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0. Introduction

The aim of this note is to study higher order embeddings of abelian surfaces defined
by primitive line bundles.

In recent years several concepts of higher order embeddings have been studied,
in particular k-spannedness, k-very ampleness and k-jet ampleness (see [7] for refer-
ences on this topic). Recall that a line bundle L on a smooth projective variety X
is called k-jet ample, if for any choice of distinct points x1, . . . , xr in X and positive
integers k1, . . . , kr with

∑
ki = k + 1 the evaluation map

H0(X,L) −→ H0
(
X,L⊗OX/(m

k1
x1
⊗ . . .⊗mkr

xr
)
)

is surjective. Further, L is called k-very ample (resp. k-spanned), if for any zero-
dimensional subscheme (Z,OZ) of X of length k+ 1 (resp. for any curvilinear zero-
dimensional subscheme (Z,OZ) of X of length k + 1) the natural map

H0(X,L) −→ H0(X,L⊗OZ)

is surjective. Here a subscheme is called curvilinear, if it is locally contained in a
smooth curve.

There are interesting geometrical interpretations of k-very ampleness and k-
spannedness in terms of secant varieties and embeddings of Hilbert schemes. On
the other hand, k-jet ampleness has recently gained interest because of its close
connection to Seshadri constants of ample line bundles.

In [4] higher order embeddings of abelian varieties defined by tensor products of
ample line bundles were studied. In particular, a bound for the k-jet ampleness of
tensor powers of ample line bundles was given:
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Theorem ([4]). Let X be an abelian variety, L an ample line bundle on X and
k ≥ 0. Then mL is k-jet ample for m ≥ k + 2.

On the other extreme, one is lead to consider primitive line bundles, i.e. line
bundles which are not algebraically equivalent to some nontrivial power of an ample
line bundle. The problem then is to give criteria for such a line bundle L to define a
higher order embedding in terms of suitable numerical invariants of L. In the case of
abelian varieties certainly the type of L is the obvious data. Unfortunately even for
very ampleness (i.e. embeddings of order k = 1) it seems to be a difficult problem
to find sharp numerical criteria on abelian varieties of arbitrary dimension (see [11]
for the best bounds available at present). In this note we focus on the surface case,
where a complete classification can be given.

We show:

Theorem. Let X be an abelian surface with Picard number 1 and let L be an ample
line bundle of type (1, d), d ≥ 1. Fix a non-negative integer k. Then

(a) L is k-jet ample if and only if d > 1
2
(k + 2)2,

(b) L is k-very ample if and only if d ≥ 2k + 3,
(c) L is k-spanned if and only if it is k-very ample.

For k = 0 and k = 1 these are the well-known bounds for global generation and
very ampleness of primitive line bundles on abelian surfaces. It is known that in
these cases the assumption on the Picard number can be weakened by the assumption
that X is simple (see Sect. 1). However – as will be shown in Sect. 4 – this is not
possible in general. In fact the numerical criteria of the theorem may fail as soon as
the Picard number is at least 2.

Notation and Conventions. We work throughout over the field C of complex
numbers.

For a Q-divisor D we denote by dDe its round-up and by bDc its round-down or
integer part.

We would like to thank the referee for his comments on the first version of this
paper.

1. Global generation and very ampleness

To put our investigation of higher order embeddings into perspective we briefly
review the situation for global generation and very ampleness of line bundles of type
(1, d), d ≥ 1, on an abelian surface X.

For d = 1 the polarized abelian surface (X,L) is either the Jacobian of a smooth
curve of genus 2 or the polarized product of elliptic curves – at any rate H0(X,L)
consists of just one divisor.

If d ≥ 2, then as a consequence of the Decomposition Theorem (see [18,
Theorem 4.3.1]) the linear system |L| has fixed components if and only if X
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is a product of elliptic curves E1, E2 and L is the product polarization L =
OX (E1 × {0}+ d({0} × E2)).

