$$
\begin{aligned}
& \cot x=\sum_{n \geqslant 0} \frac{B_{2 n}}{(2 n)!} x^{2 n-1} \\
& { }^{x_{\mathcal{c}}}=\frac{-x^{2} / 4}{1 / 2} \\
& \frac{{ }_{\mathfrak{s}}}{x}=\frac{-x^{2} / 4}{3 / 2} \\
& \frac{{ }^{x}}{x}=\frac{1 / 2 \mid 1 / 2}{\sum_{3 / 2}^{x^{2}}}=\sum_{n}^{\mathbb{N}} \frac{\Gamma_{n+1 / 2}}{n!(2 n+1)} x^{2 n} \\
& \frac{{ }^{x} \nmid}{x}=\frac{1 / 2 \mid 1}{\frac{-x^{2}}{3 / 2}} \\
& \frac{1+z}{z}=\frac{1 \mid 1}{\frac{-z}{2}}
\end{aligned}
$$

