
Toward Simulation-Based Optimization in Data
Stream Management Systems

Christoph Heinz, Jürgen Krämer, Tobias Riemenschneider, Bernhard Seeger
Department of Mathematics and Computer Science

University of Marburg, Germany
{heinzch, kraemerj, tobys, seeger}@mathematik.uni-marburg.de

Abstract— Our demonstration introduces a novel system ar-
chitecture which massively facilitates optimization in data stream
management systems (DSMS). The basic idea is to decouple
optimization from the operative system by means of a secondary
optimization system, which bears the burden of determining new
query plans. Within the secondary system, which typically runs
on a separate machine, we utilize suitable statistical models of
the original data streams to simulate them. As the simulation can
run at much faster rates, we are able to examine and assess new
query plans in a shorter period of time without running the risk
of deteriorating the original plan; we only migrate practically
approved plans into the operative system. In our demonstration,
we will present our prototypical implementation of this optimiza-
tion architecture. We will demonstrate the interaction between
primary and secondary system as well as the key features of the
whole optimization process.

I. INTRODUCTION

Market analysis, production control as well as traffic man-
agement are only but a few examples of continuous query
applications, which are characterized by the volatility of the
processed streams and the long-running nature of the corre-
sponding queries. Due to the growing importance of these
applications, the need for dedicated DSMS has come to the
fore in recent years. Among the components of a DSMS, the
query optimizer has turned out to be a vital one. Its main
objective is to determine high quality query plans that keep
pace with changes in stream or system conditions. However,
the huge number of possible query plans combined with
changing stream characteristics severely impedes achieving
this objective, e. g., outdated statistics may lead to an even
poorer plan. For that reason, a suitable cost model which
assesses the query plans suggested during plan enumeration is
crucial. However, only a few cost models have been proposed
yet in the context of continuous queries [1], [2]. Furthermore,
none of them covers the complete set of operations required
in streaming environments. Generally, it is difficult to develop
cost models that capture arbitrary stream characteristics, e.g.
temporal correlations, with sufficient accuracy. Additionally,
estimations based on complex cost models often require ex-
pensive calculations.

On account of these deficiencies, we pursue a novel ap-
proach that substitutes traditional cost-based optimization for
simulation-based optimization. More precisely, we simulate
the evaluation of a query plan with synthetic data streams gen-
erated from statistical models and simply measure the runtime

costs, rather than estimating them by means of a cost model.
For the simulation, we utilize lightweight statistical models of
the original streams, which keep pace with the current stream
characteristics. As the simulation can run at much higher rates,
we can significantly accelerate the enumeration of possible
plans. It is worth mentioning that the simulation and the plan
generation can either run on the same machine as the operative
system or on a separate one. If it runs on the same machine, a
sufficient amount of system resources must be reserved for the
simulation and optimization process. For the sake of simplicity,
we distinguish between a primary system, which runs the
current query plan, and a secondary system, which runs the
simulation and determines a new query plan.

II. SYSTEM OVERVIEW

We have implemented this novel optimizer architecture on
top of our data stream infrastructure PIPES [3], [4], which
is an integral part of our Java library XXL [5]. For illustra-
tion purposes, Figure 1 provides an overview of the general
architecture, its essential modules, and their interaction.

A. Primary System

The key component of the primary system is the query
executor. It manages the entirety of continuous queries in
the running system, i. e., it receives new queries, combines
them with already registered queries, and removes outdated
queries. An important aspect in this context is the underlying
continuous query algebra (CQ algebra), which defines the
semantics of the available stream operators. By means of a
sound CQ algebra, queries can be posed and combined in
a single query graph. PIPES provides an extensive operator
algebra with a precisely defined semantics [6], which relies
on stream elements in the form of a tuple augmented with
temporal information. To pose a query, we provide an SQL
parser that translates queries expressed in an SQL dialect,
SQL-1992 with a subset of the window constructs known from
SQL:2003, into a logical plan.

