
Multi-Layer Stencil Creation from Images

Arjun Jaina,b, Chao Chenc, Thorsten Thormählena,d, Dimitris Metaxasc, Hans-Peter Seidela

aMPI Informatik, Germany
bNew York University, United States

cRutgers University, United States
dUniversity of Marburg, Germany

Abstract

A stencil is a thin sheet of material, such as paper, plastic, or metal, with certain patterns cut from it. Applying a pigment through
the cut-out holes produces a design on an underlying surface. Using multiple overlapping stencil layers, artists can create intricate,
yet reproducible imagery on a variety of surfaces. Traditionally, artists have to design not only the final appearance, but also
each individual stencil layer. A stencil layer needs to be connected, geometrically simple, and physically stable. Taking all these
constraints into account during the design process is difficult and unintuitive even for skilled artists.

In this paper, we propose a system which separates the artistic design stage from the complex and tedious task of stencil creation.
For a given user design, our algorithm automatically generates a set of stencil layers satisfying all required properties. The task is
formulated as a constrained energy optimization problem and solved efficiently. Experiments, including a user study, are carried
out to examine the complete algorithm as well as each individual step.

Keywords: Computer-aided art, Stencil graffiti, Automatic stencil creation, Markov random field optimization

1. Introduction

Computer-aided art, which employs algorithms to assist
artists in various creation tasks, has received much attention in
recent years. There are, for example, computational systems
for creating shadow art [1], illuminating physical models [2],
creating 3D animation [3], creating digital micrography [4], re-
vealing the sketching sequence of a line drawing [5], generating
paper architectures [6], designing origami figures [7], generat-
ing paper foldings [8, 9], or creating stylizations and abstrac-
tions of photographs [10]. An important common principle in
computer-aided art is to separate tedious and difficult imple-
mentation details from the artistic design stage, so that artists
can focus on expressing their ideas and leave the remaining to
computer algorithms.

We believe stencil creation is an important task where such
a principle could be applied. A stencil is a thin sheet of material
with certain areas cut out. By applying pigment through the cut-
out holes, one can easily create detailed paint-work on any sur-
face, e.g., on a wall or a canvas. For more sophisticated designs,
one applies multiple layers of stencils in a certain ordering. Us-
ing different colors for different layers, one can accomplish a
piecewise constant design, which could be an approximation of
some image. Figure 1 demonstrates the process of creating art
with multi-layer stencils.

Email address: ajain@mpi-inf.mpg.de (Arjun Jain)

Figure 1: Creating art using multi-layer stencils. From left to right: designing
and cutting stencils; creating a wall painting with stencils; final appearance (all
three images courtesy of Orticanoodles).

The history of stencil art is almost as long as the human
civilization. Early versions include 22,000-years-old anthropo-
morphic cave paintings, and inner wall decorations of Egyptian
pyramids. In recent years, stencil art has started to be part of
the mainstream art scene. Contemporary stencil artists such as
Banksy, Blek le Rat, Jerome Mesnager, Nemo, Hugo Kaagman
or Rene Gagnon have earned worldwide recognition for their
works, which can be found in famous art galleries and auctions.
The stenciling technique is also very important in our daily
lives. Thanks to the high reproducibility, stencil art has become
the de rigueur medium for promotional campaigns from night
clubs, record labels, websites, and even multinational compa-
nies. The stenciling technique is used on clothing and acces-
sories by well-known fashion houses such as Louis Vuitton and
Luella Bartley. Stencil based designs can also be found on a
vast variety of objects such as buildings, airplanes, cars, t-shirts,
glass, ceramics, coffee, cakes, and even hair.

Unfortunately, the design of stencils is a complex and te-
dious process. After designing the final appearance, the artist
has to create a set of stencil layers that could achieve it. A
stencil should be a single connected component in order to be

Preprint submitted to Computers & Graphics December 15, 2014

Figure 2: Examples of results produced by users of our system.

reusable. Disconnected components, called islands, can ei-
ther be removed or be connected via thin connections, called
bridges. These operations would however affect the final ap-
pearance. Furthermore, the artist has to decide the ordering in
which individual layers are applied. This decision is closely
coupled with the design of each layer; layers that are applied
early can satisfy the connectivity constraint more easily by ex-
ploiting regions that will be painted over later. Beside being
faithful to the design, a stencil should have a simple geome-
try, i.e. a short boundary. No matter, whether the stencils are
cut manually or by laser-cutting machines, the cutting cost is
directly proportional to the boundary length. In case of thin
materials, stencils should also be physically stable enough to
be used in practice.

Overall, the multi-layer stencil generation is a problem with
a very high dimensional solution space. There are exponentially
many possible stencils one could choose from for each layer,
and the number of possible stencil orderings is factorial in the
number of layers. Therefore, we decided to isolate it from the
artistic design stage, and solve it computationally.

In this paper we present a practical system that automates
multi-layer stencil generation, while still allowing the users to
achieve their individual artistic goals. Figure 2 shows several
designs created with our system. Our main contribution is an al-
gorithm which automatically generates an ordered set of stencil
layers satisfying aforementioned requirements (geometric sim-
plicity, physical stability, and connectedness), such that the fi-
nal appearance resembles a given image as much as possible.
Basing on this algorithm, we build a practical system which al-
lows users to tune parameters (such as the color set, smoothness
weight, etc.) and to edit stencils using brush strokes. Once the
design is finished, our system will generate stencils automati-
cally.

Related Work. Conventionally, to create stencils, one first cre-
ates a piecewise constant approximation of the input image. Af-
terwards, stencil layers are created through a partition-and-fix
principle: take the complement of each color as a stencil layer,
and manually fix its topology. Image editing software, such as
Adobe Photoshop, can be used for such a task.

