$$
\begin{aligned}
& \text { Gauss measure } \mu \text { on } \mathbb{R} \nabla_{-\infty} \mathbb{R}^{d} \ni \vdash \\
& \int_{\mu_{\downarrow}}^{\mathbb{R}_{-\infty} \mathbb{R}^{d}} e^{i \upharpoonright\urcorner}=e^{-१ \times C\urcorner / 2} \\
& \mathbb{R}_{-\infty} \mathbb{R}^{d} \\
& \int_{\mu_{b}} \overparen{b \mathfrak{b}}^{2 n+1}=0 \\
& \mathbb{R} \nabla_{-\infty} \mathbb{R}^{d} \\
& \int_{\mu_{b}}^{-\infty} \overparen{b า}^{2 n}=\underbrace{2 n-1} \underline{2}^{2 n-3} \underline{2 n-5}=\cdots \nmid \frac{n}{\boldsymbol{n}} C \text { १ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wiener measure } \mu \text { on } \mathbb{R}_{-\infty} \nabla \mathbb{R}^{d} \ni \mathfrak{b} \\
& \int_{\mu_{\vdash}}^{\mathbb{R}_{-\infty} \mathbb{R}^{d}} e^{i \vdash\urcorner}=e^{\left.\imath \mathbb{\pi} \Delta^{-1}\right\urcorner / 2} \\
& \int_{\mu_{\llcorner }}^{\mathbb{R}_{-\infty} \mathbb{R}^{d}} \overparen{b n}^{2 n+1}=0 \\
& \mathbb{R}_{-\infty} \mathbb{R}^{d} \\
& \int_{\mu_{b}}^{-\infty} \overparen{b า}^{2 n}=\underbrace{2 n-1} \underbrace{2 n-3} \underbrace{2 n-5}=\cdots-\eta \frac{n}{\boldsymbol{n}} \Delta^{-1} \eta \\
& \mathbb{R} \underset{\text { bilin }}{\overleftarrow{I-\Delta}^{-1}} \mathbb{R}^{d} \triangleq \mathbb{R} \times \mathbb{R}^{d} \triangleq \mathbb{R}
\end{aligned}
$$

Ornstein-Uhlenbeck measure μ on $\mathbb{R}_{-\infty} \mathbb{R}^{d} \ni \downarrow$

$$
\begin{aligned}
& \mathbb{R}_{-\infty} \mathbb{R}^{d} \\
& \left.\int_{\mu_{\mathfrak{b}}} e^{i \vdash \mathfrak{l}}=e^{-\urcorner \pi \overline{I-\Delta}}{ }^{-1}\right\urcorner / 2 \\
& \mathbb{R}_{-\infty} \mathbb{R}^{d} \\
& \int_{\mu_{b}}^{-\infty}{\overparen{b र}^{2 n+1}=0}^{2 n} \\
& \mathbb{R} \nabla_{-\infty} \mathbb{R}^{d}
\end{aligned}
$$