From now on assume that L is not of this form.
For d = 2 the system |L| is a pencil with exactly four base points. Look at [2]

for more on abelian surfaces of type (1, 2).
For d ≥ 3 the linear system |L| has no base points, since the base locus of |L| is

invariant under the action of the kernel K(L) of the canonical homomorphism

X −→ Pic0(X), x 7−→ t∗xL− L ,

where tx : X −→ X, y 7−→ x+ y, denotes the translation by x.
In the case d = 3 the mapping X −→ P2 defined by L is a 6 : 1-covering branched

over a curve of degree 18. See [9] for a detailed investigation of a family of abelian
surfaces of type (1, 3).

For d = 4 the bundle L cannot be very ample, since there are no abelian surfaces
in P3 by the Lefschetz hyperplane theorem. Nevertheless for generic (X,L) of type
(1, 4) the map X −→ P3 is birational onto a singular octic in P3 (see [10]).

Finally, it follows from Reider’s theorem that for d ≥ 5 the line bundle L is very
ample if and only if there is no elliptic curve E ⊂ X with LC = 2 (see [18, Theorem
10.4.1]). Actually one can get much more precise information on the elliptic curves
obstructing the very ampleness of L (see [17]).

In sum, one has uniform bounds for global generation and very ampleness on
abelian surfaces without elliptic curves:

Theorem 1.1 Let X be a simple abelian surface and let L be an ample line bundle
of type (1, d), d ≥ 1. Then

(a) L is globally generated if and only if d ≥ 3,
(b) L is very ample if and only if d ≥ 5.

2. Generation of jets

The aim of this section is to give a sharp criterion for k-jet ampleness of primitive
line bundles. We begin by showing:

Proposition 2.1 Let X be an abelian surface with Picard number 1, let L be an
ample line bundle of type (1, d), d ≥ 1 and let k be a non-negative integer. If
d > 1

2
(k + 2)2, then L is k-jet ample.

A proof of Proposition 2.1 could be given using results of Demailly obtained by
analytic methods (cf. [13, 8.12]). However, we prefer to give an algebraic proof using
Q-divisors based on the

Kawamata-Viehweg Vanishing Theorem 2.2 Let Y be a smooth projective
surface and let M be a nef and big Q-divisor on Y . Then

H i (Y,OY (KY + dMe)) = 0 for i > 0 .
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Note that there is no normal crossing hypothesis in the surface case of Kawamata-
Viehweg vanishing thanks to Sakai’s lemma (see [15, Lemma 1.1]).

Proof of Proposition 2.1. Let points x1, . . . , xr in X and positive integers k1, . . . , kr
with

∑
ki = k + 1 be given. We will show that

H1

(
X,L⊗

r⊗
i=1

mki
xi

)
= 0 . (∗)

To prove (∗) we are going to use Q-divisors much as in the proof of the variant of
Reider’s theorem given in [15, Sect. 1]. The first step thus consists in producing an
effective divisor with high multiplicities at the points xi via an elementary dimension
count: For n ≥ 1 one has by Riemann-Roch

h0(X,nL) =
1

2
n2L2 = n2d >

1

2
(k + 2)2n2 .

On the other hand, it imposes at most

r∑
i=1

(
n(ki + 1) + 1

2

)
=

1

2
n2
∑

(ki + 1)2 +O(n) ≤ 1

2
(k + 2)2n2 +O(n)

conditions on a divisor to have multiplicities bigger than n(ki + 1) at the points xi
for 1 ≤ i ≤ r. This shows that for n� 0 there is a divisor D ∈ |nL| with

mi =def multxi
D > n(ki + 1) for 1 ≤ i ≤ r .

Now let f : X̃ −→ X be the blow-up of X in the points x1, . . . , xr with excep-
tional divisors E1, . . . , Er. Consider the Q-divisor

M =def f
∗L− λf ∗D, where λ =def max

{
ki + 1

mi

∣∣∣ 1 ≤ i ≤ r

}
.

