$$
\begin{gathered}
\eta \in \mathbb{C}_{\triangle} \mathbb{C} \\
\Re\urcorner<c \in \mathbb{R} \Longrightarrow\urcorner=\mathrm{cst}
\end{gathered}
$$

$$
\left.\left.\overline{z_{\mathfrak{Z}}} \mathfrak{e}=\Re^{z_{1}} \mathfrak{e}<{ }^{c} \mathfrak{e}<\infty \underset{\text { Liou }}{\Rightarrow}\right\urcorner \ltimes_{\mathfrak{e}}=\mathrm{cst} \underset{\text { loc inj }}{\Rightarrow}\right\urcorner=\mathrm{cst}
$$

$$
\bigwedge_{z \geqslant 1}^{\sqrt[z]{z}} \leqslant M \bar{z}^{n} \Rightarrow \eta \in \mathbb{C}^{n} \mathbb{C} \text { poly }
$$

$$
\sqrt{z^{\eta}} \leqslant M \frac{n}{1+\bar{z}} \Rightarrow \eta \in \mathbb{C}_{\triangle}^{n} \mathbb{C} \text { poly }
$$

$$
\left\{\begin{array}{l}
\omega_{1}: \omega_{2} \text { free } \mathbb{R} \\
\left.z+\omega_{1} \eta={ }^{z+\omega_{2}}\right\urcorner={ }^{z} \eta
\end{array} \quad \Rightarrow \eta=\mathrm{cst}\right.
$$

$$
{ }^{\zeta} 1={ }^{1 / \zeta} \text { ๆ hebbar in } \zeta=0 \Longrightarrow \eta=\mathrm{cst}
$$

