$$
\begin{aligned}
& K^{\prime}=O\left(Z_{\mathbb{R}}\right) \\
& \mathcal{S}_{ \pm}=\mathbb{C}^{2^{m}} \\
& a=2 m \text { even : } \varepsilon=0 \\
& \mathcal{C}\left(Z_{\mathbb{R}}\right)=\mathbb{C}^{2^{2 m+2}}=\mathbb{C}^{4^{m+1}}=\mathbb{C}^{2^{m+1}} \mathbf{Z} \mathbb{C}^{2^{m+1}} \text { simple } \\
& \mathcal{S}=\mathbb{C}^{2^{m+1}}=\mathbb{C}^{2^{m}} \times \mathbb{C}^{2^{m}}=\mathcal{S}_{+} \times \mathcal{S}_{-} \text {double } \\
& \mathcal{S}_{ \pm}=\mathbb{C}^{2^{m}} \\
& a=2 m+1 \text { odd : } \varepsilon=1 \\
& \mathcal{C}\left(Z_{\mathbb{R}}\right)=\mathbb{C}^{2^{2 m+3}}=\mathbb{C}^{4^{m+1}} \times \mathbb{C}^{4^{m+1}} \text { double } \\
& \mathcal{C}_{ \pm}\left(Z_{\mathbb{R}}\right)=\mathbb{C}^{4^{m+1}}=\mathbb{C}^{2^{m+1}} \mathbf{\Sigma} \mathbb{C}^{2^{m+1}} \text { simple } \\
& a=1 \Longrightarrow \mathcal{C}\left(Z_{\mathbb{R}}\right)_{\text {double }}^{\overline{=}} \mathbb{C}^{8}=\mathbb{C}^{4} \times \mathbb{C}^{4}: \quad \mathcal{C}_{ \pm}\left(Z_{\mathbb{R}}\right)=\mathbb{C}^{4} \underset{\text { simple }}{\overline{=}} \mathbb{C}^{2} \boldsymbol{\nabla} \mathbb{C}^{2} \Longrightarrow \mathcal{S}=\mathbb{C}^{2} \\
& a=2 \Rightarrow \mathcal{C}\left(Z_{\mathbb{R}}\right)_{\text {simple }}^{=} \mathbb{C}^{16}=\mathbb{C}^{4} \boldsymbol{\nabla} \mathbb{C}^{4} \Rightarrow \mathcal{S}=\mathbb{C}_{\text {double }}^{4} \mathbb{C}^{2} \times \mathbb{C}^{2}=\mathcal{S}_{+} \times \mathcal{S}_{-} \\
& a=4 \Longrightarrow \mathcal{C}\left(Z_{\mathbb{R}}\right)_{\text {simple }} \mathbb{C}^{64}=\mathbb{C}^{8} \boldsymbol{\nabla} \mathbb{C}^{8} \Longrightarrow \mathcal{S}=\mathbb{C}^{8}{ }_{\text {double }}=\mathbb{C}^{4} \times \mathbb{C}^{4}=\mathcal{S}_{+} \times \mathcal{S}_{-}
\end{aligned}
$$