Bronson et al. [11] present a system which automatically
generates a single-layer stencil for a given image. The system
generates a black-and-white binary approximation of the given
image, and then use white regions as stencil islands. Bridges
connecting islands are built to ensure the stencil is connected.
Among bridges between all pairs of islands, the set forming
a minimum spanning tree is chosen. Meng et al. [12] focus on
human portrait images. The stencil is generated using templates
for human facial features, such as eye, mouth and nose. Igarashi
and Igarashi [13] introduce an interactive system that allows
non-professional users to design their own stencil plates from
scratch.

Contributions. All existing stencil creation systems share the
following shortcomings: (1) they only generate a single layer
stencil; (2) they only fix topology by building bridges. In con-
trast, our system creates multi-layer stencils, allowing users to
produce much more sophisticated designs. Furthermore, our al-
gorithm considers both building bridges and removing islands,
depending on what is better for the final result.

We solve the problem using a random field energy forma-
tion, in which we explicitly formulate desired properties of the
output (appearance, simplicity, etc.) into summands of the final
energy. This enables users to adjust their preference by tuning
weights of these summands. The random field energy model
has been broadly used in computer vision for image segmenta-
tion. It is known to be able to generate high quality segmen-
tations for a broad range of input images. Furthermore, such
a formulation allows us to use efficient algorithms like multi-

2

label graphcut.
Please note that energy-based formulation has been used in

compute-aided art problems such as generating binary image
abstraction [14], pixel-art-style image abstraction [15] and cre-
ating 3D models folded from planar sheets [8]. But these works
do not usually consider the connectivity constraint.

2. Background

Random Field Image Segmentation. Since being introduced to
computer vision, Markov random field (MRF) has become a
popular tool for image segmentation [16, 17]. Given an image,
one constructs an 8- or 4-connected grid graph whose vertices
are all pixels and edges are all pairs of neighboring pixels. The
segmentation problem is formulated as finding a discrete label-
ing of vertices z : V → L which minimizes a given random
field energy

ERF(z) =
∑
i∈V

∑
`∈L

φi,`Jzi = `K + λ
∑

(i, j)∈E

ψi, jJzi , z jK, (1)

in which the Iverson bracket J·K has value one if the predicate
inside it is true, and zero otherwise. A unary potential φi,` is
the cost of assigning a pixel i a label `. Its value is based on
the probability of the color of pixel i being a sample from the
color distribution of label `. A pairwise potential ψi, j is the
cost of assigning two neighboring pixels i and j different la-
bels. Pairwise potentials play the role of a regularizer, so that
the segmentations have shorter boundaries that are attracted to
sharp color changes (edges) in the image.

For binary segmentations, the set of labelsL = {fg, bg} con-
sists of foreground and background. In this case, under cer-
tain assumptions, the problem can be transformed into a max-
flow/min-cut problem, and solved in polynomial time [18, 19].
For the multi-label (L = |L| > 2) case, Boykov et al. [20] prove
that the problem is NP-hard and use the alpha-expansion tech-
nique to solve the problem efficiently when the energy satisfies
certain conditions. In this paper, we will employ this algorithm
in the Multi-Label-Segmentation subroutine. Please refer
to [21, 17] for more details.

Binary Segmentation with Topology Constraints. Connectivity,
as a natural global property, has been of interest in image seg-
mentation. One may want to find a binary labeling that mini-
mizes the energy in Eq. (1) under the constraint that the fore-
ground (z−1(fg) = {i ∈ V | zi = fg}) is connected. This problem,
however, has been shown to be NP-hard [22]. Several approx-
imation methods have been proposed [23, 22]. Nowozin and
Lampert [24] formulate the problem as a linear programming
problem with exponentially many linear inequality constraints.
The algorithm solves the problem exactly, but does not scale
well with the size of the image.

Using ideas from computational topology [25, 26], Chen et
al. [27] propose a novel algorithm which is efficient even for
natural images. Intuitively, the algorithm computes a binary
segmentation using the graphcut algorithm [19], and then fixes
the topology. Each island of the foreground is either removed
completely, or merged to other islands via an optimal bridge.

The choice of removing or merging depends on which operation
is less expensive. The final segmentation is guaranteed to be
connected after all islands are fixed. The proposed algorithm is
called TopoCut and will be later employed as a subroutine in
this paper.

For each island, i.e. a component C, the expense of remov-
ing it completely is the maximum of φi,bg − φi,fg for all i ∈ C.
The alternative option is merging C to another component by
building a bridge connecting them. The expense of this bridge
is the maximum of φi,fg−φi,bg for all pixel i in the bridge. Out of
exponentially many candidate bridges, the algorithm efficiently
finds the one with the minimal expense. In the end, the al-
gorithm compares the expenses of removing and merging, and
chooses the less expensive one. The operation can be achieved
by changing unaries accordingly and rerun the graphcut seg-
mentation algorithm; to remove an island (resp. build a bridge),
let all pixels within the island (resp. bridge) have +∞ (resp. −∞)
foreground unaries.

3. Multi-layer Stencil Generation

Given a set of colors L = {1, . . . , L}, our algorithm com-
putes stencils for each color, as well as an ordering in which
these stencils are applied to the background (a wall, a canvas,
or some other surface). The problem is formulated as an energy
minimization problem. We emphasize three properties of the
generated stencils.
• The resulting painting is faithful to the original input im-

age;
• Stencils are geometrically simple and physically stable;
• Each stencil is topologically connected.

