$$
\begin{gathered}
\mathcal{I} \tau>0 \\
\frac{\sum_{n}^{2 \mathbb{Z}+1} \pi i n(\tau n / 2+z)_{\mathfrak{e}}}{\sum_{n}^{2 \mathbb{Z}} \pi i n(\tau n / 2+z)_{\mathfrak{e}}}={ }^{z} \tau \in \mathbb{C}_{\hbar}^{\mathbb{C}} \mathbb{C}
\end{gathered}
$$

$$
\sum_{n}^{2 \mathbb{Z}+1} \pi i n(\tau n / 2+z) \mathfrak{e} \in \in \mathbb{C}_{\underset{\omega}{ }} \mathbb{C} \ni \sum_{n}^{2 \mathbb{Z}} \pi i n(\tau n / 2+z) \mathfrak{e}
$$

$$
{ }^{0} \tau=a
$$

half-periods $\left\{\begin{array}{l}z+1 \tau=-{ }^{z} \tau \\ z+{ }^{z} \tau=\frac{1}{z_{\tau}}\end{array}\right.$

$$
\begin{aligned}
& \sum_{n}^{2 \mathbb{Z}} \pi i n(\tau n / 2+z) \mathfrak{e}=\prod_{n \geqslant 1}\left(1+\frac{q^{2 n-1}}{p}\right) \\
&\left(1+p q^{2 n-1}\right)=\prod_{n \geqslant 1}\left(p+q^{2 n-1}\right)\left(p^{-1}+q^{2 n-1}\right) \\
& p={ }^{2 \pi i z} \mathfrak{e} \\
& q={ }^{2 \pi i \tau} \mathfrak{e}
\end{aligned}
$$

