$$
\begin{aligned}
& \mathbb{K}^{d}=\frac{L^{\prime}=L^{1} \cdots L^{d}}{L^{j} \in \mathbb{K}} \in \mathbb{K} \triangle \\
& \mathrm{~L}^{\cdot}+\mathrm{L}^{\cdot}={\underline{L^{1}} \cdots \mathrm{~L}^{d}}+\underbrace{\mathrm{L}^{1} \cdots \mathrm{~L}^{d}}=\underline{L}^{1}+\mathrm{L}^{1} \cdots \mathrm{~L}^{d}+\mathrm{L}^{d} \\
& a \mathrm{~L}^{\cdot}=a \underline{L}^{1} \cdots \underline{L}^{d}=a \underline{\mathrm{~L}}^{1} \cdots a \mathrm{~L}^{d} \\
& \mathbb{K}^{d} \rightarrow \mathbb{K} \nabla_{{ }_{d}}{ }_{K} \\
& \left.\mathrm{~L} .7=\sum_{j} \mathrm{~L}^{j}{ }_{j}\right\rceil
\end{aligned}
$$