We denote the multi-layer stencils by y : V×L → {0, 1}. Pixel i
belongs to the stencil (or respectively the paint area) for color `
if and only if yi,` = 0 (or respectively yi,` = 1). We use π, a
permutation of the sequence (1, . . . , L), to specify an ordering
of the colors in which the corresponding stencils are applied.
We will refer to π1 as the bottom stencil that is applied first
and πL as the top stencil that is applied last. We formulate the
energy of a multi-layer stencil configuration to be

E(y, π) = Eappearance(y, π) + Estencil(y, π) . (2)

The first summand Eappearance enforces the faithfulness of the
resulting stencil painting to the original input image. A nat-
ural choice would be the multi-label random field energy,
Eappearance(y, π) = ERF(zπ) (Eq. (1)), where zπi is the last color
in the ordering with which pixel i is painted, in other words, the
topmost drawn color of pixel i. The second summand, Estencil,
measures the simplicity of all the stencils, i.e., the total length
of the boundaries of the stencils. Furthermore, we have the hard
constraint that all generated stencil layers have to be connected.
Taking all these requirements into account, we solve the follow-
ing optimization problem.

3

Main Problem. Compute (y, π) minimizing

E(y, π) =
∑
i∈V

∑
`∈L

φi,`Jzπi = `K + β
∑

(i, j)∈E

ψi, jJzπi , zπjK

+ α
∑

(i, j)∈E

∑
`∈L

Jyi,` , y j,`K (3)

such that ∀`, y−1
∗,`(0) = {i ∈ V | yi,` = 0} is connected.

The parameter α tunes the bias towards the simplicity of the
stencils. Increasing α would uniformly simplify the resulting
image as the boundaries of all stencils are shortened. Increas-
ing the parameter β would also simplify stencils. But edges
of the final appearance tend to stay with high contrast edges
of the original image, and thus details of the image are better
preserved.

The multi-layer stencil energy E is obviously an extension
of the multi-label random field energy. But the two energies
have an even closer relationship. If we drop the connected-
ness constraint, and assume that each pixel is painted with one
and only one color, then the energy E(y, π) is equivalent to the
multi-label random field energy (Eq. (1)) of the top color zπ

with unary potential φ and pairwise potential ψ̃ = βψ+2α (with
λ = 1 in Eq. (1)), formally

E(y, π) = ẼRF(zπ) =
∑
i∈V

∑
`∈L

φi,`Jzπi = `K

+
∑

(i, j)∈E

(βψi, j + 2α)Jzπi , zπjK (4)

If we take a multi-label segmentation of the image, and con-
struct the stencil of each label by strictly taking the complement
of this label’s region in the segmentation, ẼRF of this segmen-
tation and E of this stencil set are equivalent. Note that in such
a condition, the ordering does not affect the energy any more.
Formally, we have

Lemma 1. The energy E(y, π) = ẼRF(zπ) if for any i, there is
one and only one color ` such that yi,` = 1.

The proof exploits that neighboring color regions share exactly
one border pixel and thus the last summand of Eq. (3) collapses
to α
∑

(i, j) 2Jzπi , zπjK. The full proof can be found in the ap-
pendix. This lemma gives a theoretical justification to initialize
the optimization of our problem using the result of a multi-label
segmentation with the energy according to Eq. (4) at certain
stages of our algorithm, as will be explained in details later.

Next, we present components of our system. A block di-
gram is given in Fig. 3 where dashed blocks indicate optional
steps.

Layer
Ordering

input
image

Stencil
Computation

Improving
Stability

stencil
layers

Potential
Generation

Preview

user input

Figure 3: Block diagram of our system

3.1. Potential Generation and Preview

In the preparation stage, we generate potentials of the multi-
layer stencil energy, (φ, ψ), based on user input. A user chooses
an input image and specifies parameters including the number
of colors L and the weights α and β. To decide colors, we apply
k-means clustering of all input pixels’ colors. The means of the
L clusters are chosen as the L colors, (c1, . . . , cL). The system
then computes the potentials accordingly (details will be given
later).

We provide a user interface where a user previews the fi-
nal appearance and changes the design. A preview is a mutli-
label segmentation minimizing the random field energy ẼRF in
Eq. (4), which can be computed very efficiently using a stan-
dard multi-label segmentation algorithm. It is a good approx-
imation of the final appearance because of the equivalence be-
tween ẼRF and E (cp. Lemma 1). If a user does not like the
generated preview, all mentioned parameters can be modified.
Furthermore, we provide an interactive editing interface such
as selecting individual colors, and using brush strokes to mod-
ify stencils (similar to GrabCut [16]). Once the user is sat-
isfied, the potentials are passed to the automatic stencil com-
putation pipeline. Our user interface is implemented as a dy-
namic webpage using AJAX technologies. It is available at
http://www.stencilcreator.org.

We conclude this subsection with details on how to generate
the potentials. For layer ` and pixel i, the unary potential φi,` is
computed as the negative-log-likelihood of the probability of i’s
color ci evaluated in a single Gaussian distribution N(c`, σ2),
formally, φi,` = − log(Pc` ,σ2 (ci)) = 1

2σ2 ‖c` − ci‖
2. For conve-

nience, we assume the same σ for all `, and thus drop it in
the energy model1. As for pairwise appearance potentials, we
use the contrast sensitive measure ψi, j = exp(−‖ci − c j‖

2/const)
introduced by [28]. Such pairwise potentials enforce not only
a shorter boundary of color regions, but also that the region’s
boundary is attracted to high contrast edges of the image. Every
stencil layer includes a frame encapsulating the original image
domain. We extend the domain with an outer border, in which
the potentials are set to φi,` = ∞. Thus, every pixel in the ex-
tended area is assigned the stencil label, yi,` = 0, forming the
frame. The topology constraint ensures the rest of the stencil is
always connected to the frame.

3.2. Automatic Stencil Computation

Our main algorithm computes stencils and an ordering min-
imizing the energy in Eq. (3). A naive algorithm would be to
enumerate all possible orderings and to compute the optimal
stencils for each ordering. But this is too expensive. Therefore
we propose a heuristic algorithm which approximates the opti-
mal ordering, and then computes the optimal stencil with regard
to the computed ordering.

1We do not use a Gaussian mixture model with multiple components [16],
because we have the constraint that each label ` should be approximated by a
single color in the final appearance. A further extension to an EM type algo-
rithm of estimating the color center and the variance is possible and left for
future work.

