Seshadri constants of quartic surfaces

Thomas Bauer

September 27, 1996

0. Introduction

Let L be a nef line bundle on a smooth projective variety X. The Seshadri constant of L at a point $x \in X$ is defined to be the real number

$$\varepsilon(L, x) =_{\text{def}} \sup \{ \varepsilon \in \mathbb{R} \mid f^*L - \varepsilon E \text{ is nef} \} ,$$

where $f: \widetilde{X} \longrightarrow X$ is the blow-up of X at x and $E \subset \widetilde{X}$ the exceptional divisor. The global Seshadri constant of L is the infimum

$$\varepsilon(L) = \inf_{x \in X} \varepsilon(L, x) .$$

By Seshadri's criterion, L is ample if and only if $\varepsilon(L) > 0$.

Recent interest in Seshadri constants derives on the one hand from their application to adjoint linear systems. In fact, a lower bound on the Seshadri constant of L gives a bound on the number of jets that the adjoint line bundle $\mathcal{O}_X(K_X + L)$ separates (see [2] and [3]). On the other hand, Seshadri constants are very interesting invariants of polarized varieties in their own right. It is this second aspect that we investigate in the present paper.

Specifically, consider a smooth surface $X \subset \mathbb{P}^3$ and think of the projective embedding as fixed. We then simply write

$$\varepsilon(X, x) =_{\text{def}} \varepsilon(\mathcal{O}_X(1), x) \text{ and } \varepsilon(X) =_{\text{def}} \varepsilon(\mathcal{O}_X(1))$$

and refer to these numbers as the *Seshadri constants of* X. One has a priori the following estimates:

$$1 \le \varepsilon(X) \le \sqrt{\deg(X)}$$

where the second inequality follows from Kleiman's theorem (see [3, Remark 1.8]). It is clear that for surfaces of degree ≤ 3 we have $\varepsilon(X) = 1$, since any such surface contains a line. Furthermore, recent work of A. Steffens [6] implies that $\varepsilon(X, x) \geq \left|\sqrt{\deg(X)}\right|$ for the very general point $x \in X$, if the Picard number of X equals 1.

¹⁹⁹¹ Mathematics Subject Classification: Primary 14C20; Secondary 14J28.

In general, however, the numbers $\varepsilon(X)$ and their potential geometric interpretation seem to be unknown up to now.

In this note we consider the first non-trivial case $\deg(X) = 4$. Our result shows that, somewhat surprisingly, there are only three possible values of $\varepsilon(X)$, where the sub-maximal ones account for special geometric situations. We prove:

Theorem. Let $X \subset \mathbb{P}^3$ be a smooth quartic surface. Then the following statements on the Seshadri constant $\varepsilon(X)$ hold:

- (a) $\varepsilon(X) = 1$ if and only if the surface X contains a line,
- (b) $\varepsilon(X) = \frac{4}{3}$ if and only if there is a point $x \in X$ such that the Hesse form \mathcal{H}_X vanishes at x and X does not contain any lines,
- (c) $\varepsilon(X) = 2$, otherwise.

The cases (a) and (b) occur on sets of codimension one in the space of quartic surfaces.

Here the Hesse form \mathcal{H}_X of a smooth surface $X \subset \mathbb{P}^3$ is a quadratic form on the tangent bundle TX (see Sect. 1). The theorem implies in particular that for a generic quartic surface one has $\varepsilon(X) = 2$.

Notation and Conventions. We work throughout over the field \mathbb{C} of complex numbers.

Numerical equivalence of divisors or line bundles will be denoted by \equiv .

1. Hesse forms of projective surfaces

We start with a discussion of Hesse forms. Consider a smooth surface $X \subset \mathbb{P}^3$ of degree $d \geq 2$, and let $f \in H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d))$ be a homogeneous equation of f. The second order derivatives of f give rise to a map of vector bundles

$$d^2f: \mathcal{O}_X(1)^{\oplus 4} \otimes \mathcal{O}_X(1)^{\oplus 4} \longrightarrow \mathcal{O}_X(d)$$
.