The query monitor continuously observes the query graph
and collects metadata describing the involved queries. Static
metadata comprises general information about the query graph
like schemas, whereas dynamic metadata represents varying
runtime statistics, e. g., input and output rates or operator
memory allocation. As the computational cost for monitoring
metadata of a query graph is not negligible, we monitor them



Fig. 1. Architectural overview and module interaction

on demand instead of monitoring all available metadata for
every operator in the graph. More precisely, our query monitor
relies on a publish/subscribe mechanism to collect specific
metadata of an operator only when necessary [7].

At the heart of our query simulation approach is a novel
DSMS module termed source modeller. During runtime, this
module continuously maintains a meaningful statistical model
of each data source in the query graph at low computational
cost. By means of these models, the stream of each data
source can be simulated at an arbitrary rate. The statistical
model of a data source consists of the value distribution of
the stream elements and the distribution of the inter-arrival
time between successive stream elements. More precisely,
we estimate the associated probability density functions (pdf)
which uniquely describe the distributions. In [8], [9], we
presented two sophisticated approaches, one based on kernels
and the other one on wavelets, for continuously estimating
the pdf of a data stream in a nonparametric manner, given
only limited resources. In case the data exhibits temporal
dependencies or cyclic variations like temperature throughout
a day, the source modeller aims to capture them automatically
and learns a separate model for each cycle, e. g., for each hour
of the day. By observing the developing of the pdf, we can also
detect changes in the underlying distribution, which indicate
changing stream characteristics.

The query optimizer employed in the primary system is
only a service proxy for the optimizer of the secondary system.
It is responsible for determining when to optimize, e. g., in case
the query executor receives new queries or the query monitor
reports significant changes in the observed metadata. In this
case, the optimizer proxy utilizes the serializer component
to transfer the corresponding query subgraph along with the
current statistical models for optimization purposes to the
secondary system.

The plan migration module located on the primary system
is triggered by the secondary system. When it receives an

optimized query plan from the de-serializer, it has to migrate
the currently executed plan into the new, optimized one. This
dynamic plan migration [10], [11] determines the point in
time, when the new plan produces exactly the same results
as the old one. Then, the new plan completely substitutes the
old one, which can be removed afterward. During substitution,
the plan migration module has to prevent the production
of duplicates and the loss of intermediate results. For that
purpose, it determines a suitable split time. The old plan
produces the query results before and the new plan after the
split time. The migration process is finished if all input streams
have reached the split time [10].

B. Secondary System

The secondary system serves as the optimization platform
for the primary one. The core of the secondary system consists
of the query optimizer which receives a query plan along
with statistical models of the plan’s data sources from the de-
serializer. It generates a set of new, equivalent query plans
by applying transformation rules from the temporal relational
algebra, which we adapted to our stream algebra [12], [6]. The
rule-based query optimizer used in our implementation divides
its transformation rules into groups according to common opti-
mization objectives. During plan enumeration, these groups are
systematically applied to the query in order to prevent cyclic
application of opposed rules. To the best of our knowledge,
such an extensive and operational optimization framework has
not been demonstrated in the streaming context before.

Thereafter, the optimizer passes each of these equivalent
query plans to the query executor, which runs them at
accelerated speed with simulated streams generated from the
corresponding statistical models. More precisely, we use the
estimated pdf of each data source to generate synthetic stream
elements. For that purpose, we utilize rejection sampling, a
technique to draw elements from a distribution described by its
pdf. Recall that we maintain two statistical models of each data



source, one for the values and one for the inter-arrival time.
In order to generate a synthetic stream element, we simply
have to draw an element from the value distribution and set
its timestamp as the timestamp of its successor plus the new
inter-arrival time drawn from the time distribution.

As the simulation does not have to wait for the arrival
of real stream elements, we can assess the efficiency of a
query plan within a short period of time. During simulation,
the query monitor of the secondary system continuously
collects relevant runtime statistics. The optimizer utilizes these
statistics to determine the new optimized query plan, which is
finally transmitted to the primary system.

C. Additional Benefits

The general architecture to be demonstrated can easily be
adapted to tackle other system-related tasks in a DSMS. For
example, it can serve as a testbed for different scheduling or
resource allocation strategies. Furthermore, the robustness of a
DSMS and its registered queries can be tested on the secondary
system without endangering the stability of the primary one.
Last but not least, the separation of our DSMS into a primary
and a secondary system and the option to run them on different
machines prepares the ground for adaptive, distributed DSMS.