4

http://www.stencilcreator.org

For ease of exposition, we first explain for a given order-
ing π how to compute stencils minimizing the energy E(y, π)
under the connectedness constraint. Afterwards, we explain
how to approximately compute the optimal ordering. Lastly,
we provide details of how to improve the physical stability of
stencils.

Computing Stencils for a Given Ordering. To compute sten-
cils, a straightforward solution would be generating a multi-cut
segmentation of the image and apply the conventional partition-
and-fix principle. Our novel idea, however, is built on the fol-
lowing observation. Inside the painted area of top stencil lay-
ers, bottom layers can be of arbitrary shape without affecting
the final appearance. In other words, bottom layers can explore
such appearance-penalty-free area in order to achieve geomet-
ric simplicity and topological correctness. We propose an algo-
rithm that exploits this strategy and achieve a much smaller cut
length, as we will show in Section 4.

Our algorithm computes stencil layers from top (πL) to bot-
tom (π1). Notice that unary potentials for a pixel i would only
contribute to the energy once as we proceed. As soon as we
find the first layer at which pixel i is painted, its unaries, φi,∗,
become unrelated, as the corresponding predicate zπi = ` are
false for all the remaining undecided labels `. Therefore it is
safe to suppress all these terms, i.e. set to zero, and proceed.
A similar argument can be applied to the pairwise appearance
terms, which only depend on zπi , but not to the pairwise stencil
term.

As we proceed from top layer to bottom, after computing
each layer πs, we suppress the unary potentials φ and pairwise ψ
at areas painted by label πs (illustrated in Fig. 4). Then πs is
removed from the set of colors L for the subsequent computa-
tions. The updated potentials are used to compute stencils for
the remaining layers {π1, . . . , πs−1}. For the special case of the
bottom layer, we let all pixels be painted, so that every pixel
has at least one painted color. The corresponding pseudo-code
is given in Procedure 1.

input image

initial
potentials

unary
yellow layer

unary
brown layer

unary
blue layer

pairwise

updated
potentials

unary
yellow layer

unary
brown layer

unary
blue layer

pairwise

creating top-most stencil
(for blue layer)input image

2 2

1 1

3 3

Figure 4: Illustration of the potential suppression strategy: (left to right): the
input image; initial potentials; the top-most stencil is computed (stencil is light
blue, paint area is blue); at the painted area, unaries of the remaining two colors
(brown and yellow) and the pairwise potentials are suppressed.

Procedure 1 Compute-All-Stencils :
computing all stencils for a given ordering
Input: L, π, φ, ψ
Output: y

for s = L to 2 do
y∗,πs = Compute-One-Stencil(L, π, s, φ, ψ)
for all i with yi,πs = 1 do

φi,∗ = 0
for all (i, j) ∈ E with yi,πs = 1 or y j,πs = 1 do

ψi, j = 0
L = L \ {πs}

y∗,π1 = 1

This suppression strategy is well justified. We can prove
that given the layers that have been computed (πs, . . . , πL), the
optimizer of energy E is the same as the optimizer of the sup-
pressed energy. In other words, if we have computed the layers
πs, . . . , πL of the optimal solution of E (Eq. (3)), the remaining
layers could be computed by optimizing the suppressed energy.

Lemma 2. Given the computed stencils for the top layers,
y′πs
, . . . , y′πL

, let Ẽ be the energy using the suppressed po-
tentials, and parameterized by the set of undecided stencils
y∗,π1 , . . . y∗,πs−1 . Assuming the ordering π is given, we have

argmin
yπ1 ,yπ2 ,...,yπs−1

Ẽ((yπ1 , . . . , yπs−1), π) = argmin
y:yπs =y′πs ,...,yπL =y′πL

E(y, π) (5)

In fact, we can prove an even stronger result: the two ener-
gies are equivalent for any solution (the proof is given in the
appendix).

Computing One Stencil. Next we explain how to compute a
particular stencil y∗,πs . Unfortunately, solving such problem
exactly is computationally infeasible: for the special case of
α = 0, the problem becomes an image segmentation task with
connectedness constraint, which is proved to be NP-hard [22].
Therefore, we do not pursue an exact solution. Instead, we use a
generalization of the TopoCut approach in a multi-label setting.

We first apply a multi-label segmentation using the sup-
pressed potentials. The label set consists of the remaining la-
bels {π1, . . . πs}. The area given label πs is the paint area and the
complement, namely the union of the regions given any other
label, is the stencil. Lemma 1 gives us confidence that multi-
label segmentation would give us a reasonable stencil for the
current top layer πs.

In the case when the stencil is not connected, we fix the
topology by adapting the TopoCut algorithm. Recall TopoCut
fixes the connectivity of the foreground of a binary segmen-
tation by removing islands and building bridges. TopoCut
changes the foreground unaries accordingly and then segments
the image again. We reduce our problem into a binary segmen-
tation problem in which πs is the background and the union
{π1, . . . , πs−1} is the foreground. For each pixel i, we use the
unary of label πs, φi,πs , as the background unary, and use the

5

Procedure 2 Compute-One-Stencil : computing stencil y∗,πs

using φ, ψ on label set L
Input: L, π, s, φ, ψ
Output: y∗,πs

z =Multi-Label-Segmentation(φ, βψ + 2α, L)
y∗,πs = Jzi = πsK
while y−1

∗,πs
(0) not connected do

φ∗,fg = φ∗,πs

φ∗,bg = min`∈L\{πs} φ∗,`

φ∗,πs = TopoCut(φ∗,fg, φ∗,bg, βψ + 2α)
z =Multi-Label-Segmentation(φ, βψ + 2α, L)
y∗,πs = Jz∗ = πsK

minimum of all other unaries, min`∈L\{πs} φi,`, as the foreground
unary. These background and foreground potentials give a con-
fidence of whether a pixel i should be assigned to πs or not.
TopoCut guarantees the connectivity of the foreground/stencil.
The corresponding pseudo-code is given in Procedure 2).

