$$
\begin{aligned}
& \left\{\begin{array}{l}
\Gamma_{V_{0}} \Gamma \\
{ }^{\mathbb{K}_{n}}
\end{array}\right. \\
& \Gamma^{G} \nabla_{0}^{G} \text { Г } \\
& { }^{n} \mathbb{K}_{n}^{\mathbb{C}} \\
& { }^{n} \mathbb{K}_{n} \ni \text { 〕 } \\
& \Gamma \searrow \llbracket=\Gamma \Gamma_{\pi^{\sharp}}^{*} \text { bilin form } \\
& \Gamma_{0} \sqsubset \Gamma \Rightarrow \Gamma_{0}^{\perp}=\frac{\llbracket \in \Gamma}{\bigwedge_{\Gamma}\ulcorner\searrow \llbracket=0} \text { ᄃГ } \\
& \left.\operatorname{ker} \mathbf{X}=\frac{\llbracket \in \Gamma}{\bigwedge_{\Gamma}^{\Gamma} \Gamma \mathbb{\searrow} \Gamma=0}=\operatorname{ker}\right\lrcorner=\Gamma^{\perp} \sqsubset \Gamma \\
& \boldsymbol{\searrow} \text { reg } \Leftrightarrow \operatorname{ker} \boldsymbol{\searrow}=0 \\
& { }^{n} \mathbb{K}_{n}^{\uplus} \ni \leftrightharpoons \\
& \Gamma \mathbf{x} \llbracket=\left\lceil\Gamma^{*}\right. \text { sesqui-lin form } \\
& \Gamma_{0} \sqsubset \Gamma \Rightarrow \Gamma_{0}^{\perp}=\frac{\Gamma \in \Gamma}{\Gamma_{0}} \text { ᄃГ } \\
& \wedge_{\Gamma} \Gamma \mathbf{x} \llbracket=0 \\
& \begin{aligned}
& \operatorname{ker} \mathbf{x}= \frac{\llbracket \in \Gamma}{\bigwedge_{\Gamma}^{\Gamma}\ulcorner\mathbf{x} \llbracket=0}=\operatorname{ker}\left\ulcorner=\Gamma^{\perp} \sqsubset \Gamma\right. \\
& \\
& \quad \begin{aligned}
\mathbf{x} & \operatorname{reg} \Leftrightarrow \operatorname{ker} \mathbf{x}=0
\end{aligned}
\end{aligned}
\end{aligned}
$$