We have M ≡ (1− λn)f ∗L, so M is nef and big by choice of λ. Next we determine
the round-up of M . Writing D =

∑s
j=1 djDj with dj > 0 and irreducible curves Dj

we get

dMe = f ∗L−
s∑

j=1

bλdjcD′j −
r∑

i=1

bλmicEi

where D′j is the proper transform of Dj. Since NS(X) ∼= Z and L is primitive, any
component Dj of D is algebraically equivalent to some positive multiple of L, hence
we must have dj ≤ n. This gives the estimate λdj ≤ λn < 1, hence bλdjc = 0.
Further, we have

λmi = max
`

k` + 1

m`

·mi ≥ ki + 1 ,
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hence bλmic ≥ ki + 1. Thus we found

KX̃ + dMe = f ∗L−
r∑

i=1

(bλmic − 1)Ei = f ∗L−
r∑

i=1

biEi ,

where bi ≥ ki. The Kawamata-Viehweg vanishing theorem then implies

H1

(
X̃, f ∗L−

r∑
i=1

biEi

)
= 0 . (∗∗)

Finally, taking cohomology of the exact sequence

0 −→ OX̃

(
f ∗L− Ej −

r∑
i=1

kiEi

)
−→ OX̃

(
f ∗L−

r∑
i=1

kiEi

)
−→ OEj

(
f ∗L−

r∑
i=1

kiEi

)
−→ 0

and using induction we see that we may replace the coefficients bi in the vanishing
(∗∗) by the possibly smaller numbers ki and the Leray spectral sequence gives the
desired vanishing (∗) on X.

Next we show that the condition d > 1
2
(k+ 2)2 is also necessary for k-jet ample-

ness. This holds without the assumption on the Picard number:

Proposition 2.3 Let L be an ample line bundle of type (1, d), d ≥ 1, on an abelian
surface X. If L is k-jet ample, then d > 1

2
(k + 2)2.

Proof. Let L be k-jet ample and suppose to the contrary that d ≤ 1
2
(k + 2)2. Let

e ∈ X be a halfperiod. Taking cohomology from the exact sequence

0 −→ L⊗mk+1
e −→ L −→ L⊗OX/m

k+1
e −→ 0

and using the surjectivity of H0(X,L) −→ H0
(
X,L⊗OX/m

k+1
e

)
, we find that it

imposes exactly
(
k+2
2

)
conditions on a divisor in |L| to have multiplicity k + 1 in e,

i.e.

h0
(
X,L⊗mk+1

e

)
= d−

(
k + 2

2

)
. (∗)

Passing to a translate of L we may assume that L is symmetric, i.e. ι∗L ∼= L,
where ι : X −→ X is the (−1)-involution. We will derive a contradiction with (∗)
considering the number of conditions imposed on even sections of L. For this recall
that the space of global sections of L admits a decomposition

H0(X,L) = H0(X,L)+ ⊕H0(X,L)−

into even and odd sections. After possibly replacing L by another symmetric trans-
late the respective dimensions are given by

h0(X,L)± =


d± 1

2
, if d is odd

d± 2

2
, if d is even
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(see [18, Corollary 4.6.6]).
We first consider the case that k is even. Note that the multiplicity of an even

section in an odd halfperiod is always odd. So if we choose the halfperiod e to be
odd, then the number of conditions on an even section imposed by vanishing in e to
the order k + 1 is at most

2 + 4 + . . .+ k = 2 ·
(

k
2

+ 1

2

)
.

Thus we have the estimate

h0
(
X,L⊗mk+1

e

)+ ≥ h0(X,L)+ − 2 ·
(

k
2

+ 1

2

)
=

⌈
d+ 1

2

⌉
− 1

4
(k2 + 2k) .

Using (∗) we find the inequality

0 ≤ h0
(
X,L⊗mk+1

e

)
− h0

(
X,L⊗mk+1

e

)+ ≤ d−
⌈
d+ 1

2

⌉
− (k + 2)2

4
,

which gives a contradiction with the assumption d ≤ 1
2
(k + 2)2. This completes the

proof in case k is even. For k odd a similar argument works considering an even
halfperiod.

3. k-very ample and k-spanned line bundles

In this section we prove an analogue of Theorem 1.1 for k-very ampleness. We begin
by recalling the numerical criterion for k-very ampleness given by Beltrametti and
Sommese.

