$$
\begin{aligned}
& 2^{\ell} \text { choices } \square \subset \square \subset{ }_{\text {frame }}^{\text {simple }} \subset \stackrel{ \pm}{K}^{\ddagger} \mathbb{C} \text { pos: }|\boldsymbol{\square}|=\ell \\
& 0=_\underline{K}^{\mathbb{C}} ᄃ^{\square} \underline{K}^{\mathbb{C}}=\frac{b \in{ }_{\square} \underline{K}^{\mathbb{C}}}{b \mid \boxtimes=0} ᄃ_{\square} \underline{K}^{\mathbb{C}} \text { subtorus } \\
& { }_{\square} \underline{K}^{\top} \mathbb{C}={ }_{\square} \underline{K}^{\mathbb{C}} \times{ }_{\square} \underline{K}_{\underline{K}}^{\mathbb{C}}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\square}^{\mathbb{T}} \underline{K}^{\top}{ }^{\mathbb{C}}={ }_{\square}^{\mathbb{Q}} \underline{\underline{K}}^{\mathbb{K}}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\square}^{\mathbb{R}} \underline{K}^{\mathbb{C}}={ }_{\square}^{\mathbb{C}} \underline{K}^{\mathbb{C}} \times{ }_{\square}^{\mathbb{Q}} \underline{K}^{\top}={ }_{\square}^{\mathbb{C}} \underline{K}^{\top} \times{ }_{\square}^{\mathbb{C}} \underline{K}^{\mathbb{Z}} \\
& ={ }_{\square} \underline{K}^{\mathbb{C}} \times \overbrace{\square \underline{K}^{\mathbb{K}}{ }^{\mathbb{C}} \times_{\square}^{\mathbb{Q}} \underline{K} \mathbb{K}}^{\substack{\mathbb{R} \mathbb{K} \mathbb{C}}}
\end{aligned}
$$

$$
\underline{K}^{\mathbb{C}}={ }_{\square}^{\mathbb{T}} \underline{K}^{\top} \times_{\square}^{\mathbb{C}} \underline{K}^{\infty}
$$

$$
\begin{aligned}
& ={ }_{\square} \underline{K}^{\mathbb{C}} \times \overbrace{\square \underline{K}_{\underline{K}}^{\mathbb{C}} \times_{\square} \underline{K}_{\underline{K}}^{\mathbb{K}}}^{\stackrel{N}{\mathbb{K}}_{\mathbb{C}}}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\square} \underline{X}^{\underset{K}{\mathbb{C}}} \times{ }_{\square}^{\mathbb{R}} \underline{K}^{\mathbb{K}}={ }_{\square}^{\mathbb{R}} \underline{K}^{\mathbb{K}}: \quad{ }_{\square}^{\mathbb{C}} \underline{K}^{\mathbb{C}} \times{ }_{\square}^{\mathbb{R}} \underline{K}^{\underset{K}{\mathbb{C}}}={ }_{\square}^{\mathbb{R}} \underline{K}_{\underline{K}}^{\mathbb{C}}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\square}^{\mathbb{R}} \underline{K}^{\mathbb{C}}=\frac{{ }^{\mathbb{R}} \underline{K}_{4}^{\mathbb{C}}}{\langle\boxtimes\rangle \not \supset 4 \in, \overline{\mathbb{T}}^{\mathbb{C}}} \text { nilp rad } \\
& { }_{\square}^{\mathbb{R}} \underline{K}_{\underline{K}}^{\mathbb{C}}={ }_{{ }_{\square}}^{\mathbb{R}} \underline{K}^{\mathbb{C}} \times{ }_{{ }_{\square}}^{\mathbb{R}} \overline{\bar{K}}^{\mathbb{C}}
\end{aligned}
$$

$$
\underline{\left.\left(\begin{array}{l}
\mathbb{R} \leq \mathbb{S} \\
\mathbb{C}
\end{array} \mathbb{T}^{\mathbb{K}}\right) \neg \mathbb{h}^{\mathbb{K}}={ }_{\square}^{\mathbb{R}}\right\rangle_{\underline{K}}^{\mathbb{C}} \text { centr of toral subgrp }}
$$