Layer Ordering. Finding a good layer ordering is very impor-
tant. In the synthetic example in Fig. 5, each color segmentation
for the white, yellow, and green layer would result in a discon-
nected stencil with a large round island in the middle. To fulfill
the connectedness constraint for each layer, the island either
needs to be connected to the outer border via a bridge or needs
to be removed. As shown in the bottom row of Fig. 5, creating
bridges or removing islands does not necessarily result in visual
artifacts if the layer ordering is chosen such that layers drawn
later cover the affected region. In this example each islands in
the white, green, and yellow layer could be removed without
affecting the result. The input image is perfectly reproduced. In
contrast, for a non-optimal layer ordering (see Fig. 5, top row)
the layers drawn later can not cover the removal of islands in the
white, green, and yellow layer and bridges must be created as a
result. The yellow color (layer 2) is more similar to the desired
green (layer 3) and white (layer 4) than red (layer 1). There-
fore, the optimization tries to create yellow bridges instead of
red ones. As a result, the painted area of layer 2 comprises the
areas of the bridges of layer 3 and 4 while trying to maintain a
minimal stencil boundary. In Sec. 4, we show more evidence
on real images that the layer ordering is essential for a good
reproduction of the input.

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Figure 5: Without a good ordering (top row) many bridges need to be created;
with a good ordering (bottom row) the input image is perfectly reproduced.

To decide the optimal layer ordering π, a naive method is to
enumerate all possible orderings (L! many). For each ordering,

Figure 6: Left and middle: stencils with and without stability bridges when
they are attached to the wall (corresponding to the “joker” painting shown in
Fig. 2). Right: illustration of how the stability bridge is built. A stability bridge
(blue) is built to connect p (grey) and q, which is chosen from some boundary
candidates (red). The boundary point with the maximal geodesic distance from
p is highlighted and its geodesic path from p is drawn.

compute stencils using Compute-All-Stencils and evaluate
the energy (Eq. (3)). However, for a large number of layers this
is impractical as Compute-All-Stencils, the most expensive
operation, is executed L! times.

We propose an efficient heuristic algorithm to decide order-
ing before actually calling Compute-All-Stencils. The idea
is to pre-compute all stencils using the partition-and-fix strat-
egy. The algorithm then enumerates all possible orderings. For
each ordering, evaluate the energy E using these precomputed
stencils. Procedure 3 shows the corresponding pseudo-code.
The intuition behind this approach is that TopoCut would fix the
topology while sacrificing the appearance. We find the ordering
with the least amount of appearance damage due to TopoCut.
Note that computing each stencil using the partition-and-fix
strategy is equivalent to calling Compute-One-Stencil with
the corresponding stencil as the top-most layer.

Our algorithm calls Compute-One-Stencil L
times for precomputation, and L − 1 times inside
Compute-All-Stencils. In contrast, the naive method
calls Compute-One-Stencil for (L − 1) × L! times. We run
experiments on 31 images, using 3 colors. Our method is
almost as good as the naive method; the former is only 0.27%
worse than the latter in terms of achieved energy.

Improving Stability. Ensuring connectedness does not neces-
sarily guarantee that the stencil is fully usable. A good stencil
must be stable and no part of the stencil should droop when
the stencil is lifted from the ground or attached to a wall. This
is especially important for thin stencil materials such as paper,
plastic, etc. We provide the option to automatically find un-
stable parts of the stencil using a physical simulation and then
improve the stability of these identified weak areas by building
additional support bridges. Fig. 6 demonstrates stability im-
provement in a real world example.

Procedure 3 Create-Stencils : compute ordering and sten-
cils
Input: L, φ, ψ
Output: y, π

for ` = 1 to L do
δ = (1, . . . , ` − 1, ` + 1, . . . , L, `)
z∗,` = Compute-One-Stencil(L, δ, L, φ, ψ)

π = argminτ E(z, τ)
y = Compute-All-Stencils(L, π, φ, ψ)

6

Figure 7: Results (from left to right): predicted result on the wall; the generated stencil layers (light blue is the stencil material, all other colors should be cut away);
and the input image; (input images courtesy of flickr users Fred baby, Alexandre Moreau, and Nickwheeleroz)

We first locate unstable stencil points for each generated
stencil layer. A physical simulation is executed using a mass-
spring system placed in a downward gravity field. To this
end, we instantiate a unit mass-particle at each stencil points,
i.e. pixels i’s with yi,` = 0. We then create 1-neighbor and
2-neighbor spring connections to the mass-particle if both in-
volved pixels are a part of the stencil. Locations of the stencil’s
outer border are fixated. Once the mass-spring simulation has
reached an equilibrium, we perform non-maximum suppression
[29] with a window size of 0.1×max{h,w} (with image height h
and width w), in order to find particles with large displacements.
All stencil points with displacements greater than the threshold
0.25×max{h,w} are considered unstable and will be stabilized.

For each identified unstable point p, our algorithm finds an-
other stencil point q and builds a stabilizing bridge connecting
them. But not all boundary points are equally well suited. It is
important to ensure that q is not within the unstable area so that
the bridge actually improves the stability. We only choose q
from boundary points which have large enough geodesic dis-
tances from p within the stencil. Particularly, we measure the
maximal geodesic distance of all boundary points from p, and
only consider points with geodesic distance at least a half of
the maximum. Among these candidates, we choose the closest
one to p as q, and the line segment (p, q) as the bridge. See
Fig. 6 (right) for an illustration. In addition, we weight pixels
by their unaries and use the shortest path between p and q in
the weighted graph as the bridge. This makes the bridge more
likely to go through regions where the image is less likely to be
the paint color (more likely to be the stencil).