Theorem 3.1 ([5]) Let L be a nef line bundle on a smooth projective surface Y
with L2 ≥ 4k + 5, k ≥ 0. Then the following conditions are equivalent:

(i) The adjoint bundle KY + L is not k-very ample.
(ii) There is an effective divisor D on Y such that L − 2D is Q-effective, D

contains some 0-dimensional subscheme where the k-very ampleness fails, and

LD − (k + 1) ≤ D2 <
LD

2
< k + 1 .

As an easy consequence we get the following criterion for k-very ampleness:

Proposition 3.2 Let X be an abelian surface with Picard number 1, let L be an
ample line bundle of type (1, d), d ≥ 1 and let k be a non-negative integer. If
d ≥ 2k + 3, then L is k-very ample.
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For the proof of the proposition note first that L2 = 2d ≥ 4k+ 6 by assumption.
Further, if D is any effective divisor on X, then we have D ≡alg pL for some p ≥ 1,
so

LD = pL2 ≥ 4k + 6

which shows that a divisor as in condition (ii) of Theorem 3.1 cannot exist.

The harder part is to show that the bound 2k + 3 is sharp. Actually this is
already the sharp bound for k-spannedness:

Proposition 3.3 Let L be an ample line bundle of type (1, d), d ≥ 1, on an abelian
surface X. If L is k-spanned, then d ≥ 2k + 3.

Proof. The analogous statement for k-very ampleness follows from [1]. However, the
argument extends to the case of k-spannedness. We briefly sketch it to make this
clear.

Theorem 1.1 implies that the proposition holds for k = 0 and k = 1. So in
particular L may be assumed to be very ample. Suppose then that L is k-spanned
and d ≤ 2k + 2. Let

ϕ : A −→ P(H0(L)) = Pd−1

be the embedding given by L and let C ∈ |L| be a smooth curve. The exact sequence

0 −→ OX −→ L −→ L⊗OC −→ 0

and Riemann-Roch imply that C is not projectively normal in Pd−1. Let D ∈
P (H0(L⊗OC)) be the image of C under the embedding defined by the complete
linear system |L ⊗ OC |. The restriction map α : H0(L) −→ H0 (L⊗OC) induces
the projection

α∗ : P
(
H0(L⊗OC)

)
−→ P

(
H0(L)

)
from the line Q = P (cokerα). The restriction of this projection to D gives an
isomorphism D ∼= C.

Now consider the k-th secant variety Seck(D) of D. By assumption d−1 ≤ 2k+1,
so Zak’s formula (see [21]) implies

dim Seck(D) = min{d, 2k + 1} ≥ d− 1 ,

hence there is a point P ∈ Seck(D) ∩ Q. This means that there is a 0-dimensional
subscheme ZD of D of length k + 1 such that

P ∈ P
(
H0 (L⊗OC ⊗ IZD

)
)
.

Then Z = α∗(ZD) is a curvilinear subscheme of length k + 1 on A. Since L⊗OC is
k-spanned and P lies in the center of the projection α∗ we get

d− (k + 1)− 1 = dimP
(
H0 (L⊗ IZ)

)
= dimα∗

(
P
(
H0 (L⊗OC ⊗ IZD

)
))

< dimP
(
H0 (L⊗OC ⊗ IZD

)
)

= d− (k + 1)− 1 ,

a contradiction.
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Remark 3.4 We would like to point out here that Theorem 3.1 also leads to a
bound for k-jet ampleness. First recall the following relation between k-very ample-
ness and k-jet ampleness (see [6, Proposition 2.1]):

If L is k′-very ample, then L is k-jet ample, where k is the biggest integer such that(
k + 2

2

)
≤ k′ + 1 . (∗)

Suppose now that we want to show the k-jet ampleness of a line bundle of type (1, d)
on an abelian surface X for suitable d ≥ 1. According to (∗) it is enough to show
k′-very ampleness, where k′ =

(
k+2
2

)
− 1. Assuming ρ(X) = 1 and using Theorem

3.1 this will follow as soon as L2 ≥ 4k′ + 5, which is equivalent to

d ≥ k2 + 3k + 3 .

