$$
\begin{gathered}
A \in{ }_{d} \mathbb{K}^{d} \\
\widetilde{\pi}^{n}<1 \Rightarrow \widetilde{I-A}=\sum_{n}^{\mathbb{N}} A^{n}
\end{gathered}
$$

$$
X \in{ }_{d} \mathbb{K}^{d} \xrightarrow{F_{A}}{ }_{d} \mathbb{K}^{d} \ni{ }^{X} F_{A}=I+A X
$$

$$
F_{A} \text { contr }_{\pi_{\bar{A}}}
$$

$$
d^{\mathbb{K}^{d}} \text { voll } \underset{\text { Ban }}{\Rightarrow} \bigvee_{\text {eind }} d^{\mathbb{K}^{d}} \ni B={ }^{B} F_{A}=I+A B
$$

$$
B=\overparen{I-A}
$$

$$
\begin{gathered}
I-A B=B-A B=I \\
{ }^{I} F_{A}^{n}=I+A+\cdot \cdot+A^{n}
\end{gathered}
$$

$$
{ }^{I} F_{A}^{0}={ }^{I} \mathrm{id}=I
$$

$$
{ }^{I} F_{A}^{n+1}=I+A^{I} F_{A}^{n}=I+A+\cdot \cdot+A^{n}=I+A \underline{i+A+\cdot \cdot+A^{n}}=I+A+A^{2}+\cdot \cdot+A^{n+1}
$$

$$
I+A+\cdot \cdot+A^{n}={ }^{I} F_{A}^{n} \leadsto B=\overparen{I-A}
$$

