$$
\begin{aligned}
& { }^{\mathrm{L}} \triangle \mathbb{K}=\sum_{m}{ }^{\mathrm{L}} \triangle \mathbb{K}, \mathbb{K}_{\mathbb{K}} \mathrm{Gel} \\
& \mathrm{~L}_{\triangle \mathbb{K}}=\{\mathrm{L} \mathbf{\infty} \cdots \mathrm{\Sigma} \mathrm{~L} \underset{\mathrm{~m}-\operatorname{lin}}{\mathbb{L}} \mathbb{K}\}={ }^{\mathbb{K} \nabla \mathrm{K}} \triangle \mathbb{K}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L} \Delta \mathbb{1}=\sum_{m}^{\mathrm{L}} \Delta \mathbb{1}
\end{aligned}
$$

