$$
\begin{aligned}
& { }^{n} \mathbb{K}_{n}=\bigcup_{\underline{m}}{ }_{\mathrm{C}}^{n} \mathbb{K}_{n} \ltimes \prod_{j} \mathbb{K}^{m_{j}} \\
& { }^{n} \mathbb{K}_{n} \ni \text { ₹ } \\
& よ \sim よ \Leftrightarrow \bigvee\left\{\begin{array}{l}
\llbracket \in{ }_{\mathrm{C}}^{n} \mathbb{K}_{n} \\
\coprod^{-1}\ulcorner\llbracket=\digamma
\end{array}\right. \\
& \left\ulcorner\in { } ^ { n } \mathbb { K } _ { n } \Rightarrow \bigvee \left\ulcorner=\bigcup_{j} \underset{j}{\ulcorner } \underset{\text { basic }}{\subset}\right.\right. \text { Г } \\
& \underset{j}{\mathbb{T}}=\binom{{ }^{m}}{\underset{j}{\pi}} m \in m_{j} \geqslant 1 \lambda_{j} \text { block } \\
& { }^{0}{ }_{j}\left\ulcorner=\lambda_{j}{ }^{0}{ }_{j}^{\Gamma}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\ulcorner=\Im^{-1}\left[\begin{array}{ccc}
\lambda_{j} & 1 & 0 \\
0 & \lambda_{j} & 1 \\
0 & 0 & \lambda_{j}
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{{ }_{0}^{〔}}{\lambda_{j}=0} \underset{\text { basic }}{\subset} \text { kern }\ulcorner
\end{aligned}
$$

Case $1 / \quad \Gamma \neq \operatorname{ran}\ulcorner$

$$
\bigcup_{j}^{\lambda_{j} \neq 0} \mathbb{J}_{j} \cup \bigcup_{j}^{\lambda_{j}=0}\left(\underset{j}{\mathbb{T}} \cup^{m_{j}} \underset{j}{\mathbb{j}}\right) \cup \underset{\sim}{\mathbb{T}} \underset{\text { basic }}{\subset} \Gamma
$$

$$
\operatorname{ker}\left\ulcorner\underset{\text { basic }}{\supset} \frac{{ }^{0} \mathbb{J}}{\lambda_{j}=0} \cup \underset{\sim}{\mathbb{T}}\right.
$$

$$
\bigwedge_{\lambda \neq 0} \operatorname{ran}\left\ulcorner\supset \operatorname { k e r } \left(\ulcorner-\lambda 1) \underset{\text { basic }}{\supset} \frac{{ }^{0} \frac{\Gamma}{j}}{\lambda_{j}=\lambda}\right.\right.
$$

Case 2 /

$$
\Gamma=\operatorname{ran}\left\ulcorner\Longrightarrow \bigvee _ { \lambda \in \mathbb { K } } \operatorname { k e r } \left(\ulcorner-\lambda 1) \neq 0 \Longrightarrow\left\ulcorner-\lambda 1=S^{-1} J S \Longrightarrow\left\ulcorner=S^{-1}(J+\lambda 1) S\right.\right.\right.\right.
$$

$$
\begin{aligned}
& =\sum_{j}^{\lambda_{j}=0} b_{j}{ }^{m_{j}-1} \sqrt{j} \\
& \Longrightarrow \bigwedge_{j} b_{j}=0 \Longrightarrow \sum_{j} \sum_{j}^{m_{j}} a_{m}^{j}{ }^{m} \mathbb{J}_{j}=\sum_{n} c_{n}{ }^{n} \underset{\sim}{\mathbb{I}} \in \operatorname{ran}\left\ulcorner\cap \operatorname { k e r } \left\ulcorner\Longrightarrow \left\{\begin{array}{l}
\bigwedge_{m}^{m_{j}\llcorner 0} a_{m}^{j}=0 \\
\lambda_{j} \neq 0 \\
\bigwedge_{j} \\
\lambda_{0}^{j}=0
\end{array}\right.\right.\right. \\
& \Longrightarrow \sum_{j}^{\lambda_{j}=0} a_{0}^{j}{ }^{0} \underset{j}{\mathbb{J}}=\sum_{n} c_{n}{ }^{n} \underset{\sim}{\mathbb{I}} \Longrightarrow \bigwedge_{j}^{\lambda_{j}=0} a_{0}^{j}=0 \\
& \bigwedge_{n} c_{n}=0 \Longrightarrow \text { free } \Longrightarrow \text { distinct } \\
& \Longrightarrow \sharp \llbracket+\sharp \frac{{ }^{0} \sqrt{J}}{\lambda_{j}=0}+\sharp \underset{\sim}{\mathbb{T}}=\operatorname{dim} \operatorname{ran}\ulcorner+\operatorname{dim} \operatorname{ker}\ulcorner=\operatorname{dim}\ulcorner\Longrightarrow \text { full }
\end{aligned}
$$

