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0. Introduction

Let L be a nef line bundle on a smooth projective variety X. The Seshadri constant
of L at a point x ∈ X is defined to be the real number

ε(L, x) =def sup{ε ∈ IR | f ∗L− εE is nef} ,

where f : X̃ −→ X is the blow-up of X at x and E ⊂ X̃ the exceptional divisor.
The global Seshadri constant of L is the infimum

ε(L) = inf
x∈X

ε(L, x) .

By Seshadri’s criterion, L is ample if and only if ε(L) > 0.
Recent interest in Seshadri constants derives on the one hand from their appli-

cation to adjoint linear systems. In fact, a lower bound on the Seshadri constant of
L gives a bound on the number of jets that the adjoint line bundle OX(KX + L)
separates (see [2] and [3]). On the other hand, Seshadri constants are very interest-
ing invariants of polarized varieties in their own right. It is this second aspect that
we investigate in the present paper.

Specifically, consider a smooth surface X ⊂ IP3 and think of the projective
embedding as fixed. We then simply write

ε(X, x) =def ε(OX(1), x) and ε(X) =def ε(OX(1))

and refer to these numbers as the Seshadri constants of X. One has a priori the
following estimates:

1 ≤ ε(X) ≤
√

deg(X) ,

where the second inequality follows from Kleiman’s theorem (see [3, Remark 1.8]).
It is clear that for surfaces of degree ≤ 3 we have ε(X) = 1, since any such surface
contains a line. Furthermore, recent work of A. Steffens [6] implies that ε(X, x) ≥⌊√

deg(X)
⌋

for the very general point x ∈ X, if the Picard number of X equals 1.
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In general, however, the numbers ε(X) and their potential geometric interpretation
seem to be unknown up to now.

In this note we consider the first non-trivial case deg(X) = 4. Our result shows
that, somewhat surprisingly, there are only three possible values of ε(X), where the
sub-maximal ones account for special geometric situations. We prove:

Theorem. Let X ⊂ IP3 be a smooth quartic surface. Then the following statements
on the Seshadri constant ε(X) hold:

(a) ε(X) = 1 if and only if the surface X contains a line,
(b) ε(X) = 4

3
if and only if there is a point x ∈ X such that the Hesse form HX

vanishes at x and X does not contain any lines,
(c) ε(X) = 2, otherwise.

The cases (a) and (b) occur on sets of codimension one in the space of quartic
surfaces.

Here the Hesse form HX of a smooth surface X ⊂ IP3 is a quadratic form on
the tangent bundle TX (see Sect. 1). The theorem implies in particular that for a
generic quartic surface one has ε(X) = 2.

Notation and Conventions. We work throughout over the field C of complex num-
bers.

Numerical equivalence of divisors or line bundles will be denoted by ≡.

1. Hesse forms of projective surfaces

We start with a discussion of Hesse forms. Consider a smooth surface X ⊂ IP3 of
degree d ≥ 2, and let f ∈ H0

(
IP3,OIP3(d)

)
be a homogeneous equation of f . The

second order derivatives of f give rise to a map of vector bundles

d2f : OX(1)⊕4 ⊗OX(1)⊕4 −→ OX(d) .

Consider its restriction
σ : F ⊗ F −→ OX(d)
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to the kernel F of the map df : OX(1)⊕4 −→ OX(d) defined by the first order
derivatives. We have the following commutative diagram:

0 0y y
0−−−→OX −−−→ F −−−→ TX −−−→ 0∥∥∥∥ y y
0−−−→OX −−−→OX(1)⊕4 −−−→ T IP3|X −−−→ 0y df y

OX(d) ==== NX/IP3y y
0 0

The symmetric form σ will descend to the tangent bundle TX, if the image of OX

in F is contained in the radical subbundle

Rad(σ) =
⋃
x∈X

{
v ∈ Fx/mxFx

∣∣∣ σ(v, w) = 0 for all w ∈ Fx/mxFx

}
.