III. DEMONSTRATION PROPOSAL

The objective of this demonstration is twofold. First, we
want to demonstrate our novel optimization architecture, its
components, and their interaction. Second, we want to convey
a general impression of our stream processing infrastructure
PIPES and its key features.

A. SQL Parser

The SQL parser provides an intuitive entry point to the
functionality of a DSMS. By using a declarative programming
language, users only have to specify the desired results instead
of implementing how the result has to be calculated. Therefore,
naı̈ve users as well as experts are able to pose queries to
the DSMS without having specific knowledge about imple-
mentation details. In our demonstration, we will introduce our
SQL parser as an integral part of the common graphical user
interface (GUI) shown in Figure 2. We will also illustrate why
our query language is compatible with SQL:2003.

B. Metadata Monitoring

Dynamic metadata plays an important role in our optimiza-
tion architecture. On the one hand, the primary system utilizes
dynamic metadata such as current input and output rates
or operator memory allocation for determining when to re-
optimize and which subquery to re-optimize. On the other hand,
the secondary system utilizes dynamic metadata to determine
the measured cost of a simulated query. Our sophisticated
publish/subscribe mechanism for dynamic metadata, which is
part of our demonstration, renders these tasks possible. We
will present a GUI (Figure 2) that allows a user to flexibly
compose and manage dynamic metadata at runtime.

C. Statistical Modeling

Our approach to simulation-based optimization uses sta-
tistical models as major ingredient. In order to enable the
simulation of data sources on the secondary system, their asso-
ciated statistical models have to be maintained and forwarded
from the primary to the secondary system. Furthermore, the
models can be used to detect changes in the characteristics of
a data source, which is crucial for identifying re-optimization
potential. For that reason, we will make use of our GUI (Figure
2) to demonstrate our statistical models and their continuous,
incremental updates at runtime.

D. Query Optimization

During plan enumeration, the query optimizer selects the
best plan from a set of semantically equivalent query plans.
Recall that the optimizer does not make use of a cost model,
but evaluates plans according to their efficiency measured
during simulation. In our demonstration, we will present the
rule-based query optimizer used in PIPES. We will point out
why the well-known transformation rules from conventional
and temporal databases equally apply to our stream algebra.
We will also illustrate the query translation process from SQL
to a logical query plan and the subsequent use of heuristics to
determine the final physical plan. Additionally, we will explain
how our optimizer summarizes query plans with common
subexpressions to reap the benefits of subquery sharing.

E. Plan Migration

The plan migration module is indispensable for the opti-
mization of continuous queries because it replaces the current
query plan with the optimized plan; thereby, it prevents the
generation of duplicates and the loss of intermediate results.
This migration process will be part of our demonstration. We
will (i) show the interaction of the plan migration module and
the query executor and (ii) demonstrate the proper migration
from the currently running plan to the optimized plan inside
the primary system.

F. System Interaction

A major part of our demonstration will be the presentation
of our novel optimization architecture, in particular the inter-
action of primary and secondary system. Our demonstration
will comprise (i) the collection of secondary metadata, (ii)
the maintenance of statistical models in the primary system,
(iii) the transfer of queries to optimize and the associated
statistical models, (iv) the simulation of query evaluation and
cost measurement in the secondary system, and (v) the transfer
of the optimized plan back to the primary system.

G. Demonstration Data Sets

Our demonstration relies on synthetic as well as real-world
data streams. As real-world data, we use sensor readings
obtained from a sensor network installed in the Intel Berkeley
Research lab [13]. The synthetic data streams simulate specific
stream characteristics of practical relevance like bursts and
changes in stream rates.



