$$
\begin{aligned}
& \mathbb{K}^{2^{p: q}} \\
& \eta_{K}=\prod_{k \in K} \eta_{k k} \\
& \text { L } \ni_{i} \mathrm{~L} \text { ONB } \\
& \eta_{i: j}={ }_{i} \text { 乙 * }{ }_{j} \text { 乙 } \\
& I \sharp J=\prod_{I \ni i \neq j \in J} i \sharp j \eta_{I \cap J}=\bigvee_{J}^{I} \eta_{I \cap J} \\
& I+J:=(I \cup J)\llcorner(I \cap J)=(I\llcorner J) \cup(J\llcorner I) \\
& \chi_{I+J}=\chi_{I}+\chi_{J}: N \underset{\text { Add in } 2}{\rightarrow} \\
& (I+J)+K=I+(J+K) \\
& \chi_{\mathrm{LHS}}=\chi_{I+J}+\chi_{K}=\left(\chi_{I}+\chi_{J}\right)+\chi_{K}=\chi_{I}+\left(\chi_{J}+\chi_{K}\right)=\chi_{I}+\chi_{J+K}=\chi_{\mathrm{RHS}} \\
& (I+J) \sharp K=I \sharp K J \sharp K=I \sharp(J+K)
\end{aligned}
$$

LHS $=\prod_{\ell \in I+K} \ell \sharp K \eta_{(I+J) \cap K}=\frac{\prod_{i \in I} i \sharp K}{\prod_{i \in I \cap J} i \sharp K K} \frac{\prod_{j \in J} j \sharp K}{\prod_{j \in J \cap I} j \sharp K} \frac{\eta_{I \cap K}}{\eta_{I \cap J \cap K}} \frac{\eta_{J \cap K}}{\eta_{J \cap I \cap K}}=I \sharp K \eta_{I \cap K} J \sharp K \eta_{J \cap K}=I \sharp K J \sharp K$

$$
\begin{aligned}
& { }_{I} \mathrm{Z} \times{ }_{J} \mathrm{Z}=I \sharp J_{I+J} \mathrm{Z}={\underset{J}{I} \eta_{I \cap J}{ }_{I+J} \mathrm{Z}} \\
& . \mathfrak{L} \times{ }_{J} \mathrm{~L}=\bullet \sharp J .{ }_{J} \mathrm{~L}={ }_{J} \mathrm{Z}={ }_{J} \mathrm{Z} \times . \mathfrak{Z} \Rightarrow . \mathfrak{L}=1 \\
& . \mathrm{Z} \times{ }_{J} \mathrm{Z}={\underset{J}{J} \eta_{\bullet \cap J}}^{\bullet}+{ }_{J} \mathrm{Z}={ }_{J} \mathrm{Z}={ }_{J} \mathrm{Z} \times . \mathrm{L} \Longrightarrow . \mathrm{L}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { LHS }=I \sharp J_{I+J} \mathrm{Z} \times_{K} \mathrm{\imath}=I \sharp J(I+J) \sharp K_{I+J+K} \mathrm{\imath}=I \sharp J I \sharp K J \sharp K_{I+J+K} \mathrm{Z} \\
& =J \sharp K I \sharp \pm J+K{ }_{I+\underbrace{J+K}} \mathrm{Z}=J \sharp K_{I} \mathrm{~L} \times{ }_{J+K} \mathrm{Z}=\text { RHS }
\end{aligned}
$$

LHS $=\left|\sharp J_{I+J} \mathrm{Z}\right|={ }^{I+}{ }_{-1} \overparen{I} \overparen{I \sharp J}{ }_{I+J} \mathrm{Z}={ }^{I+J^{J}}{ }_{I} \mathrm{Z} \times{ }_{J} \mathrm{Z}=\stackrel{\overline{I|+|J|-2| I n J}}{-1}{ }_{I} \mathrm{Z} \times{ }_{J} \mathrm{Z}=-1^{\bar{I}}-1^{\bar{J}}{ }_{I} \mathrm{Z} \times{ }_{J} \mathrm{Z}=\operatorname{RHS}$
 ${ }_{I} \overline{\overline{\mathrm{~L}}}=-\bar{I}_{1} \bar{I}_{I}={ }_{I} \mathrm{Z}$
${ }_{j} \mathrm{Z} \times{ }_{I} \overline{\mathrm{Z}}=-\bar{I}_{1}{ }_{j} \mathrm{Z} \times{ }_{I} \mathrm{Z}= \begin{cases}{ }_{I} \mathrm{Z}_{j} \mathrm{Z} & j \notin I \text { vert }|I| \mathrm{mal} \\ -{ }_{I} \mathrm{Z} \times_{j} \mathrm{Z} & j \in I \text { vert }|I|-1 \mathrm{mal}\end{cases}$ $\mathbb{L} \in \mathbb{K} \nabla \mathbb{K}$