But this is a consequence of the Euler formula. So we get in effect a quadratic form

HX : Sym2(TX) −→ OX(d)

on the tangent bundle of X with values in OX(d) which we will call the Hesse form
of X.

The geometrical significance of HX is summarized in the following proposition.
For this denote for k ≥ 1 by

Ds
k(HX) = {x ∈ X | HX is of rank ≤ k at x}

the k-th (symmetric) degeneracy locus of HX , equipped with its natural scheme
structure.

Proposition 1.1 Let X ⊂ IP3 be a smooth projective surface of degree ≥ 2, and let
HX be its Hesse form. Then we have:

(a) The isotropic lines of HX on TxX correspond to the principal tangents of X,
i.e. the lines ` such that we have

i(x,X · `) ≥ 3

for the local intersection multiplicity at x.



4

(b) The degeneracy locus Ds
1(HX) is a divisor of degree 4d(d − 2), where d =

deg(X). The open subset

Ds
1(HX)−Ds

0(HX)

consists of the points x ∈ X such that there is only one principal tangent at x.
(c) The locus Ds

0(HX) is finite; it consists of the points at which there are infinitely
many principal tangents.

Proof. The statements on the principal tangents follow easily from the definition of
HX . Turning to the assertion about the dimension and the degree of Ds

1(HX), let
us first assume that Ds

1(HX) = X. Then the rank of the differential

TxγX : TxX −→ Tx(IP3)∗

of the Gauß map γX : X −→ (IP3)∗ is at most 1 for all points x ∈ X, and hence
dim γX(X) ≤ 1. But this is impossible, because the smoothness of X implies that
γX is finite. Since the codimension of Ds

1(HX) is in any event at most 1, we see that
Ds

1(HX) is in fact a divisor. Its class in H2(X,Z) is then

[Ds
1(HX)] = 2c1

(
(TX)∨ ⊗

√
OX(X)

)
= 2c1

(
(TX)∨

)
+ rank(HX) · [OX(X)]

= [OX (4 deg(X)− 8)]

(see [4, Theorem 10] and [5, Theorem 2]). It remains to show that Ds
0(HX) is finite.

In the alternative case the Hesse form HX , and hence the differential TγX , would
vanish along a curve in X. But of course this again contradicts the finiteness of γX .

In the next section we will need the following statement on hyperplane sections
of smooth surfaces:

Lemma 1.2 A smooth surface X ⊂ IP3 of degree ≥ 2 admits no tropes, i.e. any
hyperplane section of X is reduced.

This follows (as in the proof of the preceding proposition) from the finiteness of
the Gauß map of a smooth surface.

2. Seshadri constants

Let X be a smooth projective variety, L a nef line bundle on X and x ∈ X a point.
Recall that the Seshadri constant ε(X, x) can alternatively be defined as

ε(X, x) = inf
C3x

{
LC

multx(C)

}
,
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where the infimum is taken over all irreducible curves C on X passing through x.
We state now a lemma which in the surface case allows to determine local Se-

shadri constants by producing curves with high multiplicity at a given point. In the
statement of the lemma the abbreviation

εC,x =def
LC

multx(C)

will be used.

Lemma 2.1 Let X be a smooth projective surface, x ∈ X a point and L an ample
line bundle on X. Suppose that there is an irreducible curve C on X such that
C ≡ kL for some k ≥ 1 and

εC,x ≤
√
L2 .

Then ε(L, x) = εC,x.
More generally, let D =

∑r
i=1 diDi be an effective divisor such that D ≡ kL for

some k ≥ 1 and assume that

εDi,x ≤
√
rdi · LDi

k
for 1 ≤ i ≤ r

Then ε(L, x) = min
1≤i≤r

εDi,x.

