)
2 = 4, (L − P1)L = 9

there is an ample divisor P2 ∈ |L−P1| of type (1, 2). So we arrive at L = OA(P1+P2)
with P1P2 = 5.

Conversely, if L = OA(P1 + P2) with P1, P2 of type (1, 2) and P1P2 = 5, then
by [2, Lemma 3.6.b] the linear system |2P1−

∑
ei|− is free, so by Bertini’s theorem

there is a smooth curve in this system. Its image C in X is an elliptic curve with
MC = 2, hence M is not very ample.
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3. Quartic surfaces with 432 conics

According to [1] the smooth Kummer surface of a generic abelian surface of type
(1, 9) embeds into P3 as a quartic surface with 352 conics. In this section we will
show that by specializing to abelian surfaces with real multiplication one can obtain
quartic surfaces with still more conics on them.

Let (A,L0) be a principally polarized abelian surface such that the endomor-
phism ring of A is isomorphic to Z[

√
7]. According to [3, Proposition 2.1] there is

a 2-dimensional family of such surfaces. The endomorphism associated to 4 +
√

7
has minimal polynomial t2 − 8t + 9, hence by [6, Proposition 2.3] it determines a
polarization L with LL0 = 8 and L2 = 18. This implies that L is of type (1, 9). The
Néron-Severi group NS(A) is generated by L0 and L. We may assume that the line
bundles L0 and L are symmetric.

As before we denote by X the smooth Kummer surface of A and by M =ML
the line bundle on X associated to the linear system |2L ⊗

∏16
i=1 I2ei|

+ on A.
We begin by showing:

Proposition 3.1 M is very ample.

Proof. Assume the contrary. According to Theorem 2.1 then A is not simple or A
admits a polarization P of type (1, 2) such that LP = 9.

First suppose that A contains an elliptic curve E. We have E ≡alg nL + mL0

for some m,n ∈ Z, hence

0 = E2/2 = 9n2 + 8mn+m2 . (2)

We may assume that not both m and n are even. Then (2) shows that they both
must be odd, which implies m2, n2 ≡ 1 mod 8. But then m2 + n2 ≡ 2 6= 0 mod 8, a
contradiction with (2).

Now assume that there is a polarization P of type (1, 2) on A with LP = 9.
Writing P ≡alg nL+mL0 with m,n ∈ Z we have

9 = LP = 18n+ 8m ≡ 0 mod 2 ,

a contradiction.

According to the previous proposition we may consider X as a smooth quartic
surface in P3, the bundle M being the hyperplane bundle OX(1). We show:

Proposition 3.2 The quartic surface X contains exactly 432 smooth conics.

Proof. 1) As in the generic case (see [1]) we have 352 conics on X arising as

• the 16 images D1, . . . , D16 of the exceptional curves E1, . . . , E16 of Ã,
• the 16 conics C1, . . . , C16, which are complementary to D1, . . . , D16, i.e. Di +

Ci ∈ |M|. These are the images of symmetric divisors in translates of |2L|, vanishing
in ei to the fourth order and in the remaining 15 halfperiods to the second order.
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• 20 · 16 conics Ci
klm, which are the images of the divisors in |t∗eiL|

− passing
through three odd halfperiods ek, el, em of t∗eiL, 1 ≤ i ≤ 16, 1 ≤ k < l < m ≤ 6.

2) The principal polarization L0 provides us with 32 conics, namely
• the images of the 16 symmetric translates of the unique divisor in |L0|, and
• the 16 conics, which are complementary to them. They are the images of

symmetric divisors in translates of |2L − L0| vanishing in 6 halfperiods to the first
order and in 10 halfperiods to the second order.

3) Next we show that there are 48 conics on X coming from certain translates
of the line bundle P := L − L0. First note that because of

P 2 = (L − L0)
2 = 4

PL0 = (L − L0)L0 > 0

the bundle P is ample of type (1, 2). Let, as usual, K(P ) denote the kernel of the
isogeny

A −→ Â

a 7−→ t∗aP − P ,

where Â = Pic0(A) is the dual abelian surface. Then the 16 symmetric translates
of P are the line bundles t∗aP , where a runs through a system of representatives for
the factor group

