$$
\begin{aligned}
& x_{\mathfrak{t}}=\frac{x_{\mathfrak{s}}}{x_{\mathfrak{c}}} \\
&-x_{\mathfrak{t}}=-{ }^{x_{\mathfrak{t}}} \\
&-\frac{\pi}{2} \left\lvert\, \frac{\pi}{2} \xrightarrow[\text { bij }]{\mathfrak{t}} \mathbb{R}\right.
\end{aligned}
$$

$$
\begin{aligned}
& { }^{x} \underline{\mathfrak{t}}=\frac{{ }^{x} \mathfrak{\mathfrak { s }}^{x} \mathfrak{c}-{ }^{x} \mathfrak{s}^{x} \underline{\mathfrak{c}}}{{ }^{x} \mathfrak{c}^{2}}=\frac{{ }^{x} \mathfrak{c}^{2}+{ }^{x} \mathfrak{s}^{2}}{{ }^{x} \mathfrak{c}^{2}}=\frac{1}{{ }^{x} \mathfrak{c}^{2}}>0 \Longrightarrow \mathfrak{t} \text { streng isoton } \\
& x \backsim \frac{\pi}{2} \Longrightarrow\left\{\begin{array}{l}
x_{\mathfrak{s}} \backsim 1 \\
x_{\mathfrak{c}} \backsim 0
\end{array} \quad \Longrightarrow{ }^{x} \mathfrak{t} \backsim+\infty\right. \\
& x \backsim-\frac{\pi}{2} \Longrightarrow-x \backsim \frac{\pi}{2} \Longrightarrow^{x} \mathfrak{t}=-{ }^{-x} \mathfrak{t} \backsim-(+\infty)=-\infty
\end{aligned}
$$