Figure 8: Real world stencil designs: mural of Jimi Hendrix (4.5ft wide), graffiti
of Audrey Hepburn on canvas, Garfield decoration on a cake.

4. Results

In general, our system generates high quality approxima-
tions of input images (see Fig. 7 for examples). To validate the
practicality of our system, we also create real world examples
(photographs are shown in Figs. 2 and 8). All employed sten-
cils were printed on polyester film and then manually cut. The
producing process is demonstrated in the supplemental video.

In order to justify different components of our contribution,
we carry out qualitative and quantitative evaluations.

Figure 9: Images used for qualitative comparisons (courtesy of flickr users
Sergiu Bacioiu, Vramak and ArloMagicMan).

7

Figure 10: Qualitative comparisons. First row: our default result; Second and third row: results using random orderings; Fourth row: bridge-only baseline result.
The bridges which are responsible for the unnatural black strokes in the bridge-only baseline results are highlighted by a red circle. The input image is in Fig. 9 (left).

4.1. Qualitative Comparison

We visually compare our default method with different
downgraded versions. Note that the default method does not
include stability enforcement. Images used in this section can
be found in Fig. 9.
Necessity of layer ordering. We first compare our default
method with the same approach without the optimal ordering.
Fig. 10 (first row) shows the result of our default method, which
uses the optimal ordering. Second and third rows are results
with two random orderings, in which the topology constraint
leads to unnecessary TopoCut operations, and thus loss of im-
portant semantic features, such as the nose and the pupils of the
baby.
Necessity of TopoCut. Fig. 10 (fourth row) shows the result
when we replace the stencil generation step with a multi-layer
generalization of the method by Bronson et al. [11]. This base-
line method uses the multi-label segmentation result to directly
generate stencils and then fixes their topology. For each color,
the stencil is computed by taking the complement region. Con-
trary to TopoCut, the topology is fixed by only connecting is-
lands with bridges. Even though these bridges are optimized
with regard to unaries so that they go through regions which
are less likely to be the paint, unnecessary bridges would still
introduce unnatural strokes in the appearance.
Necessity of potential suppression. One of our contribu-
tions is the potential suppression strategy in multi-layer sten-
cil computation (Procedure Compute-All-Stencils). To il-
lustrate the importance of this strategy, we compare our de-
fault method with a baseline method using the partition-and-
fix strategy. Recall that we use the partition-and-fix strategy to
generate pre-computed stencils for layer ordering computation.

This baseline method is implemented by replacing the last line
in Create-Stencils by simply stacking precomputed sten-
cils z∗,` according to the computed ordering π. In experiments,
our default method and the baseline method have similar final
appearance. However, the proposed potential suppression ap-
proach achieves a much smaller cut length for stencils. As an
example, please compare the third stencil layer in Fig. 11.

Figure 11: Comparison of results with (left) and without (right) the suppres-
sion strategy. Top: all stencil layers; Middle: magnification of the third layer;
Bottom: final appearance. The input image is in Fig. 9 (middle).

8

4.2. Quantitative Comparison

We compare our default method (M0) with the three down-
graded versions mentioned in the previous section: M1: our ap-
proach without layer ordering optimization (using random or-
dering instead), M2: bridge-only baseline, M3: our approach
without suppression strategy (using partition-and-fix instead).
In addition, we compare with M4: stencil creation using the
conventional method. Given the preview result as a starting
point, a human subject employs a professional image editing
software (Adobe Photoshop) to manually create stencils and de-
cide the ordering. Please refer to the supplemental material for
the detailed instructions that were given to the subjects.

We compare the methods on 75 data items. Each data item
includes one input image and one parameter setting (L, α and
β). Results are compared in terms of similarity to the input
segmentation (the appearance energy Eappearance), simplicity of
the stencils (the cut length of stencils) and our multi-layer sten-
cil energy (Eq. (2)). The average scores are given in the table
below. Since for different data, these measures are not compa-
rable, we normalize them before taking average over all data
items. For each data item and each measure, we normalize by
dividing by the corresponding measure of the preview (multi-
label segmentation result). The conventional method (M4) is
time-consuming. Therefore, it was not executed for all 75 input
images. In total, we asked 13 human subjects to perform this
task, each on a different input image.

M0 M1 M2 M3 M4
Eappearance 1.012 1.025 1.043 1.013 1.045

Cut Length 0.797 0.795 0.885 0.883 0.929
Total Energy 0.984 0.997 1.023 0.996 1.033

Avg. Time (Sec.) 61 22 32 40 588

As shown in the table above, in terms of the total multi-layer
stencil energy, our method is better than all others. The dif-
ference is statistically significant; applying a t-tests to compare
our method and each downgraded method (M1 to M4), we ob-
serve that the p-value is always below 0.003. We also observe
that using random ordering (M1) generates a slightly shorter
cut length than our default method. However, this is often due
to dropping some big islands, leading to worse appearance, and
thus higher total energy. Using partition-and-fix strategy (M3)
has similar appearance as our default method. But the cut length
is generally much longer, penalizing the total energy more.

Due to the normalization, the quantitative difference be-
tween different methods could appear small. However, the ac-
tual difference is huge. For example, below we show the mean
cut length in number of pixels per layer. (The cut length of each
data is divided by the number of layers.) It can be oberved that
M0 and M1 are approximately 300 pixels shorter than M2 and
M3. They are 950 pixels shorter than M4. Since the size of our
images are approximately 500 × 600 pixels, these differences
are very noticeable.

M0 M1 M2 M3 M4
Cut Length (Pixel) 2188 2194 2504 2467 3157

We also compare the computation times of all methods. For
the conventional method (M4), we measure the time a human
subject needs for editing stencils using Photoshop, under the
condition that the subject has read the complete instructions
and is instructed to finish the task as fast as possible without
sacrificing the quality. Although slower than our other auto-
matic baselines, our default method is approx. 10 times faster
than the conventional method (M4).