1

2
K(P )/K(P )

The number of odd/even halfperiods of a translate t∗aP is either 8/8 or 4/12. Us-
ing [4, Theorem 5.4] one finds that the translates of the 4/12-type are in bijective
correspondence with the representatives a of 1

2
K(P )/K(P ) satisfying

2a ∈ 2K(P ) . (3)

Since P is of type (1, 2), we haveK(P ) ∼= Z2×Z2, hence 2K(P ) = 0. So condition (3)
simply means that a is a halfperiod. ModuloK(P ) there are exactly four halfperiods,
so four of the sixteen translates of P are of type 4/12, whereas twelve are of type 8/8.
If t∗aP is of the latter type, then h0(t∗aP )± = 1. The divisors F± ∈ |t∗aP |± contain 8
halfperiods to an odd order. They map to smooth conics C± in X, because

10 = LF± =MC± +
∑

mi

and the ampleness of M imply
∑
mi = 8 and MC± = 2. So we obtain

• 2 · 12 conics from the 12 translates in question, and
• 2 · 12 conics complementary to these, which correspond to symmetric divisors

in 12 translates of |L + L0| vanishing in 8 halfperiods to the first order and in the
other 8 halfperiods to the second order.
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4) It remains to show that the 352+32+48=432 conics considered so far are
the only ones on X. So let C ⊂ X be any smooth conic. If C is different from
D1, . . . , D16 and from C1, . . . , C16, then 0 ≤ CDi ≤ 2 for i = 1, . . . , 16. So its
symmetric preimage F on A satisfies

LF = 2 + n1 + 2n2F
2 = −4 + n1 + 4n2 ,

where n1 and n2 are the number of halfperiods, which F contains to the first resp.
second order. On the other hand, writing F ≡alg nL+mL0 with m,n ∈ Z we find

LF = 18n+ 8mF 2 = 18n2 + 16mn+ 2m2 (4)

The Hodge inequality for L and F and the inequality n1+n2 ≤ 16 allow only finitely
many values for LF and F 2. One finds that the integral solutions of (4) are given
by

n1 n2 n m
10 3 1 0
8 8 1 1
8 0 1 −1
6 10 2 −1
6 0 0 1

But then it is clear that C is one of the conics coming from L, L + L0, L − L0,
2L − L0 and L0 respectively.

Note that there are no lines on the surface X. In fact, if we assume that X
contains a line C, then F := σπ∗C satisfies LF = 1+n1 +2n2 with n1, n2 defined as
before, thus LF is odd. On the other hand, writing F ≡alg nL+mL0 with m,n ∈ Z
we find that LF = 18n+ 8m is even, a contradiction.

Altogether we have shown in this section:

Theorem 3.3 Let A be a principally polarized abelian surface with endomorphism
ring isomorphic to Z[

√
7]. Then the smooth Kummer surface of A embeds into P3 as

a smooth quartic. There are no lines and exactly 432 smooth conics on this quartic
surface.

Acknowledgements. This research was supported by DFG contracts Ba 423/3-4
and Ba 423/7-1. I am indebted to Prof. W. Barth for his support and encouragement
and to Ch. Birkenhake and H. Lange for useful hints. Furthermore, I would like to
thank the referee whose suggestions improved the presentation.

References

[1] Barth, W., Bauer, Th.: Smooth quartic surfaces with 352 conics. Manuscripta math.
85, 409-417 (1994)



11

[2] Bauer, Th.: Projective images of Kummer surfaces. Math. Ann. 299 (1994), 155-170
[3] Birkenhake, Ch.: Tensor products of ample line bundles on abelian varieties.

Manuscripta math. 84 (1994), 21-28
[4] Birkenhake, Ch., Lange, H.: Symmetric theta-structures. Manuscripta math. 70

(1990), 67-91
[5] Katz, S.: On the finiteness of rational curves on quintic threefolds. Comp. Math. 60,

151-162 (1986)
[6] Lange, H., Birkenhake, Ch.: Complex abelian varieties. Springer Grundlehren 302

(1992)
[7] Nikulin, V.V.: On Kummer surfaces. Transl. to English, Math. USSR.-Izv. 9 (1975),

261-275
[8] Saint-Donat, B.: Projective models of K3–surfaces. Amer. J. of Math. 96 (1974),

602-639
[9] Schur, F.: Ueber eine besondre Classe von Flächen vierter Ordnung. Math. Ann. 20,
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