$$
\mathbb{Z} \stackrel{\times}{\ulcorner } \mathbb{Z} m=\frac{\mathbb{Z} m+n}{m \curlywedge n=1}
$$

$\subset: ~ \mathbb{Z} m+1=\mathbb{Z} m+b \underbrace{\mathbb{Z} m+n}=\mathbb{Z} m+b n \Rightarrow 1-b n \in \mathbb{Z} m \Longrightarrow 1-b n=a m \Longrightarrow 1=a m+b n$
$\supset: \quad m \curlywedge n=1 \Rightarrow 1=a m+b n \Rightarrow \mathbb{Z} m+1=\underbrace{\mathbb{Z} m+m}_{=\mathbb{Z} m+a}+\underbrace{\mathbb{Z} m+b} \underbrace{\mathbb{Z} m+n}=\underbrace{\mathbb{Z} m+b} \underbrace{\mathbb{Z} m+n}$

$$
\begin{aligned}
& \Rightarrow \mathbb{Z} m+n \in \mathbb{Z} \stackrel{\times}{\ulcorner } \mathbb{Z} m \\
& \mathbb{Z} \stackrel{\times}{\ulcorner } \mathbb{Z} m \xrightarrow[\text { hom }]{\chi} \mathbb{C}^{\times} \\
& p \nprec m \Rightarrow{ }_{p}^{s} \mathbb{Q}_{\chi}^{-1}=1-\frac{\chi(p+\mathbb{Z} m)}{p^{s}} \\
& { }_{8}^{s} \mathbb{Q}_{\chi}=\prod_{p \nless m}{ }_{p}^{s} \mathbb{Q}_{\chi}=\prod_{p \nless m}\left(1-\frac{\chi(p+\mathbb{Z} m)}{p^{s}}\right)^{-1}=\sum_{m \curlywedge n=1} \frac{\chi(n+\mathbb{Z} m)}{n^{s}} \\
& { }_{\infty}^{s} \mathbb{Q}_{\chi}=\frac{q^{s / 2} \Gamma_{s / 2}}{\pi^{s / 2}} \\
& { }^{s} \mathbb{Q}_{\chi}={ }_{8}^{s} \mathbb{Q}_{\chi}{ }^{s} \mathbb{Q}_{\chi} \\
& { }^{1 / 2+s} \mathbb{Q}_{\chi}=\varepsilon_{\chi}{ }^{1 / 2-s} \mathbb{Q}_{\bar{\chi}} \\
& { }_{8}^{s} \mathbb{Q}_{8}^{s} \mathbb{Q}_{\chi \text { Gauss }}={ }_{8}^{s} \mathbb{Q}^{\sqrt{\chi-1 m}} \\
& \chi_{N} \\
& \widetilde{c \tau+d} \xlongequal{\frac{-1}{a \tau+b}} \boldsymbol{\eta}=\chi_{N}(d) \widetilde{c \tau+d}{ }^{\tau} \eta \\
& \left.\begin{array}{l|l}
a & b \\
\hline c & d
\end{array} \in \begin{array}{l}
\mathbb{Z} \\
\mathbb{C} N
\end{array} \right\rvert\, \mathbb{Z} \\
& { }^{2} \overline{\mathbb{Q}}_{2}^{\mathrm{C}} \ltimes{ }^{2} \mathbb{Q}_{2}^{\mathrm{C}} \neg^{2} \overline{\mathbb{Q}}_{2}^{\mathrm{C}} \stackrel{\Delta}{\omega}^{2} \mathbb{C}
\end{aligned}
$$

