$$
\begin{aligned}
& \mathbb{R}_{>} \xrightarrow[\mathrm{bij}]{\mathscr{\ell}} \mathbb{R} \\
& { }^{x} \underline{\ell}=\frac{1}{x} \\
& { }^{y_{\underline{e}}}={ }^{y_{\mathfrak{e}}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}<1 \Rightarrow{ }^{1+x} \not \ell<\sum_{n \geqslant 1}(-1) \frac{x^{n}}{n} \\
& \partial_{x}^{1+x} \not \ell=\frac{1}{1+x} \\
& \partial_{x} \sum_{n \geqslant 1}(-1) \frac{x^{n}}{n}=\sum_{n \geqslant 1}(-1) n \frac{x^{n-1}}{n}=\sum_{n \geqslant 1}\left(\begin{array}{c}
n-1 \\
(-1)
\end{array} x^{n-1}=\sum_{n \geqslant 0}(-1) x^{n}=\sum_{n \geqslant 0}(-x)^{n}=\frac{1}{1-(-x)}=\frac{1}{1+x}\right. \\
& { }^{1+0} \not \mathscr{X}=0=\sum_{n \geqslant 1}(-1) \frac{0^{n}}{n} \\
& x=-1 \Rightarrow \sum_{n \geqslant 1}(-1) \frac{(-1)^{n}}{n}=-\sum_{n \geqslant 1} \frac{1}{n}=-\zeta_{1}(1)=-\infty \\
& x=1 \Rightarrow \sum_{n \geqslant 1}(-1) \frac{n-1}{n}=\sum_{n \geqslant 1}(-1) \frac{1}{n-1}=-\zeta_{1}(-1)={ }^{2} \nprec
\end{aligned}
$$