User study. Visual quality cannot be simply measured by com-
paring energy. In practice, we notice cases in which the visual
quality is dramatically changed when we change some small
yet semantically important regions, e.g. pupils, nose, etc. We
carried out a user study to visually compare our default method
with the downgraded versions. A group of 17 participants is
asked to rank the results of different methods basing on visual
quality. For each data item, the result with the best visual qual-
ity receives a rank score of 1 and the worst a score of 5. A lower
rank is considered better. We use all 13 data items for which we
have results for the conventional method (M4). Detailed user
instructions and all data items can be found in the supplemen-
tal material. Below we show the average user rankings for all
methods.

M0 M1 M2 M3 M4
Avg. Ranking 2.08 4.21 3.31 2.04 3.37

Consistent with our previous finding by comparing appearance
energy, our default (M0) and the partition-and-fix method (M3)
received the best average rankings. This is expected because
only appearance is evaluated here and the smaller cut length of
M0 is neglected. Though the average for M3 is slightly lower,
statistically our default method is on a par with M3 (equiva-
lence testing with two one-sided Wilcoxon-Mann-Whitney tests
[30] shows no statistical difference). Other methods (M1, M2
and M4) have worse average user ranking. Using a Wilcoxon-
Mann-Whitney test, we can reject the null hypothesis that there
is no difference between our default method and them (all p-
values < 10−21). Therefore, the superiority of our default
method in terms of user rating is statistically significant.

4.3. Improving Stability
In this section, we evaluate the proposed method to improve

the stencil’s stability. In terms of speed, adding stability en-
forcement makes our algorithm about 3 times slower, largely
due to the expensive operation of physical simulation. On the
other hand, the approach improves stability drastically. See
Fig. 12 for a comparison of the results with and without stabil-
ity bridges. The added stability bridges improves the stability,
while negatively affecting the final appearance slightly.

In Fig. 13, we plot the stencil energy E and the stability as
more and more stability bridges are built. In order to measure
the stability, we carry out physical simulation as explained in
Sec. 3.2. The evaluation score for stability is the maximal dis-
placement of all simulation particles. A smaller score indicates
a more stable stencil. The x-axis is the maximal number of sta-
bility bridges that are allowed to be built for each stencil layer
(bridges would not be built if a stencil has reached the stability

9

Figure 12: Comparison of the default method (left) and the result with stabil-
ity enforcement (right). Top: all stencil layers; Bottom: magnification of the
second layer, and the final appearance. The input image is in Fig. 9 (right).

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Number of Stability Bridges to Add

Energy

Displacement

Figure 13: Plot of energy and stability over the number of stability bridges.

threshold). The y-axis is the ratio of displacement (resp. energy)
of stabilized stencils over displacement (resp. energy) of the
original stencils. The stability is improved by up to 70% if we
build up to 3 stability bridges for each stencil layer. As a result,
the stencil energy increases by 3%. The extra penalty includes a
decreased final appearance as well as extra cut length due to ad-
ditional bridges. In the example shown in Fig. 12 (right), three
stability bridges per stencil layer were generated.

5. Conclusion and future work

In this paper, we propose a system which automatically gen-
erates stencil layers, so that users only need to focus on the de-
signing stage in the stencil creation process. The problem is
formulated as a constrained energy optimization problem and
solved efficiently. We evaluated different components of our al-
gorithm in qualitative and quantitative comparisons and showed
that our default approach receives the best result.

One issue of our system is that the generated stencils may
lose some important semantic features in the final appearance,
such as the nose or eyes in a human portrait. At this stage, we
leave it to the users to fix these areas using strokes. However, in
future, we would like to train our system to keep such features
intact. This could be achieved by training a classifier to decide
whether to keep an island in the TopoCut procedure.

Computer-aided art creation has received large interest in
the computer graphics community as well as among contem-
porary artist. Multi-layer stencil design is difficult for humans
because of the huge solution space and the complicated factors
that need to be considered. We believe our system is a good ex-
ample where computational methods can assist artists without
affecting their artistic intent.

In future, we plan to extend our method to other applications
such as paper folding [8], paper craft [9], and popup design

[31, 6]. In these applications topological connectivity, geomet-
ric simplicity, and physical stability are also important factors.
Our energy based framework, which incorporates these factors
seamlessly, could help human designers to transfer their ideas
easily into reality.

References

[1] Mitra NJ, Pauly M. Shadow art. ACM Transactions on Graphics (TOG)
2009;28(5).

[2] Raskar R, Ziegler R, Willwacher T. Cartoon dioramas in motion. In:
Non-Photorealistic Animation and Rendering. NPAR; 2002, p. 7–ff.

[3] Borosan P, Jin M, DeCarlo D, Gingold Y, Nealen A. RigMesh: Au-
tomatic rigging for part-based shape modeling and deformation. ACM
Transactions on Graphics (TOG) 2012;31(6).

[4] Maharik R, Bessmeltsev M, Sheffer A, Shamir A, Carr N. Digital microg-
raphy. ACM Transactions on Graphics (TOG) 2011;30(4).

[5] Fu H, Zhou S, Liu L, Mitra N. Animated construction of line drawings.
ACM Transactions on Graphics (TOG) 2011;30(6).

[6] Li XY, Shen CH, Huang SS, Ju T, Hu SM. Popup: Automatic paper
architectures from 3d models. ACM Transactions on Graphics (TOG)
2010;29(4):111–9.

[7] Lang RJ. A computational algorithm for origami design. In: Computa-
tional Geometry. CG; 1996,.

[8] Kilian M, Flöry S, Chen Z, Mitra NJ, Sheffer A, Pottmann H. Curved
folding. In: ACM Transactions on Graphics (TOG); vol. 27. 2008,.

[9] Mitani J, Suzuki H. Making papercraft toys from meshes using strip-
based approximate unfolding. ACM Transactions on Graphics (TOG)
2004;23(3).