Consider its restriction

$$\sigma: \mathcal{F} \otimes \mathcal{F} \longrightarrow \mathcal{O}_X(d)$$

to the kernel \mathcal{F} of the map $df : \mathcal{O}_X(1)^{\oplus 4} \longrightarrow \mathcal{O}_X(d)$ defined by the first order derivatives. We have the following commutative diagram:

The symmetric form σ will descend to the tangent bundle TX, if the image of \mathcal{O}_X in \mathcal{F} is contained in the radical subbundle

$$\operatorname{Rad}(\sigma) = \bigcup_{x \in X} \left\{ v \in \mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x \mid \sigma(v, w) = 0 \text{ for all } w \in \mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x \right\} .$$

But this is a consequence of the Euler formula. So we get in effect a quadratic form

$$\mathcal{H}_X : \operatorname{Sym}^2(TX) \longrightarrow \mathcal{O}_X(d)$$

on the tangent bundle of X with values in $\mathcal{O}_X(d)$ which we will call the *Hesse form* of X.

The geometrical significance of \mathcal{H}_X is summarized in the following proposition. For this denote for $k \geq 1$ by

$$D_k^s(\mathcal{H}_X) = \{x \in X \mid \mathcal{H}_X \text{ is of rank} \le k \text{ at } x\}$$

the k-th (symmetric) degeneracy locus of \mathcal{H}_X , equipped with its natural scheme structure.

Proposition 1.1 Let $X \subset \mathbb{P}^3$ be a smooth projective surface of degree ≥ 2 , and let \mathcal{H}_X be its Hesse form. Then we have:

(a) The isotropic lines of \mathcal{H}_X on $T_x X$ correspond to the principal tangents of X, *i.e.* the lines ℓ such that we have

$$i(x, X \cdot \ell) \ge 3$$

for the local intersection multiplicity at x.

(b) The degeneracy locus $D_1^s(\mathcal{H}_X)$ is a divisor of degree 4d(d-2), where $d = \deg(X)$. The open subset

$$D_1^s(\mathcal{H}_X) - D_0^s(\mathcal{H}_X)$$

consists of the points $x \in X$ such that there is only one principal tangent at x. (c) The locus $D_0^s(\mathcal{H}_X)$ is finite; it consists of the points at which there are infinitely many principal tangents.

Proof. The statements on the principal tangents follow easily from the definition of \mathcal{H}_X . Turning to the assertion about the dimension and the degree of $D_1^s(\mathcal{H}_X)$, let us first assume that $D_1^s(\mathcal{H}_X) = X$. Then the rank of the differential

$$T_x \gamma_X : T_x X \longrightarrow T_x (\mathbb{P}^3)^*$$

of the Gauß map $\gamma_X : X \longrightarrow (\mathbb{P}^3)^*$ is at most 1 for all points $x \in X$, and hence dim $\gamma_X(X) \leq 1$. But this is impossible, because the smoothness of X implies that γ_X is finite. Since the codimension of $D_1^s(\mathcal{H}_X)$ is in any event at most 1, we see that $D_1^s(\mathcal{H}_X)$ is in fact a divisor. Its class in $H^2(X,\mathbb{Z})$ is then

$$[D_1^s(\mathcal{H}_X)] = 2c_1\left((TX)^{\vee} \otimes \sqrt{\mathcal{O}_X(X)}\right)$$

= $2c_1\left((TX)^{\vee}\right) + \operatorname{rank}(\mathcal{H}_X) \cdot [\mathcal{O}_X(X)]$
= $[\mathcal{O}_X(4 \operatorname{deg}(X) - 8)]$

(see [4, Theorem 10] and [5, Theorem 2]). It remains to show that $D_0^s(\mathcal{H}_X)$ is finite. In the alternative case the Hesse form \mathcal{H}_X , and hence the differential $T\gamma_X$, would vanish along a curve in X. But of course this again contradicts the finiteness of γ_X .

In the next section we will need the following statement on hyperplane sections of smooth surfaces:

Lemma 1.2 A smooth surface $X \subset \mathbb{P}^3$ of degree ≥ 2 admits no tropes, i.e. any hyperplane section of X is reduced.

This follows (as in the proof of the preceding proposition) from the finiteness of the Gauß map of a smooth surface.

