$$
\begin{aligned}
& \mathbb{K}_{n}^{\boldsymbol{\nabla}}=\frac{\Gamma \sqsubset \mathbb{K}_{n}}{\operatorname{dim} \Gamma=1}=\frac{\mathbb{K} \Gamma}{0 \neq \Gamma \in{ }^{1} \mathbb{K}_{n}} \\
& \operatorname{cpt}{ }^{1} \mathbb{K}_{n}^{U} \underset{\text { surj }}{ } \mathbb{K}_{n}{ }^{1} \text { quo-top cpt } \\
& \mathbb{K}_{n}^{1} \geqslant U_{i}=\frac{\mathbb{K}\left[\Gamma_{1} \cdots \Gamma_{n}\right]}{\Gamma_{i} \neq 0} \\
& \mathbb{K}_{n}{ }^{1} \supset U_{i} \\
& \mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & \cdots & \Gamma_{n}
\end{array}\right] \mapsto\left[\begin{array}{lll}
\frac{\Gamma_{1}}{\Gamma_{i}} & \frac{\Gamma_{i}}{\Gamma_{i}} & \frac{\Gamma_{n}}{\Gamma_{i}}
\end{array}\right] \\
& \mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & 1 & \Gamma_{n}
\end{array}\right] \hookleftarrow\left[\begin{array}{lll}
\Gamma_{1} & \hat{\Gamma}_{i} & \Gamma_{n}
\end{array}\right] \\
& \left.\mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & \Gamma_{i} \neq 0 & \Gamma_{n}
\end{array}\right]=\mathbb{K}\left[\begin{array}{lll}
\frac{\Gamma_{1}}{\Gamma_{i}} & \frac{\Gamma_{i}}{\Gamma_{i}} & \frac{\Gamma_{n}}{\Gamma_{i}}
\end{array}\right]=\mathbb{K}\left[\begin{array}{lll}
\frac{\Gamma_{1}}{\Gamma_{i}} & 1 & \frac{\Gamma_{n}}{\Gamma_{i}}
\end{array}\right] \Longrightarrow \mathcal{V}_{i} \imath^{i}=I \right\rvert\, U_{i} \\
& {\left[\begin{array}{lll}
\Gamma_{1} & \Gamma_{i} & \Gamma_{n}
\end{array}{ }^{i} \imath \boldsymbol{\imath}_{i}=\left(\mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & 1 & \Gamma_{n}
\end{array}\right]\right) \boldsymbol{\vartheta}_{i}=\left[\begin{array}{lll}
\frac{\Gamma_{1}}{1} & \frac{1}{1} & \frac{\Gamma_{n}}{1}
\end{array}\right]=\left[\begin{array}{lll}
\Gamma_{1} & \Gamma_{i} & \Gamma_{n}
\end{array}\right] \Rightarrow{ }^{i} \imath \mathcal{Z}_{i}=I\right.}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
U_{i}: Z_{i} \\
i \in\left[\begin{array}{l}
n \\
1
\end{array}\right] \quad \text { Atlas } \mathbb{K}_{n}^{\nabla} \in \mathbb{K} \mathbb{W}_{\omega}
\end{array}\right.
$$

overdeck

$$
\mathbb{K} \Gamma \in \mathbb{K}_{n} \dot{\nabla} \Rightarrow \Gamma \neq 0 \Rightarrow \bigvee_{i \in\left[\begin{array}{c}
n \\
1
\end{array}\right]} \Gamma_{i} \neq 0 \Rightarrow \mathbb{K} \Gamma \in U_{i}
$$

overlap $i \neq j \underset{\mathrm{OE}}{\Rightarrow} i<j$

$$
U_{i} \cap U_{j}=\frac{\mathbb{K}\left[\begin{array}{lll}
\Gamma_{1} & \cdots & \Gamma_{n}
\end{array}\right]}{\Gamma_{i} \neq 0 \neq \Gamma_{j}}
$$

$$
\left[\begin{array}{lllll}
\Gamma_{1} & \hat{\Gamma}_{i} & \Gamma_{j} \neq 0 & \Gamma_{n}
\end{array}\right] \mapsto\left[\begin{array}{llll}
\Gamma_{1} & \frac{1}{\Gamma_{j}} & \frac{\Gamma_{j}}{\Gamma_{j}} & \frac{\Gamma_{n}}{\Gamma_{j}} \\
\frac{\Gamma_{j}}{j_{j}}
\end{array}\right]
$$

$\underbrace{\mathbb{K}\left[\begin{array}{lll}\Gamma_{1} & \cdots & \Gamma_{n}\end{array}\right]} \boldsymbol{q}_{i}{ }^{i} \boldsymbol{q}_{j}=\left[\begin{array}{llll}\Gamma_{1} & \hat{\Gamma}_{i} \\ \frac{\Gamma_{j}}{\Gamma_{i}} & \frac{\Gamma_{i}}{\Gamma_{i}} & \frac{\Gamma_{n}}{\Gamma_{i}} & \frac{{ }^{i}}{\Gamma_{i}}\end{array}\right] \boldsymbol{q}_{j}=\left[\begin{array}{llll}\Gamma_{1} & \Gamma_{i} \\ \frac{\Gamma_{i}}{\Gamma_{i}} & \frac{\Gamma_{j}}{\Gamma_{j}} & \frac{\Gamma_{i}}{\Gamma_{i}} \frac{\Gamma_{n}}{\Gamma_{j}} & \frac{\Gamma_{i}}{\Gamma_{i}} \frac{\Gamma_{j}}{\Gamma_{j}}\end{array}\right]=\left[\begin{array}{llll}\frac{\Gamma_{1}}{\Gamma_{j}} & \frac{\Gamma_{i}}{\Gamma_{j}} & \hat{1} & \frac{\Gamma_{n}}{\Gamma_{j}}\end{array}\right]=\underbrace{\mathbb{K}\left[\begin{array}{lll}\Gamma_{1} & \cdots & \Gamma_{n}\end{array}\right]}$

