$$
\begin{aligned}
& \Gamma=\mathbb{R}^{d} \times{ }_{d} \mathbb{R} \ni \Gamma=\mathrm{L}: 7 \\
& \text { lattice } \Lambda \text { ᄃ ᄃ } \\
& \Lambda=\mathbb{Z}<{ }_{i} \underline{Z}: \underline{2}^{j}> \\
& \boldsymbol{d}=\sum_{i}{\underline{\underline{Q}^{i}} *{ }_{i} \underline{Z}^{i} \mathrm{~d}}^{2} \\
& { }^{i} \boldsymbol{J} \in 2 \pi i \mathbb{Z} \\
& \Gamma \rtimes \Lambda \xrightarrow[\text { sympl }]{ } \Gamma \\
& \Gamma \times \mathbb{C}=\frac{\Gamma: \lambda}{\exists \underbrace{\Gamma+\lambda}: \varepsilon(\lambda) \mathfrak{e}^{-i \Gamma \boldsymbol{\lambda} / 2}} \\
& \varepsilon(\lambda+\dot{\lambda})=\varepsilon(\lambda) \varepsilon(\dot{\lambda})(-1)^{\lambda s i / 2 \pi}
\end{aligned}
$$

