$$
\begin{aligned}
& \mathbb{C}_{1}^{2}=\frac{z: \mathbb{C} w \in \mathbb{C}^{2} \times \mathbb{P}^{1}}{z_{0} w_{1}=z_{1} w_{0}} \xrightarrow{\pi} \mathbb{C}^{2} \\
& z \neq 0 \underset{\text { eind }}{\Rightarrow} \mathbb{C} w=\mathbb{C} z=\mathbb{C} \widetilde{z_{0}: z_{1}}= \begin{cases}\mathbb{C} \overparen{1: z_{1} / z_{0}} & z_{0} \neq 0 \\
\mathbb{C} \widetilde{z_{0} / z_{1}: 1} & z_{1} \neq 0\end{cases} \\
& z=0 \underset{\text { bel }}{\Rightarrow} \mathbb{C} w \in \mathbb{P}^{1} \\
& E \mid E=-1 \\
& E \mid C=0 \text { if } E \cap C=\varnothing \\
& K_{X \cup E}=E \cup \overparen{\pi \ltimes K_{X}} \\
& K_{X \cup E}\left|K_{X \cup E}=K_{X}\right| K_{X}-1 \\
& { }^{1} \Delta \mathbb{C}^{2} \times \mathbb{C}^{2}=\frac{L \times L \in{ }^{1} \Delta \mathbb{C}^{2} \times \mathbb{C}^{2}}{L \in L}=\frac{\left\langle\vdash^{0}: L^{1}>\times L^{0}: L^{1}\right.}{L^{0} \vdash^{1}=L^{1} \vdash^{0}} \\
& { }_{0}^{1} \Delta \mathbb{C}^{2} \times \mathbb{C}^{2}=\frac{\left\langle 0 \neq \vdash^{0}: L^{1}>\times L^{0}: L^{1}\right.}{L^{0} \vdash^{1}=L^{1} \vdash^{0}} \xrightarrow{\imath} \mathbb{C}^{2} \ni \frac{\downarrow^{1}}{\downarrow^{0}}: L^{0} \\
& { }_{1}^{1} \Delta \mathbb{C}^{2} \stackrel{1}{\times} \mathbb{C}^{2}=\frac{\left\langle\vdash^{0}: \downarrow^{1} \neq 0>\times L^{0}: L^{1}\right.}{L^{0} \vdash^{1}=L^{1} \vdash^{0}} \xrightarrow{\imath x} \mathbb{C}^{2} \ni \frac{\downarrow^{0}}{\downarrow^{1}}: L^{1} \\
& <t^{0} \neq 0: t^{1} \neq 0>\times L^{0}: L^{1} \in{ }_{01}^{1} \Delta \mathbb{C}^{2} \times \mathbb{C}^{2}
\end{aligned}
$$

$$
\begin{gathered}
<\vdash^{0}: \downarrow^{1}>\times L^{0}: L^{1} \in \mathbb{Q} \mathbb{C}^{2} \times \mathbb{C}^{2} \xrightarrow{l p} \mathbb{C}^{2} \ni L^{0}: L^{1} \\
\pi^{-1} L^{0}: L^{1}= \begin{cases}\left\langle L^{0}: L^{1}>\right. & L^{0}: L^{1} \neq 0: 0 \\
\mathbb{\Delta} \mathbb{C}^{2} & L^{0}: L^{1}=0: 0\end{cases}
\end{gathered}
$$