[10] DeCarlo D, Santella A. Stylization and abstraction of photographs. ACM
Transactions on Graphics (TOG) 2002;21(3).

[11] Bronson J, Rheingans P, Olano M. Semi-automatic stencil creation
through error minimization. In: Non-Photorealistic Animation and Ren-
dering. NPAR; 2008, p. 31–7.

[12] Meng M, Zhao M, Zhu SC. Artistic paper-cut of human portraits. In:
Iinternational Conference on Multimedia. MM; 2010, p. 931–4.

[13] Igarashi Y, Igarashi T. Holly: A drawing editor for stencil design. In:
Non-Photorealistic Animation and Rendering. NPAR; 2009, p. 8–14.

[14] Xu J, Kaplan CS. Artistic thresholding. In: Non-Photorealistic Animation
and Rendering. NPAR; 2008, p. 39–47.

[15] Gerstner T, DeCarlo D, Alexa M, Finkelstein A, Gingold Y, Nealen A.
Pixelated image abstraction. In: Non-Photorealistic Animation and Ren-
dering. NPAR; 2012, p. 29–36.

[16] Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground ex-
traction using iterated graph cuts. ACM Transactions on Graphics (TOG)
2004;23(3):309–14.

[17] Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image
Processing. MIT Press; 2011. ISBN 9780262015776.

[18] Freedman D, Drineas P. Energy minimization via graph cuts: Settling
what is possible. In: Computer Vision and Pattern Recognition. CVPR;
2005, p. 939–46.

[19] Kolmogorov V, Zabih R. What energy functions can be minimized
via graph cuts? Pattern Analysis and Machine Intelligence (PAMI)
2004;26(2):147–59.

[20] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimiza-
tion via graph cuts. Pattern Analysis and Machine Intelligence (PAMI)
2001;23(11):1222–39.

[21] Nowozin S, Lampert C. Structured learning and prediction in computer
vision. Now Publishers; 2011.

[22] Vicente S, Kolmogorov V, Rother C. Graph cut based image segmenta-
tion with connectivity priors. In: Computer Vision and Pattern Recogni-
tion. CVPR; 2008, p. 1–8.

[23] Zeng Y, Samaras D, Chen W, Peng Q. Topology cuts: A novel min-
cut/max-flow algorithm for topology preserving segmentation in n-d im-
ages. Computer Vision and Image Understanding (CVIU) 2008;112(1).

[24] Nowozin S, Lampert CH. Global connectivity potentials for random field
models. In: Computer Vision and Pattern Recognition. CVPR; 2009, p.
818–25.

[25] Edelsbrunner H, Harer J. Computational topology: an introduction.
American Mathematical Society, Providence, RI; 2010.

10

[26] Bendich P, Edelsbrunner H, Morozov D, Patel A. The robustness of level
sets. In: European Symposium on Algorithms. 2010, p. 1–10.

[27] Chen C, Freedman D, Lampert C. Enforcing topological constraints
in random field image segmentation. In: Computer Vision and Pattern
Recognition. CVPR; 2011, p. 2089–96.

[28] Blake A, Rother C, Brown M, Perez P, Torr P. Interactive image segmen-
tation using an adaptive gmmrf model. In: ECCV. 2004, p. 428–41.

[29] Neubeck A, Van Gool L. Efficient non-maximum suppression. In: Inter-
national Conference on Pattern Recognition. ICPR; 2006, p. 850–5.

[30] Lehmann E. Nonparametrics: statistical methods based on ranks (POD).
Prentice-Hall: 1st edition (1975). Springer (Berlin): Revised edition;
2006.

[31] Li XY, Ju T, Gu Y, Hu SM. A geometric study of v-style pop-ups: The-
ories and algorithms. ACM Transactions on Graphics (TOG) 2011;30(4).

Appendix

Proof of Lemma 1. It suffices to show that fi, j(y) =
∑
`∈LJyi,` ,

y j,`K is equal to two if zπi , zπj and zero otherwise. Due to the
assumption, we have yi,` = 1 if ` = zπi , and zero otherwise. So
does y j,`. If zπi = zπj , then yi,` = y j,` for all `, and fi, j(y) = 0. If
zπi , zπj , then yi,` , y j,` if and only if ` = zπi or zπj . Then we have
fi, j(y) = 2. �

Proof of Lemma 2.. We separate L into the sets of unde-
cided labels and decided labels, L0 = {π1, . . . , πs−1} and L1 =

{πs, . . . , πL}. The energy of Eq. (3) can be rewritten as

E(y, π) =
∑
i∈V

zπi ∈L0

∑
`∈L

φi,`Jzπi = `K +
∑
i∈V

zπi ∈L1

∑
`∈L

φi,`Jzπi = `K

+ β
∑

(i, j)∈E
zπi ∈L0 and zπj∈L0

ψi, jJzπi , zπjK + β
∑

(i, j)∈E
zπi ∈L1 or zπj∈L1

ψi, jJzπi , zπjK

+ α
∑

(i, j)∈E

∑
`∈L0

Jyi,` , y j,`K + α
∑

(i, j)∈E

∑
`∈L1

Jyi,` , y j,`K (6)

In this equation the terms are separated into the set on which the
predicate is unknown (left) and the set on which the predicate is
known (right). (The predicate zπi , zπj is known as long as either
zπi or zπj is known.) All the terms on the right are constants, since
we are given y`, ` ∈ L1. The sum of all terms on the left is equal
to the suppressed energy Ẽ, namely, the energy model E with
φi,` set to zero for all zπi ∈ L1, and ψi, j set to zero for all zπi ∈ L1
or zπj ∈ L1. �

11

	Introduction
	Background
	Multi-layer Stencil Generation
	Potential Generation and Preview
	Automatic Stencil Computation

	Results
	Qualitative Comparison
	Quantitative Comparison
	Improving Stability

	Conclusion and future work