Fig. 2. GUI with SQL parser, query executor, metadata monitor, and statistical models

IV. CONCLUSIONS

Our demonstration introduces a first approach toward
simulation-based optimization in a DSMS. At the heart of
this approach is the usage of sophisticated statistical models
to simulate data streams in a secondary system. This system
founds its decision for the best query plan on the performance
achieved by candidate query plans obtained from simulations.
Since we can accelerate the arrival rate in the simulation by
orders of magnitude, we are able to predict the efficiency of a
query plan extremely fast. Hence, we do not need an explicit
cost model, which is typically difficult to determine in the data
stream scenario due to the volatility of the stream character-
istics. In our demonstration, we will present our prototypical
implementation of this novel optimizer architecture, including
(i) an architectural overview, (ii) component interaction, (iii)
our statistical modeling framework, and (iv) the optimization
process involving metadata measurement and plan migration.

In general, this optimization architecture poses a plethora
of exciting research questions, which we are currently inves-
tigating. For example, which amounts of resources does the
secondary system need? How can we use the statistical models
to determine when to re-optimize? Which other system-related
tasks in a DSMS can be similarly addressed? However, the
discussion of these questions is beyond the scope of this
demonstration proposal. The demonstration is intended to
convey a first notion of the manifold benefits of our approach.

ACKNOWLEDGEMENTS

This work has been supported by the German Research
Society (DFG) under grant no. SE 553/4-3.

REFERENCES

[1] S. D. Viglas and J. F. Naughton, “Rate-based Query Optimization for
Streaming Information Sources,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM Press, 2002,
pp. 37–48.

[2] M. Cammert, J. Krämer, B. Seeger, and S. Vaupel, “A Cost-based
Approach to Adaptive Resource Management in Data Stream Systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 2,
2008.

[3] J. Krämer and B. Seeger, “PIPES – A Public Infrastructure for Pro-
cessing and Exploring Streams,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM Press, 2004,
pp. 925–926.

[4] M. Cammert, C. Heinz, J. Krämer, T. Riemenschneider,
M. Schwarzkopf, B. Seeger, and A. Zeiss, “Stream Processing in
Production-to-Business Software,” in Proceedings of the International
Conference on Data Engineering. IEEE Computer Society, 2006, p.
168.

[5] J. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schnei-
der, and B. Seeger, “XXL - A Library Approach to Supporting Efficient
Implementations of Advanced Database Queries,” in Proceedings of
the International Conference on Very Large Data Bases. Morgan
Kaufmann, 2001, pp. 39–48.

[6] J. Krämer and B. Seeger, “A Temporal Foundation for Continuous
Queries over Data Streams,” in Proceedings of the International Con-
ference on Management of Data. Computer Society of India, 2005, pp.
70–82.

[7] M. Cammert, J. Krämer, and B. Seeger, “Dynamic Metadata Manage-
ment for Scalable Stream Processing Systems,” in Proceedings of the
International Workshop on Scalable Stream Processing Systems. IEEE
Computer Society, 2007.

[8] C. Heinz and B. Seeger, “Towards Kernel Density Estimation over
Streaming Data,” in Proceedings of the International Conference on
Management of Data. Computer Society of India, 2006.

[9] ——, “Adaptive Wavelet Density Estimators over Data Streams,” in
Proceedings of the International Conference on Scientific and Statistical
Database Management. IEEE Computer Society, 2007, p. 35.

[10] J. Krämer, Y. Yang, M. Cammert, B. Seeger, and D. Papadias, “Dy-
namic Plan Migration for Snapshot-Equivalent Continuous Queries in
Data Stream Systems,” in Proceedings of the International Conference
on Extending Database Technology, ser. Lecture Notes in Computer
Science, vol. 4254. Springer-Verlag Heidelberg, 2006, pp. 497–516.

[11] Y. Yang, J. Krämer, D. Papadias, and B. Seeger, “HybMig: A Hybrid
Approach to Dynamic Plan Migration for Continuous Queries,” IEEE
Transactions on Knowledge and Data Engineering, vol. 19, no. 3, pp.
398–411, 2007.

[12] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass, “A Foundation for
Conventional and Temporal Query Optimization Addressing Duplicates
and Ordering,” IEEE Transactions on Knowledge and Data Engineering,
vol. 13, no. 1, pp. 21–49, 2001.

[13] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and
R. Thibaux. (2004) Intel Lab Data. data.txt.gz. [Online]. Available:
http://berkeley.intel-research.net/labdata/