So the bound one gets in this way is also quadratic in k, but it is considerably bigger
than the optimal bound d > 1

2
(k + 2)2 that we gave in Sect. 2.

4. Surfaces with higher Picard number

One might be tempted to hope that uniform numerical criteria for k-jet ampleness
and k-very ampleness could be given for simple abelian surfaces, rather than for
abelian surfaces with Picard number 1 – just as it is the case for global generation
and very ampleness in Theorem 1.1. However, for a line bundle of type (1, d) the
implications

(i) if d > 1
2
(k + 2)2, then L is k-jet ample

(ii) if d ≥ 2k + 3, then L is k-very ample

may fail as soon as the Picard number gets bigger than 1, even for simple abelian
surfaces. We will illustrate this by considering a two-dimensional family of simple
abelian surfaces, where this happens.

4.1. In our discussion we are going to consider Seshadri constants. Recall that for
a nef line bundle L on a smooth projective variety X the Seshadri constant of L at
a point x ∈ X is by definition the real number

ε(L, x) = inf
C3x

LC

multx(C)
,

where the infimum is taken over all irreducible curves C ⊂ X containing x. The
Seshadri constant is to be thought of as measuring the local positivity of L at x. It
is bounded from above by ε(L, x) ≤

√
Ld, where d = dimX (see [14, Remark 1.8]).

There is an interesting connection between Seshadri constants and the generation
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of jets: Denote by s(L, x) the maximal number s such that L generates s-jets at x,
i.e. such that

H0(X,L) −→ H0
(
X,L⊗OX/m

s+1
x

)
is onto. If L is ample, then

ε(L, x) = lim sup
n−→∞

s(nL, x)

n

(see [12, Theorem 6.4]).
Finally, note that if X is an abelian variety, then by homogeneity ε(L) = ε(L, x)

is actually independent of the point x.

4.2. Now we turn to the examples. Let X be a principally polarized abelian surface
with endomorphism ring Z[

√
7]. (There is a two-dimensional family of such surfaces,

cf. [8, Sect. 2].) The abelian surface X does not contain elliptic curves and its Néron-
Severi group is generated by line bundles L0 and L1 of types (1, 1) resp. (1, 9) with
L0L1 = 8 (cf. [3, Sect. 3]).

We consider the line bundles

Mn =def nL0 − L1 (n ≥ 1)

on X. For n � 0 these bundles are certainly ample and primitive. Mn is of type
(1, dn) with dn = n2 − 8n+ 9. Put

kn =def

⌊√
2n2 − 16n+ 18

⌋
− 3 .

Then we have dn >
1
2
(kn + 1)2, so if we assume the criterion (i) to hold on X, then

Mn had to be kn-jet ample. In particular it should generate kn-jets at any point.
Since we have an inclusion

H0(X,Mn) ↪→ H0(X,nL0)

we get s(nL0) ≥ s(Mn) ≥ kn, which using ε(L0) ≤
√
L2
0 =

√
2 implies that the

Seshadri constant of L0 is maximal:

ε(L0) = lim sup
n−→∞

s(nL0)

n
=
√

2 . (∗)

On the other hand, one can use Steffens’ argument [20] to bound ε(L0) from below:
There is a curve C in |4L0| with mult0(C) = 6, namely the image of the unique
divisor Θ ∈ |L0| under the endomorphism 2X : X −→ X given as multiplication by
2, so we have

ε(L0) ≤
L0C

mult0(C)
=

4

3
,

a contradiction with (∗).
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Next assume that criterion (ii) holds on X. This would imply that Mn is k′n-very
ample, where

k′n =def

⌊
n2 − 8n+ 6

2

⌋
.

On the other hand, for a divisor D ∈ |L1| we have

MnD = 8n− 18 ,

so for n� 0 we certainly have MnD < k′n, which is clearly impossible for a k′n-very
ample line bundle.
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PL-30-059 Kraków, Poland


