zush/weg-zush $U \subset \mathbb{R}^{n}: U \xrightarrow[\text { diff }]{\urcorner} \mathbb{R}\left\{\begin{array}{l}\frac{\eta=0}{\nabla}=0\end{array} \quad \Rightarrow\right\urcorner=$ const U konv/Zush-Argument

$$
\begin{aligned}
& \operatorname{conv} C \subset \mathbb{R}^{n}\left\{\begin{array}{l}
C \xrightarrow[\text { diff }]{\xrightarrow[\imath]{\text { di }}} \mathbb{R}^{m} \\
C \underset{\text { bes }}{m \times n}
\end{array} \quad \Rightarrow\right. \text { १ u-stet } \\
& \mathcal{Z}=\left[\begin{array}{l}
\mathcal{Z} \\
m^{2}
\end{array}\right] \quad \text { diff } \Leftrightarrow\left\{\begin{array}{l}
\bigwedge_{i} \mathcal{i} \text { diff } \\
{ }_{v} \underline{\mathcal{Z}}=\left[\begin{array}{l}
v \\
1 \\
v \\
v_{2} \\
m \underline{2}
\end{array}\right]
\end{array} \quad \text { max-Norm on } \mathbb{R}^{n}\right. \\
& \left.\mathbb{R}^{n} \supset U \xrightarrow[\infty \text { diff }]{\eta} \mathbb{R} \Rightarrow \bigwedge_{\pi}^{\mathcal{S}_{k}} \partial_{i_{1}} \cdot \cdot \partial_{i_{k}}\right\urcorner=\partial_{i_{\pi 1}} . . \partial_{i_{\pi k}} \eta \\
& \left\{\begin{array} { l }
{ \mathbb { R } \xrightarrow [\text { diff }] { g } \mathbb { R } } \\
{ { } ^ { 0 } \underline { g } = 0 }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
\mathbb{R}^{n} \xrightarrow{\eta} \mathbb{R} \\
{ }^{v} \uparrow=g\left({ }^{\left(v^{n}\right)}\right.
\end{array} \quad \text { diff in } 0\right.\right.
\end{aligned}
$$