2. Seshadri constants

Let X be a smooth projective variety, L a nef line bundle on X and $x \in X$ a point. Recall that the Seshadri constant $\varepsilon(X, x)$ can alternatively be defined as

$$\varepsilon(X, x) = \inf_{C \ni x} \left\{ \frac{LC}{\operatorname{mult}_x(C)} \right\}$$

where the infimum is taken over all irreducible curves C on X passing through x.

We state now a lemma which in the surface case allows to determine local Seshadri constants by producing curves with high multiplicity at a given point. In the statement of the lemma the abbreviation

$$\varepsilon_{C,x} =_{\mathrm{def}} \frac{LC}{\mathrm{mult}_x(C)}$$

will be used.

Lemma 2.1 Let X be a smooth projective surface, $x \in X$ a point and L an ample line bundle on X. Suppose that there is an irreducible curve C on X such that $C \equiv kL$ for some $k \geq 1$ and

$$\varepsilon_{C,x} \leq \sqrt{L^2}$$
 .

Then $\varepsilon(L, x) = \varepsilon_{C,x}$.

More generally, let $D = \sum_{i=1}^{r} d_i D_i$ be an effective divisor such that $D \equiv kL$ for some $k \geq 1$ and assume that

$$\varepsilon_{D_i,x} \le \sqrt{\frac{rd_i \cdot LD_i}{k}} \quad for \ 1 \le i \le r$$

Then $\varepsilon(L, x) = \min_{1 \le i \le r} \varepsilon_{D_i, x}.$

Proof. Of course the first assertion follows from the second one. In order to prove the second assertion, assume to the contrary that $\varepsilon(L, x) < \min\{\varepsilon_{D_i, x} \mid 1 \le i \le r\}$. So there is an irreducible curve $C' \subset X$ with $\varepsilon_{C', x} < \varepsilon_{D_i, x}$ for $1 \le i \le r$. These inequalities in particular force C' and D to intersect properly, so we get

$$LC' = \frac{1}{k}DC' = \frac{1}{k}\sum_{i=1}^{r} d_i D_i C' \ge \frac{1}{k}\sum_{i=1}^{r} d_i \operatorname{mult}_x(D_i) \cdot \operatorname{mult}_x(C') .$$
(*)

Using the assumption $\varepsilon_{C',x} < \varepsilon_{D_i,x}$ and the fact that by definition

$$\operatorname{mult}_{x}(D_{i}) \cdot \operatorname{mult}_{x}(C') = \frac{LD_{i} \cdot LC'}{\varepsilon_{D_{i},x}\varepsilon_{C',x}}$$

we obtain from (*) that

$$LC' > LC' \frac{1}{k} \sum_{i=1}^r d_i \frac{LD_i}{\varepsilon_{D_i,x}^2}$$

So we arrive at a contradiction with the assumption on $\varepsilon_{D_i,x}$ in the statement of the lemma, and this completes the proof.

Using Proposition 1.1 and Lemma 2.1 we now prove the following statement which implies the theorem stated in the introduction:

Theorem 2.2 Let $X \subset \mathbb{P}^3$ be a smooth quartic surface and $x \in X$ a point. Then:

- (a) $\varepsilon(X) = 1$ if and only if X contains a line.
- (b) If X does not contain any lines, then

$$\varepsilon(X, x) = \begin{cases} \frac{4}{3} & \text{, if } x \in D_0^s(\mathcal{H}_X) \\ 2 & \text{, otherwise.} \end{cases}$$

The subsets $\{\varepsilon(X) = 1\}$ and $\{\varepsilon(X) = \frac{4}{3}\}$ of the space $\mathcal{S} \subset \mathbb{P}(H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(4)))$ of smooth quartic surfaces are of codimension 1.

Proof. Suppose first that X contains a line ℓ . Since in any event $\varepsilon(X) \geq 1$, we then clearly have $\varepsilon(X, x) = \varepsilon_{\ell,x} = 1$ for $x \in \ell$ and therefore $\varepsilon(X) = 1$. Assume henceforth that X does not contain any lines and for fixed $x \in X$ consider the divisor $D =_{\text{def}} X \cap T_x X \in |\mathcal{O}_X(1)|$. Certainly D is reduced (see Lemma 1.2).