$$
\bigwedge_{L \in L} \mathbb{L X L}=L \times \overline{\mathbb{L}} \Rightarrow \mathbb{L} \in \mathbb{K}
$$

$$
\mathbb{U}=\sum_{I} \mathbb{U}^{I}{ }_{I} \mathrm{Z} \Rightarrow \bigwedge_{j \in N} \sum_{j \in I} \mathbb{L}^{I}{ }_{I} \mathrm{Z} \times{ }_{j} \mathrm{Z}+\sum_{j \notin I} \mathbb{L}^{I}{ }_{I} \mathrm{Z} \times{ }_{j} \mathrm{Z}=\mathbb{\Perp} \times_{j} \mathrm{Z}={ }_{j} \mathrm{Z} \times \overline{\mathbb{L}}=\sum_{I} \mathbb{L}^{I}{ }_{j} \mathrm{Z} \times{ }_{I} \overline{\mathrm{~L}}=-\sum_{j \in I} \mathbb{U}^{I}{ }_{I} \mathrm{Z} \times{ }_{j} \mathfrak{Z} .
$$

$$
{ }_{I} \mathrm{~L}^{t}=-{ }^{m}{ }_{I} \mathrm{Z}
$$

$$
|I|-2 m \in 2
$$

$$
1^{t}=. \mathbf{L}^{t}=-1^{0} \quad . \mathbf{Z}=. \mathbf{L}=1
$$

$$
\begin{aligned}
& { }_{I} \mathrm{~L}={ }_{i_{1}} \mathrm{Z} \times \cdots_{i_{k}} \mathrm{Z} \\
& I=\underbrace{e} t i_{1}<\cdots<i_{k} \\
& { }_{i} \mathrm{Z} \times{ }_{j} \mathrm{Z}=i \sharp j_{i+j} \mathrm{Z}= \begin{cases}\eta^{i i} \cdot \mathbf{Z} & i=j \\
i \sharp j_{i j} \mathrm{Z}=-j \sharp i_{j i} \mathrm{Z}=-{ }_{j} \mathrm{Z} \times_{i} \mathrm{Z} & i \neq j\end{cases} \\
& { }_{I} \mathrm{Z} \times{ }_{J} \mathrm{Z}=\frac{\overline{I| | J|-| I \cap J}}{-1}{ }_{J} \mathrm{Z} \times{ }_{I} \mathrm{Z} \\
& { }_{I} \overline{\mathrm{~L}}:=\overline{\bar{I}}_{1}{ }_{\mathrm{I}} \mathrm{Z} \\
& . \overline{\mathrm{L}}=\stackrel{\bullet}{-}_{-1}=. \mathbf{L} \\
& { }_{j} \overline{\mathrm{Z}}=-{ }^{1} \mathrm{I}_{j} \mathrm{Z}=-{ }_{j} \mathrm{Z} \\
& \underline{{ }_{I} \mathrm{~L} \times{ }_{J} \mathrm{~L}}={ }_{I} \overline{\mathrm{~L}} \times{ }_{J} \overline{\mathrm{~L}}
\end{aligned}
$$

$$
\begin{gathered}
\overbrace{i} \mathrm{~L}^{t}=-1^{0}{ }_{{ }_{i}} \mathrm{~L}={ }_{i} \mathrm{Z} \\
\overbrace{I}^{t} \times_{J} \mathrm{Z}
\end{gathered}={ }_{J} \mathrm{~L}^{t} \times{ }_{I} \mathrm{Z}^{t} .
$$