Proof. Of course the first assertion follows from the second one. In order to prove
the second assertion, assume to the contrary that ε(L, x) < min{εDi,x | 1 ≤ i ≤ r}.
So there is an irreducible curve C ′ ⊂ X with εC′,x < εDi,x for 1 ≤ i ≤ r. These
inequalities in particular force C ′ and D to intersect properly, so we get

LC ′ =
1

k
DC ′ =

1

k

r∑
i=1

diDiC
′ ≥ 1

k

r∑
i=1

di multx(Di) ·multx(C ′) . (∗)

Using the assumption εC′,x < εDi,x and the fact that by definition

multx(Di) ·multx(C ′) =
LDi · LC ′

εDi,xεC′,x

we obtain from (∗) that

LC ′ > LC ′
1

k

r∑
i=1

di
LDi

ε2Di,x

.

So we arrive at a contradiction with the assumption on εDi,x in the statement of the
lemma, and this completes the proof.

Using Proposition 1.1 and Lemma 2.1 we now prove the following statement
which implies the theorem stated in the introduction:

Theorem 2.2 Let X ⊂ IP3 be a smooth quartic surface and x ∈ X a point. Then:
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(a) ε(X) = 1 if and only if X contains a line.
(b) If X does not contain any lines, then

ε(X, x) =

 4
3

, if x ∈ Ds
0(HX)

2 , otherwise.

The subsets {ε(X) = 1} and {ε(X) = 4
3
} of the space S ⊂ IP(H0(IP3,OIP3(4)))

of smooth quartic surfaces are of codimension 1.

Proof. Suppose first that X contains a line `. Since in any event ε(X) ≥ 1, we
then clearly have ε(X, x) = ε`,x = 1 for x ∈ ` and therefore ε(X) = 1. Assume
henceforth that X does not contain any lines and for fixed x ∈ X consider the
divisor D =def X ∩ TxX ∈ |OX(1)|. Certainly D is reduced (see Lemma 1.2).

Let us first consider the case that D is irreducible. If the Hesse form HX vanishes
on TxX, so that any tangent to X at x is a principal tangent, then multx(D) ≥ 3.
On the other hand, since D is an irreducible plane quartic curve, we have in any
event multx(D) ≤ 3, thus εD,x = 4

3
. Because of

εD,x ≤ 2 =
√
OX(1)2

Lemma 2.1 gives ε(X, x) = 4
3
. If, however,HX is of rank≥ 1 at x, then multx(D) = 2

and we obtain ε(X, x) = 2.
Now suppose that D is reducible. Then D must consist of two smooth conics D1

and D2 meeting at x. So HX cannot vanish at x and because of

εDi,x =
√

2 · OX(1)Di

Lemma 2.1 implies ε(X, x) = 2.
It remains to show the assertion about the codimensions. In the space S consider

the subsets
L = {X | X contains a line} ⊂ S

and
H = {X | rank (HX(x)) = 0 for some point x ∈ X} ⊂ S ,

so that {ε(X) = 1} = L and {ε(X) = 4
3
} = H− L. Clearly L is of codimension 1.

As for H, we consider the variety

V =def

{
(X, x, π)

∣∣∣ x ∈ X, TxX = π, rank (HX(x)) = 0
}
⊂ S × IP3 × (IP3)∗

and the projections

V

pr1

�
�
�
�
y pr2

@
@
@
@

pr3

S ⊃ H IP3 (IP3)∗
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The dimension of the general fibre of the map pr2 × pr3 : V −→ (pr2 × pr3)(V )
is easily seen to be dim(S) − 6. Further, by Proposition 1.1(c) the first projection
pr1 : V −→ H is of finite degree. So we obtain that

dim (H) = dim(V )

= dim(S)− 6 + dim ((pr2 × pr3)(V ))

= dim(S)− 1 ,

since the image of pr2 × pr3 is the 5-dimensional incidence variety in IP3 × (IP3)∗.
So H is of codimension 1 as well, and this completes the proof of the theorem.
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