Let us first consider the case that D is irreducible. If the Hesse form \mathcal{H}_X vanishes on $T_x X$, so that any tangent to X at x is a principal tangent, then $\operatorname{mult}_x(D) \geq 3$. On the other hand, since D is an irreducible plane quartic curve, we have in any event $\operatorname{mult}_x(D) \leq 3$, thus $\varepsilon_{D,x} = \frac{4}{3}$. Because of

$$\varepsilon_{D,x} \le 2 = \sqrt{\mathcal{O}_X(1)^2}$$

Lemma 2.1 gives $\varepsilon(X, x) = \frac{4}{3}$. If, however, \mathcal{H}_X is of rank ≥ 1 at x, then $\operatorname{mult}_x(D) = 2$ and we obtain $\varepsilon(X, x) = 2$.

Now suppose that D is reducible. Then D must consist of two smooth conics D_1 and D_2 meeting at x. So \mathcal{H}_X cannot vanish at x and because of

$$\varepsilon_{D_i,x} = \sqrt{2 \cdot \mathcal{O}_X(1)D_i}$$

Lemma 2.1 implies $\varepsilon(X, x) = 2$.

It remains to show the assertion about the codimensions. In the space \mathcal{S} consider the subsets

$$\mathcal{L} = \{ X \mid X \text{ contains a line} \} \subset \mathcal{S}$$

and

$$\mathcal{H} = \{X \mid \operatorname{rank} (\mathcal{H}_X(x)) = 0 \text{ for some point } x \in X\} \subset \mathcal{S} ,$$

so that $\{\varepsilon(X) = 1\} = \mathcal{L}$ and $\{\varepsilon(X) = \frac{4}{3}\} = \mathcal{H} - \mathcal{L}$. Clearly \mathcal{L} is of codimension 1. As for \mathcal{H} , we consider the variety

$$V =_{\mathrm{def}} \left\{ (X, x, \pi) \mid x \in X, \ T_x X = \pi, \ \mathrm{rank} \left(\mathcal{H}_X(x) \right) = 0 \right\} \subset \mathcal{S} \times \mathbb{P}^3 \times (\mathbb{P}^3)^*$$

and the projections

The dimension of the general fibre of the map $pr_2 \times pr_3 : V \longrightarrow (pr_2 \times pr_3)(V)$ is easily seen to be dim $(\mathcal{S}) - 6$. Further, by Proposition 1.1(c) the first projection $pr_1 : V \longrightarrow \mathcal{H}$ is of finite degree. So we obtain that

$$\dim (\mathcal{H}) = \dim(V)$$

= dim(S) - 6 + dim ((pr₂ × pr₃)(V))
= dim(S) - 1 ,

since the image of $pr_2 \times pr_3$ is the 5-dimensional incidence variety in $\mathbb{P}^3 \times (\mathbb{P}^3)^*$. So \mathcal{H} is of codimension 1 as well, and this completes the proof of the theorem.

Acknowledgements. This research was supported by DFG contract Ba 423/7-1. I would like to thank W. Barth for helpful discussions. Furthermore, I am grateful to the referee for his comments on the first version of this paper.

References

- Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic varieties (Bayreuth, 1990), Lect. Notes Math. 1507, Springer-Verlag, 1992, pp. 87-104.
- [2] Ein, L., Lazarsfeld, R.: Seshadri constants on smooth surfaces. Journées de Géometrie Algébrique d'Orsay, Astérisque 218, 1993, pp. 177-186.
- [3] Ein, L., Küchle, O., Lazarsfeld, R.: Local positivity of ample line bundles. J. Differential Geom. 42, 193-219 (1995)
- [4] Harris, J., Tu, Loring W.: On symmetric and skew-symmetric determinantal varieties. Topology 23, 71-84 (1984)
- [5] Józefiak, T., Lascoux, A., Pragacz, P.: Classes of determinantal varieties associated with symmetric and skew-symmetric matrices. Math. USSR Izvestija 18, 575-586 (1982)
- [6] Steffens, A.: Remarks on Seshadri constants. Preprint

Thomas Bauer, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstraße $1\frac{1}{2}$, D-91054 Erlangen, Germany

(e-mail: bauerth@mi.uni-erlangen.de)