$$
\begin{aligned}
& \mathbb{K}_{n}{ }^{m}=\frac{\Gamma \sqsubset \mathbb{K}_{n}}{\operatorname{dim} \Gamma=m} \\
& \operatorname{cpt}^{m} \mathbb{K}_{n}^{U} \underset{\text { surj }}{ } \mathbb{K}_{n}^{m} \text { quo-top cpt } \\
& \left.\mathbb{K}_{n}^{m} \supset U_{I}=\frac{\mathbb{K}\left[\Gamma_{1} \cdots \Gamma_{n}\right]}{\Gamma_{i} \neq 0} \frac{\imath_{i}}{i^{i} \imath}{ }^{I} \mathbb{K}_{n\llcorner I} \in \mathbb{K} \triangle \Rightarrow \eta_{I} \imath^{I}=\imath \right\rvert\, U_{I} \\
& {\left[\begin{array}{lll}
\Gamma_{1} & \hat{\Gamma}_{i} & \Gamma_{n}
\end{array}\right]^{i} \imath \mathcal{Z}_{i}=\left(\mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & 1 & \Gamma_{n}
\end{array}\right]\right) \boldsymbol{\imath}_{i}=\left[\left\{\begin{array}{ll}
\Gamma_{1} & \hat{1} \\
1 & \frac{1}{1}
\end{array}\left\{\begin{array}{l}
\Gamma_{n} \\
1
\end{array}\right]=\left[\begin{array}{lll}
\Gamma_{1} & \Gamma_{i} & \Gamma_{n}
\end{array}\right] \Rightarrow{ }^{I} \imath^{I} \imath_{I}=\imath\right.\right.} \\
& \frac{\left(U_{I}: \mathfrak{Z}_{I}\right)}{I \in\left[\begin{array}{l}
n \\
m
\end{array}\right]} \text { Atlas } \mathbb{K}_{n}^{m} \in \mathbb{K} \mathbb{W}_{w} \\
& \text { overdeck } U_{I} \text { of } \mathbb{K}_{n}{ }^{m} \\
& \text { overlap } \\
& U_{I} \cap U_{\widetilde{I}} \mid \mathcal{q}_{I} \subset{ }^{I} \mathbb{K}_{n\llcorner I} \\
& \text { (} \\
& \left.\left.\begin{array}{c|c|c}
& I^{\sharp} \cap J & I^{\sharp} \cap J^{\sharp} \\
\hline I \cap J^{\sharp} & u & v \\
\hline I \cap J & \vee & w
\end{array}=\right\lrcorner \mapsto\right\lrcorner^{I} \imath_{J}=\begin{array}{c|c|c}
& J^{\sharp} \cap I & J^{\sharp} \cap I^{\sharp} \\
\hline J \cap I^{\sharp} & u^{-1} & u^{-1} v \\
\hline J \cap I & -\vee u^{-1} & w-\vee u^{-1} 乙
\end{array} \\
& \mathrm{P} \nabla_{0} \boldsymbol{\sigma}_{\text {Grass }}^{=} \frac{\Gamma コ \mathrm{P} \times \Gamma}{\Gamma \sim \mathrm{P} \times 0} \mathrm{~V}_{\mathrm{E}} \nabla_{0} \Gamma
\end{aligned}
$$

$$
\begin{gathered}
\Gamma(1:\ulcorner) \hookleftarrow よ \\
{ }^{m} \mathbb{K}_{n}=\frac{\Gamma \sqsupset \mathbb{K}_{m+n}}{\Gamma \sim \mathbb{K}_{m} \times 0}{ }^{m} \mathbb{K}_{n} \\
\mathbb{K}_{m}(1:\ulcorner) \hookleftarrow \downarrow \\
\left\ulcorner S_{0}=-\ulcorner \right. \\
S_{0}=\operatorname{Int} U \\
U=\frac{1}{0} 0 \\
\hline 0
\end{gathered}
$$

